Skip to main content

Table 1 List of cross sections and quantum yields implemented into PROTEUS

From: Photochemical and radiation transport model for extensive use (PROTEUS)

 

Species or reactions

Wavelength range

References

\({\sigma }^{a}\)

CO2 (absorption)

0.1254–138.8869 nm

Huestis and Berkowitz (2011)a

  

138.8913–212.7660 nm

Schmidt et al. (2013)

\(\phi\)

CO2 +  → CO + O

138.8913–212.7660 nm

(Assumed to be 1.0)

\({\sigma }^{d}\)

CO2 +  → CO + O(1D)

0.1–138 nm

Huebner and Mukherjee (2015)b

\({\sigma }^{a}\)

13CO2 (absorption)

138.8913–212.7660 nm

Schmidt et al. (2013)

\({\sigma }^{a}\)

O2 (absorption)

0.99–43.5 nm

Huffman (1969)a

  

49.043646–103.066357 nm

Holland et al. (1993)a

  

103.62–107.74 nm

Lee (1955)a

  

108.75–114.95 nm

Ogawa and Ogawa (1975)a

  

115–130.02 nm

Lu et al. (2010)a

  

130.04–175.24 nm

Yoshino et al. (2005)a

  

175.4–204 nm

Minschwaner et al. (1992)a

  

193–245 nm

Yoshino et al. (1992)a

\(\phi\)

O2 +  → O + O

103–242 nm

Burkholder et al. (2015)

\(\phi\)

O2 +  → O + O(1D)

103–175 nm

Burkholder et al. (2015)

\({\sigma }^{a}\)

H2O (absorption)

6.2–59.04 nm

Chan et al. (1993)a

  

60.01–114.58 nm

Gürtler et al. (1977)a

  

114.80–120.35 nm

Mota et al. (2005)a

  

120.38–139.99 nm

Yoshino et al. (1996, 1997)a

  

140.00–196.00 nm

Chung et al. (2001)a

  

196.031–230.413 nm

Ranjan et al. (2020)a

\(\phi\)

H2O +  → H + OH

105 nm

Burkholder et al. (2015)

\(\phi\)

H2O +  → H2 + O(1D)

105–145 nm

Burkholder et al. (2015)

\({\sigma }^{a}\)

O3 (absorption)

0.06—210 nm

Huebner and Mukherjee (2015)b

  

213.330—1100 nm

Gorshelev et al. (2014)

   

Serdyuchenko et al. (2014)

\(\phi\)

O3 +  → O2 + O(1D)

220—340 nm

Matsumi et al. (2002)a

\(\phi\)

O3 +  → O2 + O

220—340 nm

(Assumed to be \(1-\phi\)(O3 → O(1D)))

\({\sigma }^{a}\)

HO2 (absorption)

190—260 nm

Burkholder et al. (2015)

\(\phi\)

HO2 +  → OH + O

190—260 nm

Burkholder et al. (2015)

\({\sigma }^{a}\)

H2O2 (absorption)

121.33—189.70 nm

Schürgers and Welge (1968)a

  

190.00—255.00 nm

Burkholder et al. (2015)

\(\phi\)

H2O2 +  → HO2 + H

121—230 nm

Burkholder et al. (2015)

\(\phi\)

H2O2 +  → OH + OH

121—340 nm

Burkholder et al. (2015)

\({\sigma }^{a}\)

OH (absorption)

0.06–282.3 nm

Huebner and Mukherjee (2015)b

\({\sigma }^{d}\)

OH +  → H + O

124.5–261.65 nm

Huebner and Mukherjee (2015)b

\({\sigma }^{d}\)

OH +  → H + O(1D)

93–511.4 nm

Huebner and Mukherjee (2015)b

\({\sigma }^{a}\)

H2 (absorption)

0.1–110.86 nm

Huebner and Mukherjee (2015)b

\({\sigma }^{d}\)

H2 +  → H + H

84.48–110.86 nm

Huebner and Mukherjee (2015)b

\({\sigma }^{a}\)

N2 (absorption)

0.1–103.8 nm

Huebner and Mukherjee (2015)b

\({\sigma }^{d}\)

N2 +  → N + N(2D)

51.96–103.8 nm

Huebner and Mukherjee (2015)b

\({\sigma }^{a}\)

NO (absorption)

0.1–191 nm

Huebner and Mukherjee (2015)b

\({\sigma }^{d}\)

NO +  → N + O

0.1–191 nm

Huebner and Mukherjee (2015)b

\({\sigma }^{a}\)

NO2 (absorption)

0.06–238 nm

Huebner and Mukherjee (2015)b

  

238.08219–666.57808 nm

Vandaele et al. (1998)a

\({\sigma }^{d}\)

NO2 +  → NO + O(1D)

108–243.88 nm

Huebner and Mukherjee (2015)b

\(\phi\)

NO2 +  → NO + O

108–238 nm

Huebner and Mukherjee (2015)b

  

239–300 nm

(Assumed to be 1)

  

300–422 nm

Burkholder et al. (2015)

\({\sigma }^{a}\)

NO3 (absorption)

400–691 nm

Wayne et al. (1991)a

\(\phi\)

NO3 +  → NO2 + O

400–640 nm

Johnston et al. (1996)a

\(\phi\)

NO3 +  → NO + O2

586–640 nm

Johnston et al. (1996)a

\({\sigma }^{a}\)

N2O (absorption)

16.8–59.0 nm

Hitchcock et al. (1980)a

  

60.0–99.9 nm

Cook et al. (1968)a

  

108.20–122.18 nm

Zelikoff et al. (1953)a

  

122.25–172.88 nm

Rabalais et al. (1971)a

  

173–210 nm

Selwyn et al. (1977)a

\(\phi\)

N2O +  → N2 + O(1D)

140–230 nm

Burkholder et al. (2015)

\({\sigma }^{a}\)

N2O5 (absorption)

152–198 nm

Osborne et al. (2000)a

  

200–260 nm

Burkholder et al. (2015)

  

260–410 nm

Burkholder et al. (2015)

\(\phi\)

N2O5 +  → NO3 + NO2

248–410 nm

Burkholder et al. (2015)

\(\phi\)

N2O5 +  → NO3 + NO + O

152–289 nm

Burkholder et al. (2015)

\({\sigma }^{a}\)

HNO2 (absorption)

184–396 nm

Burkholder et al. (2015)

\(\phi\)

HNO2 +  → NO + OH

All

Burkholder et al. (2015)

\({\sigma }^{a}\)

HNO3 (absorption)

192–350 nm

Burkholder et al. (2015)

\(\phi\)

HNO3 +  → HNO2 + O

193–260 nm

Estimatedc

\(\phi\)

HNO3 +  → HNO2 + O(1D)

193–222 nm

Estimatedc

\(\phi\)

HNO3 +  → OH + NO2

193–350 nm

Estimatedc

\({\sigma }^{a}\)

HO2NO2 (absorption)

190–280 nm

Burkholder et al. (2015)

  

280–350 nm

Burkholder et al. (2015)

\(\phi\)

HO2NO2 +  → HO2 + NO2

190–350 nm

Burkholder et al. (2015)

\(\phi\)

HO2NO2 +  → OH + NO3

190–350 nm

Burkholder et al. (2015)

\({\sigma }^{a}\)

H2CO (absorption)

224.56–376 nm

Meller and Moortgat (2000)a

\(\phi\)

H2CO +  → H2 + CO

250–360 nm

Burkholder et al. (2015)

\(\phi\)

H2CO +  → H + HCO

250–360 nm

Burkholder et al. (2015)

  1. \({\sigma }^{a}\): Absorption cross section, \({\sigma }^{d}\): dissociation cross section, \(\phi\): quantum yield, a: data files are taken from The MPI-Mainz UV/VIS Spectral Atlas (Keller-Rudek et al. 2013), b: data files are taken from PHIDRATES (Huebner and Mukherjee 2015), c: quantum yields for each photolysis reaction of HNO3 were estimated by quantum yield of each product (OH, O, and O(1D)) obtained by Johnston et al. (1974), Turnipseed et al. (1992), and Margitan and Watson (1982).