Skip to main content

Volume 53 Supplement 6

Special Issue: Magnetic Reconnection in Space and Laboratory Plasmas

  • Article
  • Published:

Origin of resistivity in reconnection

Abstract

Resistivity is believed to play an important role in reconnection leading to the distinction between resistive and collisionless reconnection. The former is treated in the Sweet-Parker model of long current sheets, and the Petschek model of a small resistive region. Both models in spite of their different dynamics attribute to the violation of the frozen-in condition in their diffusion regions due to the action of resistivity. In collisionless reconnection there is little consensus about the processes breaking the frozen-in condition. The question is whether anomalous processes generate sufficient resistivity or whether other processes free the particles from slavery by the magnetic field. In the present paper we review processes that may cause anomalous resistivity in collisionless current sheets. Our general conclusion is that in space plasma boundaries accessible to in situ spacecraft, wave levels have always been found to be high enough to explain the existence of large enough local diffusivity for igniting local reconnection. However, other processes might take place as well. Non-resistive reconnection can be caused by inertia or diamagnetism.

References

  • Arzner, K. and M. Scholer, Magnetotail reconnection: simulation predictions on magnetic time series, Earth Planets Space, 53, this issue, 655–661, 2001.

    Article  Google Scholar 

  • Bauer, T. M., W. Baumjohann, R. A. Treumann, and N. Sckopke, Low-frequency waves in the near-Earth plasma sheet, J. Geophys. Res., 100, 9605–9617, 1995.

    Article  Google Scholar 

  • Baumjohann, W., R. A. Treumann, J. LaBelle, and R. R. Anderson, Average electric wave spectra across the plasma sheet and their relation to ion bulk speed, J. Geophys. Res., 94, 15221–15230, 1989.

    Article  Google Scholar 

  • Baumjohann, W., R. A. Treumann, and J. LaBelle, Average electric wave spectra across the plasma sheet: Dependence on ion density and ion beta, J. Geophys. Res., 95, 3811–3817, 1990.

    Article  Google Scholar 

  • Brizard, A. J., Nonlinear gyrokinetic Maxwell-Vlasov equations using magnetic co-ordinates, J. Plasma Phys., 41, 541–559, 1989.

    Article  Google Scholar 

  • Brizard, A. J., Variational principle for nonlinear gyrokinetic Vlasov-Maxwell equations, Phys. Plasmas, 7, 4816–4822, 2000.

    Article  Google Scholar 

  • Cai, H. J., D. Q. Ding, and L. C. Lee, Momentum transport near a magnetic X line in collisionless reconnection, J. Geophys. Res., 99, 35–42, 1994.

    Article  Google Scholar 

  • Chen, L., Theory of plasma transport induced by low-frequency hydromagnetic waves, J. Geophys. Res., 104, 2421–2428, 1999.

    Article  Google Scholar 

  • Cheng, C. Z., A kinetic-magnetohydrodynamic model for low-frequency phenomena, J. Geophys. Res., 96, 21259, 1991.

    Google Scholar 

  • Cheng, C. Z. and J. R. Johnson, A kinetic-fluid model, J. Geophys. Res., 104, 413, 1999.

    Article  Google Scholar 

  • Davidson, R. C., Quasi-linear stabilization of lower-hybrid drift instability, Phys. Fluids, 21, 1375–1380, 1978.

    Article  Google Scholar 

  • Drake, J. F., Magnetic reconnection: A kinetic treatment, in Physics of the Magnetopause, edited by P. Song, B. U. Ö. Sonnerup, M. F. Thomsen, Geophys. Monogr. 90, p. 155, American Geophys. Union, Washington, D.C., 1995.

    Chapter  Google Scholar 

  • Drake, J. F., R. G. Kleva, and M. E. Mandt, The structure of thin current layers: Implications for magnetic reconnection, Phys. Rev. Lett., 73, 1251–1254, 1994.

    Article  Google Scholar 

  • Dum, C. T., Anomalous heating by ion-sound turbulence, Phys. Fluids, 21, 945–969, 1978.

    Article  Google Scholar 

  • Dum, C. T. and T. C. Dupree, Nonlinear stabilization of high-frequency instabilities in a magnetic field, Phys. Fluids, 13, 2064–2081, 1970.

    Article  Google Scholar 

  • Frieman, E. A. and L. Chen, Nonlinear gyrokinetic equations for low-frequency electromagnetic waves in general plasma equilibria, Phys. Fluids, 25, 502–508, 1982.

    Article  Google Scholar 

  • Gray, P., M. K. Hudson, W. Lotko, and R. Bergmann, Decay of ion beam driven acoustic waves into ion holes, Geophys. Res. Lett., 18, 1675–1678, 1991.

    Article  Google Scholar 

  • Hollweg, J. and H. Volk, New plasma instabilities in the solar wind, J. Geophys. Res., 75, 5297–5312, 1970.

    Article  Google Scholar 

  • Horton, W. and Y.-H. Ichikawa, Chaos and Structures in Nonlinear Plasmas, 340 pp., World-Scientific, Singapore, 1996.

  • Hoshino, M., A. Nishida, T. Yamamoto, and S. Kokubun, Turbulent magnetic field in the distant magnetotail: Bottom-up process of plasmoid formation?, Geophys. Res. Lett, 21, 2935–2938, 1994.

    Article  Google Scholar 

  • Johnson, J. R. and C. Z. Cheng, Global structure of mirror modes in the magnetosheath, J. Geophys. Res., 102, 7179–7189, 1997.

    Article  Google Scholar 

  • Kindel, J. F. and C. F. Kennel, Topside current instabilities, J. Geophys. Res., 76, 3055–3071, 1971.

    Article  Google Scholar 

  • Krall, N. A. and P. C. Liewer, Low-frequency instabilities in magnetic pulses, Phys. Rev. A, 4, 2094–3003, 1971.

    Article  Google Scholar 

  • Krall, N. A. and A. W. Trivelpiece, Principles of Plasma Physics, 673 pp., McGraw-Hill, New York, 1973.

    Google Scholar 

  • Liewer, P. C. and N. A. Krall, Self-consistent approach to anomalous resistivity applied to theta pinch experiments, Phys. Fluids, 16, 1953–1963, 1973.

    Article  Google Scholar 

  • Lee, N. C. and G. K. Parks, Ponderomotive force in a nonisothermal plasma, Phys. Fluids, 31, 90–95, 1988.

    Article  Google Scholar 

  • Lund, E. J., R. A. Treumann, and J. LaBelle, Quasi-thermal fluctuations in a beam-plasma system, Phys. Plasmas, 3, 1234–1240, 1996.

    Article  Google Scholar 

  • Maggs, J. E., Coherent generation of VLF hiss, J. Geophys. Res., 81, 1707–1721, 1976.

    Article  Google Scholar 

  • Maggs, J. E., Nonlinear evolution of the auroral electron beam, J. Geophys. Res., 94, 3631–3640, 1989.

    Article  Google Scholar 

  • Meiss, D. A. and W. Horton, Jr., Drift-wave turbulence from a soliton gas, Phys. Rev. Lett, 48, 1362–1365, 1982.

    Article  Google Scholar 

  • Newman, D. L., M. V. Goldman, and R. E. Ergun, Langmuir turbulence in moderately magnetized space plasmas, Phys. Plasmas, 1, 1691–1699, 1994.

    Article  Google Scholar 

  • Pottelette, R. and R. A. Treumann, Impulsive broadband electrostatic noise in the cleft: A signature of dayside reconnection, J. Geophys. Res., 103, 9299–9307, 1998.

    Article  Google Scholar 

  • Robinson, P. A., Nonlinear wave collapse and strong turbulence, Rev. Mod. Phys., 69, 507–573, 1997.

    Article  Google Scholar 

  • Sagdeev, R. Z., Cooperative phenomena and shock waves in collisionless plasmas, Rev. Plasma Phys., 4, 23–91, 1966.

    Google Scholar 

  • Sagdeev, R. Z., The Oppenheimer Lecture: Critical problems in plasma physics, Rev. Mod. Phys., 51, 1–20, 1979.

    Article  Google Scholar 

  • Shapiro, V. D., V. I. Shevchenko, G. I. Solov’ev, V. P. Kalinin, R. Bingham, R. Z. Sagdeev, M. Ashour-Abdalla, J. Dawson, and J. J. Su, Nonlinear evolution and collapse of lower-hybrid drift waves, Phys. Fluids B, 5, 3148–3162, 1993.

    Article  Google Scholar 

  • Shay, M. A., J. F. Drake, B. N. Rogers, and R. E. Denton, The scaling of collisionless, magnetic reconnection for large systems, Geophys. Res. Lett, 26, 2163–2166, 1999.

    Article  Google Scholar 

  • Tetreault, D., Theory of electric fields in the auroral acceleration region, J. Geophys. Res., 96, 3549–3561, 1991.

    Article  Google Scholar 

  • Treumann, R. A. and W. Baumjohann, Advanced Space Plasma Physics, pp. 381, Imperial College Press, London, 1997.

    Book  Google Scholar 

  • Treumann, R. A. and N. Sckopke, The collisionless mirror mode in the magnetosheath: A superconducting analogue, Eos Trans. AGU, 80, Fall Meet. Suppl., SM-237, 1999.

  • Winske, D., V. Thomas, and S. P. Gary, Diffusion at the magnetopause: The theoretical perspective, in Physics of the Magnetopause, edited by P. Song, B. U. Ö. Sonnerup, M. F. Thomsen, Geophys. Monogr. 90, p. 337, American Geophys. Union, Washington, D.C., 1995.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rudolf A. Treumann.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Treumann, R.A. Origin of resistivity in reconnection. Earth Planet Sp 53, 453–462 (2001). https://doi.org/10.1186/BF03353256

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1186/BF03353256

Keywords