Skip to main content
  • Article
  • Published:

Two types of co-accretion scenarios for the origin of the Moon

Abstract

Based on orbital calculations of Keplerian planetesimals incident on a planet with various initial orbital elements, we develop a numerical model which describes the accretional and dynamical evolution of planet-satellite systems in a swarm of planetesimals on heliocentric orbits with given spatial and velocity distributions. In the plane of orbital radius of the satellite vs. satellite/planet mass ratio, a satellite with some initial value moves quickly toward the balanced orbital radius, where accretion drag compensates with tidal repulsion, and then grows toward the equilibrium mass ratio. Using the model, we propose two types of co-accretion scenarios for the origin of the Moon, both of which satisfy the most fundamental dynamical constraints: the large angular momentum of the Earth-Moon system and the large Moon/Earth mass ratio. In the first scenario the Moon starts from a small embryo and grows in a swarm of planetesimals with low velocity dispersion and nonuniform spatial distribution, so that large spin angular momentum is supplied to the planet. Such a situation would be realized when the Earth grows up rapidly before dissipation of the solar nebula. Second one considers co-accretion after a giant impact during Earth accretion, which produces enough angular momentum as large as that of the present Earth-Moon system as well as a lunar-sized satellite. In this case, solar nebula would have already dissipated and random velocities of incident planetesimals are rather high, so that the Earth grows slowly. We find that the total angular momentum decreases by 5–25% during this co-accretion stage.

References

  • Abe, Y. and T. Matsui, The formation of an impact generated atmosphere and its implication for the early thermal history of the Earth, J. Geophys. Res., 90, 545–559, 1985.

    Article  Google Scholar 

  • Abe, Y. and T. Matsui, Early evolution of the Earth: Accretion, atmosphere formation, and thermal history, J. Geophys. Res., 91, 291–302, 1986.

    Article  Google Scholar 

  • Adachi, I., C. Hayashi, and K. Nakazawa, The gas drag effect on the elliptic motion of a solid body in the primordial solar nebula, Prog. Theor. Phys., 56, 1756–1771, 1976.

    Article  Google Scholar 

  • Agnor, C. B., R. M. Canup, and H. F. Levison, On the character and consequences of large impacts in the late stage of terrestrial planet formation, Icarus, 142, 219–237, 1999.

    Article  Google Scholar 

  • Benz, W., W. L. Slattery, and A. G. W. Cameron, The origin of the Moon and the single impact hypothesis I, Icarus, 66, 515–535, 1986.

    Article  Google Scholar 

  • Benz, W., W. L. Slattery, and A. G. W. Cameron, The origin of the Moon and the single impact hypothesis II, Icarus, 71, 30–45, 1987.

    Article  Google Scholar 

  • Benz, W., A. G. W. Cameron, and H. J. Melosh, The origin of the Moon and the single impact hypothesis III, Icarus, 81, 113–131, 1989.

    Article  Google Scholar 

  • Boss, A. P. and S. J. Peale, Dynamical constraints on the origin of the Moon, in Origin of the Moon, edited by W. K. Hartmann, R. J. Phillips, and G. J. Taylor, 59 pp., Lunar and planetary Institute, Houston, 1986.

    Google Scholar 

  • Burns, J. A., Some back ground about satellites, in Satellites, edited by J. A. Burns and M. S. Matthews, 1 pp., Univ. Arizona Press, Tucson, 1986.

    Google Scholar 

  • Cameron, A. G. W, The origin of the Moon and the single impact hypothesis V, Icarus, 126, 126–137, 1997.

    Article  Google Scholar 

  • Cameron, A. G. W. and W. Benz, The origin of the Moon and the single impact hypothesis IV, Icarus, 92, 204–216, 1991.

    Article  Google Scholar 

  • Cameron, A. G. W. and R. M. Canup, The giant impact occurred during Earth accretion, 29th Lunar and Planet. Sci., abstract 1062 pp., 1998a.

  • Cameron, A. G. W. and R. M. Canup, The giant impact and the formation of the Moon, Origin of the Earth and Moon, abstract, 3 pp., 1998b.

  • Canup, R. M. and L. W. Esposito, Accretion of the Moon from an impactgenerated disk, Icarus, 119, 427–446, 1996.

    Article  Google Scholar 

  • Canup, R. M., W. R. Ward, and A. G. W. Cameron, A scaling relationship for satellite-forming impacts, Icarus, 2001 (submitted).

  • Chambers, J. E. and G. W. Wetherill, Making terrestrial planets: N-body integrations of planetary embryos in three dimensions, Icarus, 136, 304–327, 1998.

    Article  Google Scholar 

  • Dohnanyi, J. S., Collisional model of asteroids and their debris, J. Geophys. Res., 74, 2531–2554, 1969.

    Article  Google Scholar 

  • Dones, L. and S. Tremaine, On the origin of planetary spins, Icarus, 103, 67–92, 1993a.

    Article  Google Scholar 

  • Dones, L. and S. Tremaine, Why does the Earth spin forward?, Science, 259, 350–354, 1993b.

    Article  Google Scholar 

  • Durisen, R. H. and R. A. Gingold, Numerical simulation of fission, in Origin of the Moon, edited by W. K. Hartmann, R. J. Phillips, and G. J. Taylor, 487 pp., Lunar and planetary Institute, Houston, 1986.

    Google Scholar 

  • Gladman, B.J., J. A. Burns, M. J. Duncan, and H. F. Levison, The dynamical evolution of lunar impact ejecta, Icarus, 118, 302–321, 1995.

    Article  Google Scholar 

  • Goldreich, P. and S. Soter, Q in the solar system, Icarus, 5, 375–389, 1966.

    Article  Google Scholar 

  • Greenzweig, Y. and J. J. Lissauer, Accretion rate of protoplanets, Icarus, 87, 40–77, 1990.

    Article  Google Scholar 

  • Harris, A. W., Satellite formation, II, Icarus, 34, 128–145, 1978.

    Article  Google Scholar 

  • Harris, A. W. and W. M. Kaula, A co-accretional model of satellite formation, Icarus, 24, 516–524, 1975 (HK75).

    Article  Google Scholar 

  • Hayashi, C., K. Nakazawa, and Y. Nakagawa, Formation of the solar system, in Protostars and Planets II, edited by D. C. Black and M. S. Matthews, 1100 pp., Univ. Arizona Press, Tucson, 1985.

    Google Scholar 

  • Herbert, F., D. R. Davis, and S. J. Weidenschillig, Formation and evolution of a circumterestrial disk: Constraints on the origin of the Moon in geocentric orbit, in Origin of the Moon, edited by W. K. Hartmann, R. J. Phillips, and G. J. Taylor, 701 pp., Lunar and planetary Institute, Houston, 1986.

    Google Scholar 

  • Holsapple, K. A., The scaling of impact processes in planetary sciences, Ann. Rev. Earth Planet. Sci., 21, 333–373, 1993.

    Article  Google Scholar 

  • Housen, K. R., R. M. Schmidt, and K. A. Holsapple, Crater ejecta scaling laws: Fundamental forms based on dimensional analysis, J. Geophys. Res., 88, 2485–2499, 1983.

    Article  Google Scholar 

  • Ida, S., Stirring and dynamical friction rates of planetesimals in the solar gravitational field, Icarus, 88, 129–145, 1990.

    Article  Google Scholar 

  • Ida, S. and J. Makino, Scattering of planetesimals by a protoplanet: Slowing down of runaway growth, Icarus, 106, 210–227, 1993.

    Article  Google Scholar 

  • Ida, S. and K. Nakazawa, Collisional probability of planetesimals revolving in the solar gravitational field, III, Astron. Astrophys., 224, 303–315, 1989.

    Google Scholar 

  • Ida, S. and K. Nakazawa, Did rotation of the protoplanets originate from the successive collisions of planetesimals?, Icarus, 86, 561–573, 1990.

    Article  Google Scholar 

  • Ida, S., R. M. Canup, and G. R. Stewart, Lunar accretion from an impactgenerated disk, Nature, 389, 353–357, 1997.

    Article  Google Scholar 

  • Ito, T. and K. Tanikawa, Stability and instability of the terrestrial protoplanet system and their possible roles in the final stage of planet formation, Icarus, 139, 336–349, 1999.

    Article  Google Scholar 

  • Kaula, W. M., Thermal evolution of Earth and Moon growing by planetesimal impacts, J. Geophys. Res., 84, 999–1008, 1979.

    Article  Google Scholar 

  • Kokubo, E. and S. Ida, On runaway growth of planetesimals, Icarus, 123, 180–191, 1996.

    Article  Google Scholar 

  • Kokubo, E. and S. Ida, Oligarchic growth: Formation of proto-planets from planetesimals, Icarus, 131, 171–178, 1998.

    Article  Google Scholar 

  • Korycansky, D. G. and J. C. B. Papaloizou, A method for calculation of nonlinear shear flow: Application to formation of giant planets in the solar nebula, Astrophys. J. Suppl., 105, 181–190, 1996.

    Article  Google Scholar 

  • Lambeck, K., The Earth’s Variable Rotation, 449 pp., Cambridge Univ. Press, 1980.

    Book  Google Scholar 

  • Lissauer, J. J. and D. M. Kary, The origin of systematic component of planetary rotation. I. planet on a circular orbit, Icarus, 94, 126–159, 1991.

    Article  Google Scholar 

  • Love, A. E. H., A Treatise on the Mathematical Theory of Elasticity, 643 pp., Cambridge Univ. Press, Cambridge, 1934.

    Google Scholar 

  • Mignard, F., The evolution of the lunar orbit revisited. I, Moon and Planets, 20, 301–305, 1979.

    Article  Google Scholar 

  • Miki, S., The gaseous flow around a protoplanet in the primordial solar nebular, Prog. Theor. Phys., 67, 1053–1067, 1982.

    Article  Google Scholar 

  • Morishima, R. and S. Watanabe, Collision probabilities of planet/satellite systems with planetesimals and evolution of the mass ratio, Proc. 29th ISAS Lunar Planet. Symp., 135 pp., 1996.

  • Morishima, R. and S. Watanabe, Co-accretion of the Earth-Moon system after the Moon-forming giant impact, in preparation.

  • Nakazawa, K. and S. Ida, Hill’s approximation in three body problem, Prog. Theor. Phys. Suppl., 96, 167–174, 1988.

    Article  Google Scholar 

  • Nakazawa, K., T. Komuro, and C. Hayashi, Origin of the Moon-Capture by gas drag of the Earth’s primordial atmosphere, Moon and Planets, 28, 311–327, 1983.

    Article  Google Scholar 

  • Ohtsuki, K., Capture probability of colliding planetesimals: Dynamical constraints on accretion of planets, satellites and ring particles, Icarus, 106, 228–246, 1993.

    Article  Google Scholar 

  • Ohtsuki, K. and S. Ida, Planetary rotation by accretion of planetesimals with nonuniform spatial distribution formed by the planet’s gravitational perturbation, Icarus, 131, 393–420, 1998 (OI98).

    Article  Google Scholar 

  • Ray, R. Y., R. J. Eanes, and B. F. Chao, Detection of tidal dissipation in the solid Earth by satellite tracking and altimetry, Nature, 381, 595–597, 1996.

    Article  Google Scholar 

  • Ruskol, E. L., The origin of the Moon: Formation of a swarm of bodies around the Earth, Sov. Astron., 4, 657–668, 1960.

    Google Scholar 

  • Sagan, C. and S. F. Dermott, The tides in the seas of Titan, Nature, 300, 731–733, 1982.

    Article  Google Scholar 

  • Sasaki, S. and K. Nakazawa, Metal-Silicate fractionation in the growing Earth; energy source for the terrestrial magma ocean, J. Geophys. Res., 91, 9231–9238, 1986.

    Article  Google Scholar 

  • Sasaki, S. and K. Nakazawa, Did a primary solar-type atmosphere exist around the proto-Earth?, Icarus, 85, 21–42, 1990.

    Article  Google Scholar 

  • Singer, S. F. and L.W. Bandermann, Where was the Moon formed?, Science, 170, 438–439, 1970.

    Article  Google Scholar 

  • Stevenson, D. J., A. W. Harris, and J. I. Lunine, Origin of satellites, in Satellites, edited by J. A. Burns and M. S. Matthews, 39 pp., Univ. Arizona Press, Tucson, 1986.

    Google Scholar 

  • Tanaka, H. and S. Ida, Distribution of planetesimals around a protoplanet in the nebular gas. II. Numerical simulations, Icarus, 125, 302–316, 1997.

    Article  Google Scholar 

  • Tanaka, H. and S. Ida, Growth of a migrating protoplanet, Icarus, 139, 350–366, 1999.

    Article  Google Scholar 

  • Tanaka, H., S. Inaba, and K. Nakazawa, Steady-state size distribution for self-similar collision cascade, Icarus, 123, 450–455, 1996.

    Article  Google Scholar 

  • Ward, W. R., Protoplanet migration by nebula tides, Icarus, 126, 261–281, 1997.

    Article  Google Scholar 

  • Wetherill, G. W. and G. R. Stewart, Formation of planetary embryos: Effects of fragmentation, low relative velocity, and independent variation of eccentricity and inclination, Icarus, 106, 190–209, 1993.

    Article  Google Scholar 

  • Wood, J. A., Moon over Mauna Loa: A review of hypotheses of formation of Earth’s Moon, in Origin of the Moon, edited by W. K. Hartmann, R. J. Phillips, and G. J. Taylor, 17 pp., Lunar and planetary Institute, Houston, 1986.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryuji Morishima.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morishima, R., Watanabe, Si. Two types of co-accretion scenarios for the origin of the Moon. Earth Planet Sp 53, 213–231 (2001). https://doi.org/10.1186/BF03352378

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1186/BF03352378

Keywords