Skip to main content

Volume 50 Supplement 3

Special Issue: The PLANET-B Misson and Related Science

  • Article
  • Published:

The Mars thermosphere-ionosphere: Predictions for the arrival of Planet-B

Abstract

The primary science objective of the Planet-B mission to Mars is to study the Martian upper atmosphere-ionosphere system and its interaction with the solar wind. An improved knowledge of the Martian magnetic field (whether it is induced or intrinsic) is needed, and will be provided by Planet-B. In addition, a proper characterization of the neutral thermosphere structure is essential to place the various plasma observations in context. The Neutral Mass Spectrometer (NMS) onboard Planet-B will provide the required neutral density information over the altitude range of 150–500 km. Much can be learned in advance of Planet-B data taking as multi-dimensional thermosphere-ionosphere and MHD models are exercised to predict the Mars near-space environment that might be expected during the solar maximum conditions of Cycle 23 (1999–2001). Global model simulations of the Mars thermosphere-ionosphere system are presented and analyzed in this paper. These Mars predictions pertain to the time of Planet-B arrival in October 1999 (F10.7200; Ls220). In particular, the National Center for Atmospheric Research (NCAR) Mars Thermosphere General Circulation Model (MTGCM) is exercised to calculate thermospheric neutral densities (CO2, CO, N2, O, Ar, O2), photochemical ions (CO+2, O+2, O+ below 200 km), neutral temperatures, and 3-components winds over 70–300 km. Cases are run with and without dust loading of the lower atmosphere in order to examine the potential impacts of dust storms on the thermosphere-ionosphere structure. Significant dust-driven impacts are predicted in the lower thermosphere (100–120 km), but are less pronounced above 150 km. The ionospheric peak height changes greatly with the passage of a Mars global dust storm event. In addition, Martian dayside exobase temperatures are generally warmer during dusty periods, in accord with Mariner 9 UVS data (Stewart et al., 1972). During the Planet-B mission, the NMS team intends to use the MTGCM as a facility tool whose simulated output can be utilized to aid various investigations.

References

  • Barth, C. A., A. I. F. Stewart, S. W. Bougher, D. M. Hunten, S. A. Bauer, and A. F. Nagy, Mars, Ch. 5.7: Aeronomy of the Current Martian Atmosphere, pp. 1054–1089, Univ. of Arizona Press, 1992.

  • Bauer, S. J. and R. E. Hartle, On the extent of the Mars ionosphere, J. Geophys. Res., 78, 3169, 1973.

    Article  Google Scholar 

  • Bougher, S. W., Comparative thermospheres: Venus and Mars, Adv. Space Res., 15, 21–45, 1995.

    Article  Google Scholar 

  • Bougher, S. W. and J. L. Fox, The Ancient Mars Thermosphere, Workshop on Evolution of Mars Volatiles, LPI Technical Report #96-01, Part 1, pp. 5–6, 1996.

  • Bougher, S. W., R. E. Dickinson, R. G. Roble, and E. C. Ridley, Mars thermospheric general circulation model: Calculations for the arrival of Phobos at Mars, Geophys. Res. Lett., 15, 1511–1514, 1988.

    Article  Google Scholar 

  • Bougher, S. W., R. G. Roble, E. C. Ridley, and R. E. Dickinson, The Mars thermosphere II. General circulation with coupled dynamics and composition, J. Geophys. Res., 95, 14811–14827, 1990.

    Article  Google Scholar 

  • Bougher, S. W., E. C. Ridley, C. G. Fesen, and R. W. Zurek, Mars mesosphere and thermosphere coupling: Semidiurnal tides, J. Geophys. Res., 98, 3281–3295, 1993.

    Article  Google Scholar 

  • Bougher, S. W., D. M. Hunten, and R. G. Roble, CO2 cooling in terrestrial planet thermospheres, J. Geophys. Res., 99, 14609–14622, 1994.

    Article  Google Scholar 

  • Bougher, S. W., J. M. Murphy, and R. M. Haberle, Dust Storm Impacts on the Mars Upper Atmosphere, Adv. Space Res., 19, 1255–1260, 1997.

    Article  Google Scholar 

  • Chen, R. H., T. E. Cravens, and A. F. Nagy, The Martian ionosphere in light of Viking observations, J. Geophys. Res., 83, 3871, 1978.

    Article  Google Scholar 

  • Colin, L., Encounter with Venus, Science, 203, 743–745, 1979.

    Article  Google Scholar 

  • Fox, J. L., The production and escape of nitrogen atoms on Mars, J. Geophys. Res., 98, 3297, 1993.

    Article  Google Scholar 

  • Fox, J. L. and A. Dalgarno, Ionization, luminosity, and heating of the upper atmosphere of Mars, J. Geophys. Res., 84, 7315–7331, 1979.

    Article  Google Scholar 

  • Fox, J. L., P. Zhou, and S. W. Bougher, The Martian Thermosphere/Ionosphere at High and Low Solar Activities, Adv. Space Res., 17, 203–218, 1995.

    Article  Google Scholar 

  • Hanson, W. B. and G. P. Mantas, Viking electron temperature measurements: Evidence for a magnetic field in the Martian atmosphere, J. Geophys. Res., 93, 7538, 1988.

    Article  Google Scholar 

  • Hanson, W. B., S. Sanatani, and D. R. Zucarro, The Martian ionosphere as observed by the Viking retarding potential analyzers, J. Geophys. Res., 82, 4351–4363, 1977.

    Article  Google Scholar 

  • Joselyn, J. A., J. B. Anderson, H. Coffey, K. Harvey, D. Hathaway, G. Heckman, E. Hildner, W. Mende, K. Schatten, R. Thompson, A. W. P. Thomson, and O. R. White, Panel achieves consensus prediction of solar cycle 23, EOS Trans., American Geophysical Union, 78, 205–212, 1997.

    Article  Google Scholar 

  • Krasnopolsky, V. A., Solar cycle variations of the hydrogen escape rate and the CO mixing ratio on Mars, Icarus, 101, 33–41, 1993.

    Article  Google Scholar 

  • Murphy, J. R., J. B. Pollack, R. M. Haberle, C. B. Leovy, O. B. Toon, and J. Schaeffer, Three-dimensional numerical simulation of Martian global dust storms, J. Geophys. Res., 100, 26357–26376, 1995.

    Article  Google Scholar 

  • Nier, A. O. and M. B. McElroy, Composition and structure of Mars upper atmosphere: Results from the neutral mass spectrometers on Viking 1 and 2, J. Geophys. Res., 82, 4341–4349, 1977.

    Article  Google Scholar 

  • Pollack, J. B., R. M. Haberle, J. Schaeffer, and H. Lee, Simulations of the general circulation of the Martian atmosphere: 1. Polar processes, J. Geophys. Res., 95, 1447–1473, 1990.

    Article  Google Scholar 

  • Roble, R. G., E. C. Ridley, A. D. Richmond, and R. E. Dickinson, A coupled thermosphere-ionosphere general circulation model, Geophys. Res. Lett., 15, 1325–1328, 1988.

    Article  Google Scholar 

  • Rohrbaugh, R. P., J. S. Nisbet, E. Bleuler, and J. R. Herman, The effects of energetically produced O+2 on the ion temperature of the Martian thermosphere, J. Geophys. Res., 84, 3327, 1979.

    Article  Google Scholar 

  • Schatten, K. H. and W. D. Pesnell, An early solar dynamo prediction: Cycle 23-Cycle 22, Geophys. Res. Lett., 20, 2275–2278, 1993.

    Article  Google Scholar 

  • Schofield, J. T., D. Crisp, J. R. Barnes, R. Haberle, J. A. Magalhaes, J. R. Murphy, A. Seiff, C. LaBraw, and G. R. Wilson, Preliminary results from the Pathfinder Atmospheric Structure Investigation/Meteorology Experiment (ASI/MET), Science, 278, 1752–1758, 1997.

    Article  Google Scholar 

  • Seiff, A. and D. B. Kirk, Structure of the atmosphere of Mars in summer in mid-latitudes, J. Geophys. Res., 82, 4364–4378, 1977.

    Article  Google Scholar 

  • Shinagawa, H. and T. E. Cravens, A one-dimensional multispecies magnetohydrodynamic model of the dayside ionosphere of Mars, J. Geophys. Res., 94, 6506–6516, 1989.

    Article  Google Scholar 

  • Stewart, A. I. F., Revised time dependent model of the Martian atmosphere for use in orbit lifetime and sustenance studies, LASP-JPL Internal Rep., PO# NQ-802429, Jet Propulsion Lab., Pasadena CA., March, 1987.

    Google Scholar 

  • Stewart, A. I. and W. B. Hanson, Mars’ upper atmosphere: Mean and variations, Adv. Space Res., 2, 87–101, 1982.

    Article  Google Scholar 

  • Stewart, A. I., C. A. Barth, C. W. Hord, and A. L. Lane, Mariner 9 ultraviolet spectrometer experiment: Structure of Mars upper atmosphere, Icarus, 17, 469–474, 1972.

    Article  Google Scholar 

  • Stewart, A. I. F., M. J. Alexander, R. R. Meier, L. J. Paxton, S. W. Bougher, and C. G. Fesen, Atomic oxygen in the Martian thermosphere, J. Geophys. Res., 97, 91–102, 1992.

    Article  Google Scholar 

  • Tobiska, W. K., Revised solar extreme ultraviolet flux model, J. Atmos. Terr. Phys., 53, 1005–1018, 1991.

    Article  Google Scholar 

  • Torr, M. R. and D. G. Torr, Ionization frequencies for solar cycle 21: Revised, J. Geophys. Res., 90, 6675–6678, 1985.

    Article  Google Scholar 

  • Torr, M. R., D. G. Torr, R. A. Ong, and H. E. Hinteregger, Ionization frequencies for major thermospheric constituents as a function of solar cycle 21, Geophys. Res. Lett., 6, 771–774, 1979.

    Article  Google Scholar 

  • Torr, M. R., D. G. Torr, and H. E. Hinteregger, Solar flux variability in the Schumann-Runge continuum as a function of solar cycle 21, J. Geophys. Res., 85, 6063–6068, 1980.

    Article  Google Scholar 

  • Yamamoto, T. and K. Tsuruda, The Planet-B mission, Earth Planets Space, 50, this issue, 175–181, 1998.

    Article  Google Scholar 

  • Zhang, M. H. G. and J. G. Luhmann, Comparisons of peak ionosphere pressures at Mars and Venus with incident solar wind dynamic pressure, J. Geophys. Res., 97, 1017–1025, 1992.

    Article  Google Scholar 

  • Zhang, M. H. G., J. G. Luhmann, A. J. Kliore, and J. Kim, A post-Pioneer Venus Reassessment of the Martian dayside ionosphere as observed by radio occultation methods, J. Geophys. Res., 95, 14829–14839, 1990.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. W. Bougher.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bougher, S.W., Shinagawa, H. The Mars thermosphere-ionosphere: Predictions for the arrival of Planet-B. Earth Planet Sp 50, 247–257 (1998). https://doi.org/10.1186/BF03352111

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1186/BF03352111

Keywords