Skip to main content

Volume 53 Supplement 4

Special Issue: Great Subduction Zone Earthquakes

  • Article
  • Published:

Complexity in the recurrence of large earthquakes in southwestern Japan: A simulation with an interacting fault system model

Abstract

Activity of large earthquakes in southwestern Japan is simulated with a model that incorporates mechanical interactions between faults, including both interplate and intraplate faults. In this simulation, each fault element is assumed to accumulate stress with a constant slip deficit rate and redistribute its accumulated stress to surrounding faults by making a forward (coseismic) slip when the cumulative stress reaches an assumed threshold. The results from the inversion of geodetic data by Hashimoto and Jackson (1993) were used to specify slip deficit rates for these faults. Each fault in this model is divided into four equal-sized elements, two in the length direction and two in the width direction, so that this model can simulate events as small as M6. A complex pattern of seismicity arises from a 10,000-year run of the simulation. The rate of stress accumulation is not necessarily constant for all faults, which may be attributed to the interaction between faults. It is interesting that fluctuations in the amplitude of stress changes with periods of 1,500 years or longer are seen for some inland faults. A variety of sizes of events occur according to the number of simultaneously rupturing elements. Smaller events in which only one element on a fault ruptures frequently occur, but large events with three or more rupturing elements are rarely seen. This implies that the difference between geodetic and geological/seismological strain rates might be made up by smaller events. Simulations indicate that two models with 1 initial conditions may separate by a factor of about 2030 in the state space after hundreds of years. The increase of this distance in the state space slows down or is linear in tome depending on initial conditions.

References

  • Ando, M., What should Japan do for the next Nankai earthquake?, in “The Nankai earthquake—prepared for the next great earthquake”, Chikyu (Earth Monthly), Special Issue, 24, 5–13, 1999 (in Japanese).

    Google Scholar 

  • Bak, P. and C. Tang, Earthquakes as a self-organized critical phenomenon, J. Geophys. Res., 94, 15535–15537, 1989.

    Google Scholar 

  • Burridge, R. and L. Knopoff, Model and theoretical seismicity, Bull. Seism. Soc. Am., 57, 341–371, 1967.

    Google Scholar 

  • Carlson, J. M. and J. S. Langer, Mechanical model of an earthquake fault, Phys. Rev., A40, 6470–6484, 1989.

    Article  Google Scholar 

  • Harris, R. A. and R. W. Simpson, Changes in static stress on southern California faults after the 1992 Landers earthquake, Nature, 360, 251–254, 1992.

    Article  Google Scholar 

  • Hashimoto, M., Horizontal strain rates in the Japanese Islands during inter-seismic period deduced from geodetic surveys (Part I): Honshu, Shikoku and Kyushu, Zisin (J. Seism. Soc. Japan), Ser 2, 43, 13–26, 1990 (in Japanese with English abstract).

    Google Scholar 

  • Hashimoto, M., Static stress changes associated with the Kobe earthquake: Calculation of changes in Coulomb failure function and comparison with seismicity change, Zisin (J. Seism. Soc. Japan), Ser. 2, 48, 521–530, 1995 (in Japanese with English abstract).

    Google Scholar 

  • Hashimoto, M., Correction to “Static stress changes associated with the Kobe earthquake: Calculation of changes in Coulomb failure function and comparison with seismicity change”, Zisin (J. Seism. Soc. Japan), Ser. 2, 50, 21–27, 1997 (in Japanese with English abstract).

    Google Scholar 

  • Hashimoto, M., Simulation of temporal variation in Coulomb failure functions in the source region of the Hyogo-ken Nanbu earthquake, Zisin (J. Seism. Soc. Japan), Ser. 2, 50, Suppl., 229–249, 1998a (in Japanese with English abstract).

  • Hashimoto, M., Simulation of activity of large earthquakes in and around the southwest Japan on the basis of slip deficit model, Annuals of Disaster Prevention Research Institute, Kyoto Univ., 41, B-1, 45–59, 1998b.

    Google Scholar 

  • Hashimoto, M. and D. D. Jackson, Plate tectonics and crustal deformation around the Japanese islands, J. Geophys. Res., 98, 16149–16166, 1993.

    Article  Google Scholar 

  • Headquarters for Earthquake Research Promotion, On the evaluation and survey results for Itoigawa—Shizuoka Tectonic Line fault zone, Report from the Headquarters for Earthq. Res. Promotion, 1997a (in Japanese).

  • Headquarters for Earthquake Research Promotion, On the evaluation and survey results for Kan’nawa-Kouzu-Matsuda fault zone, Report from the Headquarters for Earthq. Res. Promotion, 1997b (in Japanese).

  • Headquarters for Earthquake Research Promotion, On the evaluation and survey results for Fujikawa-kako fault zone, Report from the Headquarters for Earthq. Res. Promotion, 1998 (in Japanese).

  • Heki, K., S. Miyazaki, and H. Tsuji, Silent fault slip following an interplate thrust earthquake at the Japan trench, Nature, 386, 595–598, 1997.

    Article  Google Scholar 

  • Hori, T. and K. Oike, A statistical model of temporal variation of seismicity in the Inner Zone of southwest Japan related to the great interplate earthquakes along the Nankai trough, J. Phys. Earth, 44, 349–356, 1996.

    Article  Google Scholar 

  • Hori, T. and K. Oike, A physical mechanism for temporal variation in seismicity in the Inner Zone of southwest Japan related to the great interplate earthquakes along the Nankai trough, Tectonophys., 308, 83–98, 1999.

    Article  Google Scholar 

  • Huang, J. and D. L. Turcotte, Evidence for chaotic fault interactions in the seismicity of the San Andreas fault and Nankai trough, Nature, 348, 234–236, 1990.

    Article  Google Scholar 

  • Hudnut, K. W., L. Seeber, and J. Pacheco, Cross-fault triggering in November 1987 Superstition Hills earthquake sequence, southern California, Geophys. Res. Lett., 16, 199–202, 1989.

    Article  Google Scholar 

  • Iio, Y., A possible generating process of the southern Hyogo Prefecture earthquake—Stick of fault and slip on detachment, Zisin (J. Seism. Soc. Japan), Ser. 2, 49, 103–112, 1996 (in Japanese with English abstract).

    Google Scholar 

  • Ikeda, Y., Implications of active fault study for the present-day tectonics of the Japan arc, Active Fault Research, 15, 93–96, 1996 (in Japanese with English abstract).

    Google Scholar 

  • Ishikawa, N. and M. Hashimoto, Average horizontal crustal strain rates in Japan during interseismic period deduced from geodetic surveys (part 2), Zisin, (J. Seism. Soc. Japan), Ser. 2, 52, 299–315, 1999 (in Japanese with English abstract).

    Google Scholar 

  • Ito, K. and M. Matsuzaki, Earthquake as self-organized critical phenomena, J. Geophys. Res., 95, 6853–6860, 1989.

    Article  Google Scholar 

  • Jaumè, S. C. and L. R. Sykes, Changes in state of stress on the southern San Andreas fault resulting from the California earthquake sequence of April to June 1992, Science, 258, 1325–1328, 1992.

    Article  Google Scholar 

  • Kawasaki, I., Y. Asai, and T. Tamura, Interplate moment release in seismic and seismo-geodetic bands and the seismo-geodetic coupling in the Sanriku-Oki region along the Japan trench, Zisin (J. Seism. Soc. Japan), Ser. 2, 50, Suppl., 293–307, 1998 (in Japanese with English abstract).

  • King, G. C. P., R. Stein, and J. Lin, Static stress changes and the triggering of earthquakes, Bull. Seism. Soc. Am., 84, 935–953, 1

    Google Scholar 

  • Le Pichon, X., S. Mazzotti, P. Henry, and M. Hashimoto, Deformation of Japanese islands and seismic coupling: an interpretation based on GSI permanent GPS observations, Geophys. J. Int., 134, 501–514, 1998.

    Article  Google Scholar 

  • Matsuda, T., Estimation of future destructive earthquakes from active faults on land in Japan, J. Phys. Earth, 25, Suppl., S251–S260, 1977.

    Article  Google Scholar 

  • Matsu’ura, M., D. D. Jackson, and A. B. Cheng, Dislocation model for aseismic crustal deformation at Hollister, California, J. Geophys. Res., 91, 12661–12674, 1986.

    Article  Google Scholar 

  • Mogi, K., Seismicity in western Japan and long-term earthquake forecasting, in Earthquake Prediction, edited by D. W. Simpson and P. G. Richards, Maurice Ewing Series, 4, American Geophysical Union, Washington, D. C., 1981.

    Google Scholar 

  • Okada, Y., Internal deformation due to shear and tensile faults in a half-space, Bull. Seism. Soc. Am., 82, 1018–1040, 1992.

    Google Scholar 

  • Peterson, E. T. and T. Seno, Factors affecting seismic moment release rates in subduction zones, J. Geophys. Res., 89, 10233–10248, 1984.

    Article  Google Scholar 

  • Pollitz, F. F. and I. S. Sacks, The 1995 Kobe, Japan, earthquake: A long-delayed aftershock of the offshore 1944 Tonankai and 1946 Nankaido earthquakes, Bull. Seism. Soc. Am., 87, 1–10, 1997.

    Google Scholar 

  • Research Group for Active Faults in Japan, Active Faults in Japan, 437 pp., University of Tokyo Press, Tokyo, 1991 (in Japanese).

    Google Scholar 

  • Ruff, L. J., Asperity distributions and large earthquake occurrence in subduction zones, Tectonophys., 211, 61–83, 1992.

    Article  Google Scholar 

  • Rundle, J. B., A physical model for earthquakes 1. Fluctuations and interactions, J. Geophys. Res., 93, 6237–6254, 1988a.

    Article  Google Scholar 

  • Rundle, J. B., A physical model for earthquakes 2. Application to southern California, J. Geophys. Res., 93, 6255–6274, 1988b.

    Article  Google Scholar 

  • Rundle, J. B. and H. Kanamori, Application of an inhomogeneous stress (patch) model to complex subduction zone earthquakes: A discrete interaction matrix approach, J. Geophys. Res., 92, 2606–2616, 1987.

    Article  Google Scholar 

  • Savage, J. C., A dislocation model of strain accumulation and release at a subduction zone, J. Geophys. Res., 88, 4984–4996, 1982.

    Article  Google Scholar 

  • Schwarz, D. P. and K. J. Coppersmith, Fault behavior and characteristic earthquakes: Examples from the Wasatch and San Andreas fault zones, J. Geogphys. Res., 89, 5681–5698, 1984.

    Article  Google Scholar 

  • Seno, T., Pattern of intraplate seismicity in southwest Japan before and after great interplate earthquakes, Tectonophys., 57, 267–283, 1979.

    Article  Google Scholar 

  • Shen-Tu, B. and W. E. Holt, Interseismic deformation in northern Honshu and its relationship with the subduction of the Pacific plate in the Japan trench, Geophys. Res. Lett., 23, 3103–3106, 1996.

    Article  Google Scholar 

  • Shimazaki, K., Intraplate seismicity and inter-plate earthquakes: historical activity in southwest Japan, Tectonophys., 33, 33–42, 1976.

    Article  Google Scholar 

  • Tsuji, Y., The Nankai earthquakes and their associated tsunamis, in “The Nankai earthquake—prepared for the next great earthquake”, Chikyu (Earth Monthly), Special Issue, 24, 36–49, 1999 (in Japanese).

    Google Scholar 

  • Utsu, T., Correlation between great earthquakes along the Nankai trough and destructive earthquakes in western Japan, Rep. Coord. Comm. Earthq. Predict., 12, 120–122, 1974a (in Japanese).

    Google Scholar 

  • Ustu, T., Space-time pattern of large earthquakes occurring off the Pacific coast of the Japanese islands, J. Phys. Earth, 22, 325–342, 1974b.

    Article  Google Scholar 

  • Ward, S. N., A synthetic seismicity model for the Middle America Trench, J. Geophys. Res., 96, 21433–21442, 1991.

    Article  Google Scholar 

  • Ward, S. N., A synthetic seismicity model for southern California: Cycles, probabilities, and hazards, J. Geophys. Res., 101, 22393–22418, 1996.

    Article  Google Scholar 

  • Wesnousky, S. G., C. H. Scholz, and K. Shimazaki, Deformation of an island arc: rates of moment release and crustal shortening in intraplate Japan determined from seismicity and Quaternary fault data, J. Geophys. Res., 87, 6829–6852, 1982.

    Article  Google Scholar 

  • Wessel, P. and W. H. F. Smith, Free software helps map and display data, EOS Trans. Amer Geophys. U., 72, 441, 445–446, 1991.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manabu Hashimoto.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hashimoto, M. Complexity in the recurrence of large earthquakes in southwestern Japan: A simulation with an interacting fault system model. Earth Planet Sp 53, 249–259 (2001). https://doi.org/10.1186/BF03352382

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1186/BF03352382

Keywords