Skip to main content

Table 3 Specification of damping parameters of the frozen-flux field model based on the tangential geostrophic flow assumption, except model x0a, which is based on a purely toroidal flow assumption

From: Geomagnetic core field models and secular variation forecasts for the 13th International Geomagnetic Reference Field (IGRF-13)

 

\(\lambda _s\)

\(\lambda _T\)

\(\lambda _{TG}\)

\(\lambda _{E}\)

\({\mathsf{S/T}}\)

\({\mathsf{R}}\)

M

x0a

\(1\times 10^{-3}\)

\(1\times 10^{-4}\)

\(1\times 10^{2}\)

0/1

0.957\(\times 10^{-3}\)

2.1184

x3a

\(1\times 10^{-3}\)

\(1\times 10^{-4}\)

\(1\times 10^{3}\)

\(1\times 10^{2}\)

0/1

\(0.791\times 10^{-3}\)

2.1196

x3b

\(1\times 10^{-3}\)

\(1\times 10^{-5}\)

\(1\times 10^{3}\)

\(1\times 10^{2}\)

0/1

\(0.941\times 10^{-3}\)

2.1185

x3c

\(1\times 10^{-3}\)

\(1\times 10^{-4}\)

\(1\times 10^{4}\)

\(1\times 10^{2}\)

0/1

\(0.123\times 10^{-2}\)

2.1233

x3d

\(1\times 10^{-3}\)

\(1\times 10^{-4}\)

\(1\times 10^{5}\)

\(1\times 10^{2}\)

0/1

\(0.102\times 10^{-2}\)

2.1237

x3e

\(1\times 10^{-3}\)

\(1\times 10^{-4}\)

\(1\times 10^{6}\)

\(1\times 10^{2}\)

0/1

\(0.166\times 10^{-3}\)

2.1431

x3f

\(1\times 10^{-3}\)

\(1\times 10^{-3}\)

\(1\times 10^{4}\)

\(1\times 10^{2}\)

0/1

\(0.774\times 10^{-3}\)

2.1322

x3g

\(1\times 10^{-3}\)

\(1\times 10^{-4}\)

\(1\times 10^{10}\)

\(1\times 10^{2}\)

0/1

\(0.136\times 10^{-2}\)

2.1627

x3g1

\(1\times 10^{-3}\)

\(1\times 10^{-4}\)

\(1\times 10^{10}\)

\(1\times 10^{2}\)

0/1

\(0.431\times 10^{-3}\)

2.1856

x3h

\(1\times 10^{-3}\)

\(1\times 10^{-4}\)

\(1\times 10^{12}\)

\(1\times 10^{2}\)

0/1

\(0.106\times 10^{-2}\)

2.1632

x3j

\(1\times 10^{-3}\)

\(1\times 10^{-4}\)

\(1\times 10^{8}\)

\(1\times 10^{2}\)

0/0

\(0.311\times 10^{-2}\)

2.1695

x3k

\(1\times 10^{-3}\)

\(1\times 10^{-4}\)

\(1\times 10^{7}\)

\(1\times 10^{2}\)

0/0

\(0.696\times 10^{-2}\)

2.1634

x3k1

\(1\times 10^{-3}\)

\(1\times 10^{-4}\)

\(1\times 10^{7}\)

\(1\times 10^{2}\)

0/0

\(0.332\times 10^{-2}\)

2.2221

x3l

\(1\times 10^{-3}\)

\(1\times 10^{-4}\)

\(1\times 10^{6}\)

\(1\times 10^{2}\)

0/0

\(0.129\times 10^{-1}\)

2.1525

x3m

\(1\times 10^{-3}\)

\(1\times 10^{-4}\)

\(1\times 10^{4}\)

\(1\times 10^{2}\)

0/0

\(0.524\times 10^{-3}\)

2.1396

  1. The parameter controlling the frozen-flux constraint is kept fixed, i.e. \(\lambda _1=1\times 10^{-9}\) for most of the inversions, except those marked with, there we set \(\lambda _1=1\times 10^{-7}\). In all inversions, the parameter controlling the flow acceleration at model end points is set to \(\lambda _4=1\times 10^{2}\). \({\mathsf{S/T}}\) identifies which temporal derivative of the spatial and temporal norm is applied, respectively (see text). \({\mathsf{R}}\) and \({\mathsf{M}}\) are defined by (26) and (25), respectively. \({\mathsf{M}}\) is given in \(\text{nT/year}\). The model x0a represents a field model with purely toroidal flow