Skip to main content
  • Article
  • Published:

Polar thermosphere-stratosphere photochemical coupling experiment: Two rocket measurements in polar winter at 69°N

Abstract

Two rocket experiments were carried out just before and after the polar night at Andoya (69°N), Norway to investigate transport of nitric oxide produced by auroral processes into the middle atmosphere and its influence on the ozone chemistry. Nitric oxide densities of (2−5) × 108 cm−3 found in the 70–90 km region are one to two orders of magnitude larger than those at middle latitudes. The measured density profiles appear to agree semi-quantitatively with model simulations which includes auroral processes. The influence on ozone densities in the 70–90 km region due to such enhanced nitric oxide abundance is found to be still insignificant as compared to that due to transport in the middle of February, one month after the end of polar night and one month before the spring equinox. The larger ozone densities found in February (in spite of longer sunlit duration) than in November in the 40–60 km region again support predominance of transport over photochemical destruction.

References

  • Allen, M., J. I. Lunine, and Y. L. Yung, The vertical distribution of ozone in the mesosphere and lower thermosphere, J. Geophys. Res., 89, 4841–4872, 1984.

    Article  Google Scholar 

  • Amemiya, H. and Y. Nakamura, Measurement of negative ions in the lower ionosphere (D-layer) in the polar region, J. Geomag. Geoelectr., 48, 391–401, 1996.

    Article  Google Scholar 

  • Badger, R. M., A. C. Wright, and R. F. Whiltlock, Absolute intensities of the discrete and continuous absorption band of oxygen gas at 1.26 and 1.065 μ and the radiative lifetime of the 1Δg state of oxygen, J. Chem. Phys., 43, 4345–4350, 1965.

    Article  Google Scholar 

  • Brasseur, G., Coupling between the thermosphere and the stratosphere: The role of nitric oxide, Handbook for MAP, 10, 116–121, 1984.

    Google Scholar 

  • Brasseur, G., The response of the middle atmosphere to long-term and short-term solar variability: A two-dimensional model, J. Geophys. Res., 98, 23079–23090, 1993.

    Article  Google Scholar 

  • Brasseur, G. and S. Solomon, Aeronomy of the Middle Atmosphere, 2nd ed., 325 pp., D. Reidel Pub. Co., Dordrecht, 1986.

    Book  Google Scholar 

  • CIRA:1986, COSPAR International Reference Atmosphere, Adv. Space Res., edited by D. Rees, J. J. Burnett, and K. Labitzke, 10(12), pp. 317 and 430, 1990.

  • Dalgarno, A., G. A. Victor, and T. W. Hartquist, The auroral 2145 A feature, Geophys. Res. Lett., 8, 603–605, 1981.

    Article  Google Scholar 

  • DeMore, W. B., S. P. Sander, D. M. Gorden, R. F. Hampson, M. J. Kurylo, C. J. Howard, A. R. Ravishankara, C. E. Kolb, and M. J. Molina, Chemical Kinetics and Photochemical Data for Use in Stratospheric Modeling, JPL Publ. 94–26, 1994.

  • Foster, J. C., J. M. Holt, R. G. Musgrove, and D. S. Evans, Ionospheric convection associated with discrete levels of particle precipitation, Geophys. Res. Lett., 13, 656–659, 1986.

    Article  Google Scholar 

  • Horvath, J. J. and J. E. Frederick, In-situ measurements if nitric oxide in the high latitude upper stratosphere, Geophys. Res. Lett., 12, 495–497, 1985.

    Article  Google Scholar 

  • Hsu, Y. T., Y. P. Lee, and F. Oglivie, Intensities of lines in the band a 1Ag− X3Σg of O2 in absorption, Spectrochem. Acta, 48A, 1227–1230, 1992.

    Article  Google Scholar 

  • Iwagami, N., Spectroscopic study of the nitrogen airglow, Mem. Natl. Inst. Polar Res., A18, 1–78, 1981.

    Google Scholar 

  • Iwagami, N. and T. Ogawa, An Antarctic NO density profile deduced from the γband radiometer, Planet. Space Sci.,28, 867–873, 1980.

    Article  Google Scholar 

  • Iwagami, N. and T. Ogawa, Nitric oxide γband airglow radiometer with a self-absorbing gas cell, Appl. Opt., 20, 2522–2527, 1981.

    Article  Google Scholar 

  • Iwagami, N. and T. Ogawa, Thermospheric NO profiles observed at the diminishing phase of solar cycle 21, Planet. Space Sci., 35, 191–198, 1987.

    Article  Google Scholar 

  • Kondo, Y. and T. Ogawa, Odd nitrogen in the lower thermosphere under auroral perturbations, J. Geomag. Geoelectr., 28, 253–282, 1976.

    Article  Google Scholar 

  • McPeters, R. D., Climatology of nitric oxide in the upper stratosphere, mesosphere, and thermosphere: 1979 through 1986, J. Geophys. Res., 94, 3461–3472, 1989.

    Article  Google Scholar 

  • Minschwaner, K. and D. E. Siskind, A new calculation of nitric oxide photolysis in the stratosphere, mesosphere and lower thermosphere, J. Geophys. Res., 98, 20401–20412, 1993.

    Article  Google Scholar 

  • Notholt, J., G. C. Toon, R. Lehmann, B. Sen, and J.-F. Blavier, Comparison of Arctic and Antarctic trace gas column abundances from ground-based Fourier transform infrared spectrometry, J. Geophys. Res., 102, 12863–12869, 1997.

    Article  Google Scholar 

  • Ogawa, T. and T. Watanabe, Rocket-borne optical ozone dropsonde (ROOD) for calibrating the satellite observation of stratospheric ozone, Adv. Space Res., 14(1), 211–214, 1994.

    Article  Google Scholar 

  • Oya, H. and T. Obayashi, Rocket measurement of ionospheric plasma by gyro-plasma probe, Rep. Ionos. Space Res. Japan, 21, 1–8, 1967.

    Google Scholar 

  • Pendleton, W. R., D. J. Baker, R. J. Reese, and R. R. O’Neil, Decay of O2(a1Δg) in the evening twilight airglow: Implications for the radiative lifetime, Geophys. Res. Lett., 23, 1013–1016, 1996.

    Article  Google Scholar 

  • Roble, R. G. and M. H. Rees, Time-dependent study of the aurora: Effects of particle precipitation on the dynamic morphology of ionospheric and atmospheric properties, Planet. Space Sci., 25, 991–1010, 1977.

    Article  Google Scholar 

  • Rusch, D. W. and C. A. Barth, Satellite measurement of nitric oxide in the polar region, J. Geophys. Res., 80, 3719–3721, 1975.

    Article  Google Scholar 

  • Rusch, D. W. and R. T. Clancy, A study of the time and spatial dependence of ozone near 1.0 mb with emphasis on the springtime, in Ozone in the Atmosphere, edited by R. D. Bojkov and P. Fabian, 218 pp., Deepak Pub., 1989.

  • Russell, J. M., S. Solomon, L. L. Gordley, E. E. Remsberg, and L. B. Callis, The variability of stratospheric and mesospheric NO2 in the polar winter night observed by LIMS, J. Geophys. Res., 89, 7267–7275, 1984.

    Article  Google Scholar 

  • Shimazaki, T., Minor Constituents in the Middle Atmosphere, 141 pp., Terra Scientific Pub., Tokyo, and D. Reidel Pub., Dordrecht, 1985.

    Google Scholar 

  • Siskind, D. E., On the radiative coupling between mesospheric and thermospheric nitric oxide, J. Geophys. Res., 99, 22757–22766, 1994.

    Article  Google Scholar 

  • Siskind, D. E. and J. M. Russell, III, Coupling between middle and upper atmospheric NO: Constraints from HALOE observations, Geophys. Res. Lett., 23, 137–140, 1996.

    Article  Google Scholar 

  • Siskind, D. E., J. T. Bacmeister, M. E. Summers, and J. M. Russell, III, Two-dimensional model calculations of nitric oxide transport in the middle atmosphere and comparison with HALOE data, J. Geophys. Res., 102, 3527–3545, 1997.

    Article  Google Scholar 

  • Solomon, S. and R. R. Garcia, Transport of thermospheric NO to the upper stratosphere?, Planet. Space Sci., 32, 399–409, 1984.

    Article  Google Scholar 

  • Solomon, S., P. J. Crutzen, and R. G. Roble, Photochemical coupling between the thermosphere and the lower atmosphere 1. Odd nitrogen from 50 to 120 km, J. Geophys. Res., 87, 7206–7220, 1982.

    Article  Google Scholar 

  • Yamamoto, H., K. Yajima, H. Sekiguchi, and T. Makino, Mesospheric ozone density profiles in the polar region, J. Geomag. Geoelectr., 49, 675–688, 1997.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iwagami, N., Yamamoto, H., Yajima, Ki. et al. Polar thermosphere-stratosphere photochemical coupling experiment: Two rocket measurements in polar winter at 69°N. Earth Planet Sp 50, 745–753 (1998). https://doi.org/10.1186/BF03352167

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1186/BF03352167

Keywords