Skip to main content

Volume 53 Supplement 6

Special Issue: Magnetic Reconnection in Space and Laboratory Plasmas

  • Article
  • Published:

Spheromaks, solar prominences, and Alfvén instability of current sheets

Abstract

Three related efforts underway at Caltech are discussed: experimental studies of spheromak formation, experimental simulation of solar prominences, and Alfvén wave instability of current sheets. Spheromak formation has been studied by using a coaxial magnetized plasma gun to inject helicity-bearing plasma into a very large vacuum chamber. The spheromak is formed without a flux conserver and internal λ profiles have been measured. Spheromak-based technology has been used to make laboratory plasmas having the topology and dynamics of solar prominences. The physics of these structures is closely related to spheromaks (low β, force-free, relaxed state equilibrium) but the boundary conditions and symmetry are different. Like spheromaks, the equilibrium involves a balance between hoop forces, pinch forces, and magnetic tension. It is shown theoretically that if a current sheet becomes sufficiently thin (of the order of the ion skin depth or smaller), it becomes kinetically unstable with respect to the emission of Alfvén waves and it is proposed that this wave emission is an important aspect of the dynamics of collisionless reconnection.

References

  • Arzimovich, L. A., Elementary Plasma Physics, 188 pp., Blaisdell Publishing, New York, 1965.

    Google Scholar 

  • Axford, W. I. and J. F. McKenzie, The origin of high speed solar wind streams, in Solar Wind Seven, COSPAR Colloquia Series, Vol. 3, edited by E. Marsch and R. Schwenn, 711 pp., Pergamon Press, 1992.

  • Bateman, G., MHD Instabilities, 263 pp., MIT Press, Boston, 1978.

    Google Scholar 

  • Bellan, P. M., New model for ULF Pc5 pulsations: Alfven cones, Geophys. Res. Lett., 23, 1717–1720, 1996.

    Article  Google Scholar 

  • Bellan, P. M., Collisionless reconnection using Alfven wave radiation resistance, Phys. Plasmas, 5, 3081–3088, 1998.

    Article  Google Scholar 

  • Bellan, P. M., Alfven wave instability of current sheets in force-free collisionless plasmas, Phys. Rev. Lett., 83, 4768–4771, 1999.

    Article  Google Scholar 

  • Bellan, P. M., Spheromaks, 341 pp., Imperial College Press, London, 2000.

    Book  Google Scholar 

  • Bellan, P. M., Alfven wave instability of current sheets in force-free plasmas: Comparison to ion acoustic instability, Advances in Space Research (in press).

  • Bellan, P. M. and J. F. Hansen, Laboratory simulations of solar prominence eruptions, Phys. Plasmas, 5(2), 1991–2000, 1998.

    Article  Google Scholar 

  • Bhattacharjee, A., Z. W. Ma, and X. G. Wang, Impulsive reconnection dynamics in collisionless laboratory and space plasmas, J. Geophys. Res., 104, 14543–14556, 1999.

    Article  Google Scholar 

  • Biskamp, D., Nonlinear Magnetohyrodynamics, 378 pp., Cambridge University Press, 1993.

    Book  Google Scholar 

  • Chen, J., Effects of toroidal forces in current loops embedded in a background plasma, Astrophys. J., 338, 453–470, 1989.

    Article  Google Scholar 

  • Drake, J. F., R. G. Kleva, and M. E. Mandt, Structure of thin current layers—implications for magnetic reconnection, Phys. Rev. Lett., 73, 1251–1254, 1994.

    Article  Google Scholar 

  • Fernandez, J. C., B. L. Wright, G. J. Marklin, D. A. Platts, and T. R. Jarboe, The m = 1 helicity source spheromak experiment, Phys. Fluids B, 1, 1254–1270, 1989.

    Article  Google Scholar 

  • Freidberg, J. P., Ideal Magnetohydrodynamics, 489 pp., Plenum Press, New York, 1987.

    Book  Google Scholar 

  • Furth, H. P., Compact Tori, Nucl. Instrum. Methods, 207, 93–110, 1983.

    Article  Google Scholar 

  • Furth, H. P., J. Killeen, and M. N. Rosenbluth, Finite-resistivity instabilities of a sheet pinch, Phys. Fluids, 6, 459–484, 1963.

    Article  Google Scholar 

  • Gekelman, W. and R. L. Stenzel, Magnetic-field line reconnection experiments. 6. Magnetic turbulence, J. Geophys. Res., 89, 2715–2733, 1984.

    Article  Google Scholar 

  • Goldston, R. J. and P. H. Rutherford, Introduction to Plasma Physics, 491 pp., Institute of Physics Publishing, Bristol, 1995.

    Book  Google Scholar 

  • Hansen, J. F. and P. M. Bellan, Experimental demonstration of how strapping fields can inhibit solar prominence eruptions, Astrophys. J. Lett. (submitted).

  • Jarboe, T. R., Review of spheromak research, Plasma Phys. Controlled Fusion, 36, 945–990, 1994.

    Article  Google Scholar 

  • Jarboe, T. R., C. W. Barnes, D. A. Platts, and B. L. Wright, A kinked Z-pinch as the helicity source for spheromak generation and sustainment, Comments Plasma Phys. Controlled Fusion, 9, 161–168, 1985.

    Google Scholar 

  • Jensen, T. H. and M. S. Chu, Current drive and helicity injection, Phys. Fluids, 27, 2881–2885, 1984.

    Article  Google Scholar 

  • Krall, J., J. Chen, and R. Santoro, Drive mechanisms of erupting solar magnetic flux ropes, Astrophys. J., 539(1), 964–982, 2000.

    Article  Google Scholar 

  • Longbottom, A. W., G. J. Rickard, I. J. D. Craig, and A. D. Sneyd, Magnetic flux braiding: Force-free equilibria and current sheets, Astrophys. J., 500, 471–482, 1998.

    Article  Google Scholar 

  • Lundquist, S., Magneto-hydrostatic fields, Arkiv for Fysik, B2, 361–365, 1950.

    Google Scholar 

  • Mayo, R. M., J. C. Fernandez, I. Henins, L. S. Kirschenbaum, C. P. Munson, and F. J. Wysocki, Time of flight measurement of ion temperatures in spheromaks, Nucl. Fusion, 31, 2087–2095, 1991.

    Article  Google Scholar 

  • Miyamoto, K., Plasma Physics for Nuclear Fusion, 618 pp., revised English edition, MIT Press, Boston, 1989.

    Google Scholar 

  • Ono, Y., M. Yamada, T. Akao, T. Tajima, and R. Matsumoto, Ion acceleration and direct ion heating in three-component magnetic reconnection, Phys. Rev. Lett., 76, 3328–3331, 1996.

    Article  Google Scholar 

  • Parker, E. N., Magnetic neutral sheets in evolving fields. 1. General theory, Astrophys. J., 264, 635–641, 1983.

    Article  Google Scholar 

  • Stasiewicz, K., P. Bellan, C. Chaston, C. Kletzing, R. Lysak, J. Maggs, O. Pokhotelov, C. Seyler, P. Shukla, L. Stenflo, A. Streltsov, and J.-E. Wahlund, Small scale Alfvenic structure in the aurora, Space Sci. Reviews, 92, 423–533, 2000.

    Article  Google Scholar 

  • Tandberg-Hanssen, E., The Nature of Solar Prominences, 308 pp., Kluwer, Dordrecht, 1995.

    Book  Google Scholar 

  • Taylor, J. B., Relaxation of toroidal plasma and generation of reverse magnetic fields, Phys. Rev. Lett., 33, 1139–1141, 1974.

    Article  Google Scholar 

  • Turner, W. C., G. C. Goldenbaum, E. H. A. Granneman, J. H. Hammer, C. W. Hartman, D. S. Prono, and J. Taska, Investigations of the magnetic structure and decay of a plasma-gun-generated compact torus, Phys. Fluids, 26, 1965–1986, 1983.

    Article  Google Scholar 

  • Yamada, M., H. T. Ji, S. Hsu, T. Carter, R. Kulsrud, and F. Trintchouk, Experimental investigation of the neutral sheet profile during magnetic reconnection, Phys. Plasmas, 7(2), 1781–1787, 2000.

    Article  Google Scholar 

  • Yee, J. and P. M. Bellan, Taylor relaxation and lambda decay of unbounded, freely expanding spheromaks, Phys. Plasmas, 7, 3625–3640, 2000.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. M. Bellan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bellan, P.M., Yee, J. & Hansen, J.F. Spheromaks, solar prominences, and Alfvén instability of current sheets. Earth Planet Sp 53, 495–499 (2001). https://doi.org/10.1186/BF03353261

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1186/BF03353261

Keywords