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Automation of absolute measurement of the geomagnetic field

H. U. Auster1, M. Mandea2, A. Hemshorn1, E. Pulz2, and M. Korte2

1 Institut für Geophysik und extraterrestrische Physik, TU Braunschweig, Mendelssohnstrasse 3, 38106 Braunschweig, Germany
2GeoForschungsZentrum Potsdam, Telegrafenberg, 14473 Potsdam, Germany

(Received December 21, 2006; Revised July 2, 2007; Accepted July 19, 2007; Online published September 28, 2007)

In this paper a device is presented to measure the geomagnetic field vector absolutely and automatically.
In contrast to the standard DI-Flux measurement procedure our automation approach is based on the rotation
of a three-component fluxgate magnetometer about precisely monitored axes without using a non-magnetic
theodolite. This method is particularly suitable for automation because it only requires exact knowledge of
the axes orientations. Apart from this, requirements on mechanical precision are moderate. The design of the
facility is presented, and mechanical, optical and magnetic limitations are discussed. First promising results of
measuring the Earth’s magnetic field absolutely and automatically with the new device at Niemegk observatory
are discussed.
Key words: Automation of absolute measurement, geomagnetic field.

1. Introduction
A network of about 170 geomagnetic observatories

worldwide is continuously monitoring the geomagnetic
field. This network, however, has significant gaps in remote
and inhospitable areas and over the oceans. This is mainly
due to the fact that it is not possible to operate a fully auto-
mated observatory, for the reasons outlined below.

The absolute vector data of the Earth’s magnetic field
have to be recorded continuously with a time resolu-
tion of one minute or less at a geomagnetic observatory
(Jankowski and Sucksdorff, 1996). The measurements cur-
rently are divided into two parts: continuous relative varia-
tion recordings and distinct absolute measurements for cal-
ibration of these recordings. Field variations are continu-
ously measured and digitally recorded, commonly by three-
component fluxgate magnetometers (Aschenbrenner and
Goubau, 1936) or magnetometers based on sensors which
measure field components by a scalar sensor equipped with
coil systems. Examples are proton vector magnetome-
ter (Serson, 1962) or vector magnetometer using optical
pumped magnetometers (Stuart, 1972). The elements of
the geomagnetic field vector are recorded in instrument re-
lated coordinate systems. Variometers are subject to drifts
arising both within the instrument (e.g. temperature effects)
and the stability of the instrument mounting. Such measure-
ments cannot be considered as absolute: Absolute measure-
ments have to provide magnetic field data in terms of ab-
solute physical basic units or universal physical constants
and in a geographical reference frame. All systematic in-
strument errors have to be eliminated by the measurement
procedure. This was achieved first by measurement of the
horizontal intensity by Gauss (Kertz, 1992) and later on by
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sophisticated types of non magnetic theodolites (Fanselau,
1960). Today, the absolute measurements for calibration
are generally done by the DI-flux method (Kring Lauridsen,
1985). A single axis fluxgate magnetometer mounted on a
non-magnetic theodolite is used to measure the direction of
the geomagnetic field in a reference system given by the
vertical and one azimuthal direction. The field magnitude is
measured by a proton magnetometer. Modern DI-flux mea-
surements still have to be carried out manually. The method
requires well trained personnel and one measurement takes
about 30 min. Absolute measurements are typically per-
formed on a weekly basis.

Current quality standards for geomagnetic observatory
data ask for an accuracy better than ±5 nT, including a long-
term stability of variation recordings better than 5 nT/yr
(St.-Louis, 2004). An accuracy of 1 nT can be achieved for
absolute measurements by well-trained observatory staff.
This corresponds to an angle error of 4 arcsec perpendicular
to a total force of 50,000 nT, which we regard as design goal
for any new instrument.

Fully automated observatories, which do not require
manual operation of any instruments, are necessary to fill
the gaps in the global network in remote areas, where access
and presence of trained personnel are a problem. Here, we
present a device which can perform discrete absolute mea-
surements automatically and thus may replace the DI-flux
theodolite in geomagnetic observatories. This does not rem-
edy the need for separate variation and absolute measure-
ments, but all the data can be recorded automatically and
transferred to another location for processing. Attempts to
automate a DI-theodolite (van Loo and Rasson, 2007) and
a proton vector magnetometer (Auster et al., 2007) for dis-
crete absolute measurements are pursued by other groups.
Our approach is based on the method of rotating a three-
axis fluxgate magnetometer about a defined axis, in order to
determine the field component along that axis (Auster and
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Fig. 1. Two coordinate systems are considered, the magnetometer system
BM and the reference system Baxis which are related by Euler transfor-
mation about the angles (ϕ, ϑ , ψ) with the following set of rotations:
first, the magnetometer is rotated about its BMz − axis until BMx be-
comes identical with the node line of the Baxis,x -Baxis,y and BMx -BMy

planes, next about this node line until BMz coincides with Baxis,z and
finally about Baxis,z until the two coordinate systems overlap.

Auster, 2003). The method, outlined in Section 2, has been
tested with a manually operated prototype instrument for
the past two years at the Niemegk observatory (Pulz et al.,
2004). In Section 3 we describe the solutions we found for
automation of the manual operation steps. Data processing
results from the first test runs as well as some error discus-
sion are given in Sections 4 and 5.

2. Absolute Measurement Method
We take advantage of a new method to determine the

absolute magnetic field components by using a three-axis
fluxgate magnetometer which is turned about a well-defined
axis (here: the Z-axis of a geographic reference system(
Baxis,x , Baxis,y, Baxis,z

)
). The magnetic field components in

the magnetometer system
(
BMx , BMy, BMz

)
are related to

a geographic reference system by an Euler transformation
(cf. Fig. 1):
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(for further mathematical derivation cf. Auster and Auster
2003). Due to the fact that 
n(ϑ, ϕ) is a unit vector, Eq. (2)

can be resolved by inverting the matrix Bm and calculating
the modulus. Thus, the field magnitude in direction of the
rotation axis becomes independent of the sensor orientation
and can be expressed by:
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Although all angles fall out while calculating Baxis,z , it is
still possible to determine ϕ, ϑ and ψ approximately in
order to use them for a later variation reduction. If mea-
surements are done for two orientations of the rotation axis
and if additional scalar absolute intensity data are given,
the field vector can be determined completely. System-
atic errors have to be eliminated during the measurement to
make the measurement absolute. A scalar calibration of the
fluxgate magnetometer is obtained by comparison of pro-
ton magnetometer readings with the field magnitude derived
from measurements of the fluxgate magnetometer at various
orientations with respect to the Earth field vector. To in-
crease the diversity of sensor orientations with respect to the
geomagnetic field for calibration purposes and to increase
the redundancy of measurements, the procedure should be
repeated after a 90◦ rotation of the sensor perpendicular to
the measurement axis (later called sensor orientation I &
II).

An automation of this method is promising because the
precision requirements of mechanical operations are low
compared to those of the DI-flux method. The rotation of
the sensor can be done with arbitrary angles because the
field determination along the rotation axes is independent
of the sensor orientation. Only the directions of the two ro-
tation axes have to be determined precisely in order to allow
for an accurate transformation of the data into a geographi-
cal reference frame. In the following section we describe in
detail the steps of automation.

3. Automation of the Instrument
The previous, manually operated system is shown in

Fig. 2. The three-component magnetometer is situated in
a rotatable basket. Four bearing blocks, in which the basket
can be rotated, define the two measurement directions. The
bearing blocks have to be levelled by means of a level tube,
and one set of bearing block have to be aligned to the az-
imuth mark using a telescope before measurements can be
taken. Here, the error of the level tube is averaged out by in-
terchanging its ends, and the misalignment between optical
axis of telescope and direction given by the bearing blocks
is compensated by turning the telescope inside the bearing
blocks. The absolute measurement itself is performed by
rotating the basket in both sets of bearing blocks. Magneto-
meter readings are taken at various rotation angles. At the
same time the total field is measured by a scalar magneto-
meter. The orientation of the three-axes fluxgate sensor in-



H. U. AUSTER et al.: AUTOMATION OF ABSOLUTE MEASUREMENT OF THE GEOMAGNETIC FIELD 1009

Fig. 2. Instrument, which has been operated manually in Niemegk over more than two years. The red arrows indicate the three rotations which are
necessary to perform the absolute measurement. The blue arrow symbolizes the measurement axis which has to be determined by an optical system
with a precision of 4 arcsec.

side the basket can be altered for calibration of the measure-
ments by unfastening, turning and fastening of the sensor.
With data from all the different orientations, the magneto-
meter can be fully calibrated and the magnetic field in di-
rection of both rotation axes can be calculated.

To automate the measurement, all the manually operated
steps have to be performed by motors, as there are

1) the rotation around the measurement axis (axis A), that
should contain 360◦ forward and backward with six
measurement stops in each direction;

2) the turning of the sensor inside the basket (rotation
around axis B), where the rotation angle should be
around 90◦, but does not have to be very precise;

3) the change of orientation of the measurement axis (ro-
tation around axis C), where the rotation angle should
also be in the order of 90◦ and does not have to be very
well known;

Moreover, the orientation of the measurement axis with
respect to the horizontal plane and a geographic reference
frame shall be measured by a laser-optical system.

All the automated movements have to be achieved with-
out influencing the geomagnetic field. This can be done
by non-magnetic motors or by transmission of forces from
distant drive units. The only non-magnetic motor solutions
we found are based on piezoelectric actuators. The heart
of a piezoelectric actuator is a piezoceramic plate, which
is excited in a high frequency resonant eigenmode. A fric-
tion tip affixed to the plate follows a linear path. It acts
upon a friction bar which is attached to the moving part.
All necessary elements like piezoceramics, friction tip and
friction bar are available from non-magnetic material. Un-
fortunately, the maximum push/pull force of the commer-
cially available piezo motors is with 1 N low. To maintain a
proper distance between friction tip and friction bar the fric-
tion bar was designed as disc made of ceramics (see Fig. 3).
The disc has a radius of 20 mm which leads us to a piezo
motor torque of 0.02 N m.

The torque can be increased by a gear mechanism or if

Fig. 3. Piezo ceramic drive unit: The friction tip drives the friction bar,
shaped as a disc of radius 20 mm

necessary torques have to be transmitted by pneumatic or
hydraulic solutions. To select the appropriate drive unit
and gear for each rotation an estimate of necessary drive
moments has been made. The detailed constructions of the
three types of rotation are described in the appendix.

3.1 Determination of measurement axis versus refer-
ence system

The orientation of the measurement axes in horizontal
and vertical has to be known exactly to transform the mea-
sured data from the instrument coordinate system into the
geographic coordinate system. This can be achieved by a
laser beam and optical sensors mounted to known azimuth
marks. The laser beam has to be installed inside the rotat-
ing basket to determine the direction of the measurement
axis (see Fig. 2). We investigated a distantly placed laser
coupled in by fiber optics as well as a laser diode placed di-
rectly inside the basket. Both options work well. If the laser
diode is placed inside the basket it has to be accommodated
in a distance of more than 100 mm from the fluxgate sensor
to bring the influence of the remaining magnetic field below
a 0.1 nT threshold. Independently of the kind of source it
has to be equipped with an optics which focuses the laser
beam at the position of the optical sensor. Several 2D op-
tical sensors have been tested for applicability. The dimen-
sions of the optical array should be as large as possible, the
data processing simple and the costs reasonable. Finally,
PSD (Position Sensing Detector) sensors with a sensitive
area of 20 mm × 20 mm were selected. The measurement
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Fig. 4. Measurement results for a typical PSD sensor. The non-linearity
of the relation between spot position and output voltage has been de-
termined and modeled. Crosses are the measurement results, the grid
represents the result of a polynomial fit

Fig. 5. The automatic absolute instrument with basket, basket magneto-
meter and laser optics on the turn-table.

axis of the instrument now only has to be oriented within
an accuracy given by the dimensions of the optical sensor.
The analogue output voltages Ux , Uy of the sensor are pro-
portional to the position X, Y of a light spot on the detec-
tor active area. Linearity errors (see Fig. 4) are measured
and corrected. To keep the laser spot within the measured
and modelled PSD range of 16 mm × 16 mm we accept a
displacement of 10 mm for the adjustment of measurement
axis and a deviation of the laser axis from the rotation axis
which results in a circle diameter of also 10 mm. This cor-
responds to a maximum misalignment error of 2 arcmin in
a PSD distance of less than 20 m. Note again that this is the
only alignment requirement we have on all three mechani-
cal manipulations.

The geographical reference system, given by the PSD
mounting, has to guarantee the full accuracy of 4 arcsec
(0.4 mm in a distance of 20 m). Both tilting and expan-
sion in vertical direction have to be avoided. With a pillar
of two meters height and a temperature gradient of 10◦C
±20◦C per year for central Europe we need a pillar mate-
rial with a linear expansion coefficient of 1 ppm/◦C. Fused
silica rollers with an thermal expansion coefficient of 0.5–
0.9 ppm/◦C are selected for the PSD mounting.

4. Setup and Data Processing
4.1 Setup of an automated observatory

The first automated system was installed in the absolute
house of the Geomagnetic Observatory Niemegk, Germany.
The system consists of the turn-table with basket, basket
magnetometer and laser optics (see Fig. 5) and two PSDs
in a distance of 11 and 17 m (Fig. 6). PSD I is mounted
on a silica roller grounded in concrete outside the absolute
house, PSD II is mounted inside the absolute house. For
defining the direction towards the azimuth marks, the in-
strument is replaced by a theodolite. The identical position-
ing of the instrument and the theodolite are well defined
by heading nutches in the pillar. After levelling of the in-
strument, an inital rotation fixes the horizontal reference on
the PSD. This procedure can be repeated for verification
of azimuth mark stiffness. As mentioned before, a proton
magnetometer is necessary for calibration and to provide
the third vector component. The automatic instrument per-
forms discrete measurements, so this setup has to be com-
plemented by a fluxgate variometer continuously recording
the field variations. All instruments have separate control
electronics, and a GPS receiver for the exact time signal
completes the setup. To avoid interferences between the
single elements, each of them was checked for its magnetic
properties. Sources of self-generated magnetic fields are the
polarization field of the proton magnetometer, the feedback
field of the fluxgate magnetometers and remanent fields of
electronics and mechanical parts. The dashed circles in the
setup drawing (Fig. 6) indicate the necessary clearance to
guarantee disturbances of less than 0.2 nT.

The measurements start at each full hour. First, all three
rotation parts are brought in their initial positions (measure-
ment axis toward PSD I, sensor in position I, basket orien-
tation horizontal). To avoid mechanical end stops and to
compensate for unequal backwards and forwards velocity
of the piezo motor, the sensor and basket rotation are con-
trolled by the magnetic field vector measured by the basket
magnetometer. Mean magnetic main field components for
the location can be used for orientation control because a
rough adjustment is sufficient. The basket is rotated in 60◦

steps forward and backward in each of the four combina-
tions, PSD I & II, sensor orientation I & II. At every stop
position measurements are taken for all three basket magne-
tometer components and the analogue voltages of the PSD
outputs are digitized. The raw data from all 24 values per
direction together with simultaneous readings from the ad-
ditional variometer and proton magnetometer are the basis
for the following data processing.
4.2 Variation reduction

An absolute measurement with the automated system
takes up to half an hour, similar to the DI-Flux procedure.
Consequently, field variations during this period cannot be
neglected and all individual data have to be reduced to the
same time, e.g. the beginning of the measurement. To trans-
form the variometer measurements into the coordinate sys-
tem of the basket magnetometer, its orientation has to be
recovered by the magnetic field measurements inside the
basket. In a first step we rotate the variometer data into
a coordinate system which is defined by the rotation axis
(Baxis,z) and the vertical axis (Baxis,x ). Field variations (typ-
ically less than 50 nT/30 min) are small compared to the
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Fig. 6. Setup of all components of the automated observatory in and
around the absolute house in Niemegk, circles mark the necessary dis-
tances around each component to avoid interferences and disturbances.

Earth’s main field. Therefore, the nominal orientation of
the variometer and the orientation of the rotation axes with
respect to the Earth’s field is sufficient to determine the bas-
ket orientation. Reassembling Eq. (2) we can express the
angles ϑ and ϕ by:

ϑ = arccos
{

− Baxis,z

det (Bm)
· (BMx1(BMy3 − BMy2) +

+BMx2(BMy1 − BMy3) + BMx3(BMy2 − BMy1))
}

(4)

ϕ = arcsin
{

− Baxis,z

sin ϑ det (BM)
· (BMy1(BMz3 − BMz2) +

+BMy2(BMz1 − BMz3) + BMy3(BMz2 − BMz1))
}

(5)

Finally, each rotation angle ψi can be determined by:

ψi = arccos
{

Baxis,x (BMxi cos ϕ + BMyi sin ϕ)) +
+Baxis,y(BMyi cos ϑ cos ϕ − BMxi cos ϑ sin ϕ + BMzi sin ϑ)
(
BMyi cos ϑ cos ϕ − BMxi cos ϑ sin ϕ + BMzi sin ϑ)2+

+ (BMxi cos ϕ + BMyi sin ϕ)2
)−1
}

(6)

After transformation of the field variations into the axis
system this has to be rotated into the basket system using the
angles determined by Eqs. (4)–(6). The field measured by
the basket magnetometer can now be reduced by variation
values and the calculation of the field in axis direction by
Eq. (3) can be repeated.
4.3 Calibration of the basket magnetometer

The next step of data processing is the calibration of the
basket magnetometer. Assuming a linear transfer function
between field and magnetometer output, the rotation of the
sensor about two magnetometer axes is sufficient to per-
form a scalar calibration (Auster et al., 2002). The field
magnitude on top of the pillar is known from absolute pro-
ton magnetometer readings reduced by the previously de-
termined, constant field difference between location of the
proton magnetometer sensor and measurement pillar. Thus
we can fit each of the magnitudes derived by the basket
magnetometer to the true scalar field value. Nine param-
eters (offset, scale factor and nonorthogonality in each of

Fig. 7. Remaining output at zero field, the so-called offset of the basket
magnetometer determined by scalar calibration at each absolute mea-
surement.

Fig. 8. Laser beam position on the PSD at each measurement of the bas-
ket magnetometer (crosses). The measurement axis orientation is de-
termined by fitting a circle to the readings. The center [x = −0.36,
y = 5.18] indicates the axis direction, the radius specifies the misalign-
ment between rotation axis and axis of the laser beam.

the three fluxgate-components) are determined. Measure-
ment results show that the three angles of non-orthogonality
are constant within the measurement accuracy of 10−5. The
scale values depend strongly on the thermal expansion co-
efficient of copper (about 20 ppm/◦C). Both results are
in accordance with the properties we expect from a vec-
tor compensated fluxgate sensor which was designed for a
large temperature range, especially for space applications.
The offset behavior is plotted in Fig. 7. The standard devia-
tion of all 60 calibration results, which gives us a hint about
the total accuracy of the calibration, is in the order of 0.1
nT. This is much better than the accuracy goal of 1 nT.
4.4 Transformation to geographic reference frame

Finally, the direction of the measurement axis has to be
determined. The crosses in Fig. 8 represent the typical
output from the laser beam position (xi , yi ) on the PSD.
The axis direction (x0, y0) is determined by the center of
a circle fitted to the measurement values. The error J is
estimated by

J =
√√√√ 1

N − 1

N∑

i=1

(di − r)2 (7)

di =
√

(xi − xcenter)2 + (yi − ycenter)2 (8)
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Fig. 9. Upper three panels: X, Y and Z component measured by the
automated system (crosses) and values of Niemegk observatory data
(circles) Bottom panel: standard deviation of redundant measurements
before (crosses) and after (circles) variation reduction

r =
∑N

i=1 di

n
(9)

In a distance of 11 m (PSD I) a typical displacement error
is about 0.05 mm. This corresponds to an angle error of 1
arcsec which is also clearly less than the design goal of 4
arcsec.

5. First Results and Error Estimates
The instrument was operated automatically at the

Niemegk observatory and results were compared to the
standard observatory data. Figure 9 shows the comparison
for one day. Automatic absolute measurements were taken
once an hour. The agreement for all three components is
very good. The differences do not exceed 2.5 nT and re-
sult in a standard deviation of 0.5 nT in X, 1.5 nT in Y and
0.3 nT in Z for the whole day (24 measurements). The re-
peat accuracy in the vertical can be considered as more or
less stable and is better than in the horizontal. Here, the
rotation axis is switched twice at each measurement and its
determination is deeply based on the PSD readings. Thus,
the standard deviation for Z is lower than in the other com-
ponents. Error estimates can alternatively be obtained from
the redundancy in the automatic absolute measurement pro-
cedure. We have 24 measurement values in both axis direc-
tions, respectively, but only three are needed to calculate the
field in axis direction (see Eq. (3)). Consequently, we get

eight independent results for each axis. The final value for
the field component is derived by averaging of those eight
results. The standard deviation of these values before varia-
tion reduction gives us an estimate about the field variations
during the measurement. After variation reduction the stan-
dard deviation provides an uncertainty estimate on the final
result, which includes all the sources of error mentioned in
the previous section except for the final orientation. The
comparison of standard deviation before and after variation
correction is shown in Fig. 9. Apparently, the uncertainty
of the results is independent of magnetic activity during the
measurement, at least for the recorded period and only lies
in the order of 0.4 nT. Based on our experience with the pre-
decessing, manually operated instrument, we can assume
the accuracy is truly independent of magnetic activity also
over the long term.

6. Summary and Outlook
We have presented a device to perform automatically

the absolute measurements for calibration of the variation
recordings at geomagnetic observatories. The instrument is
based on the method of rotating a three-axis fluxgate sensor
around an axis to determine the field component in direction
of that axis. The automatic instrument was developed from
a manually operated device, which had been successfully
tested at Niemegk geomagnetic observatory for more than
two years. First results and error estimations show that the
automated system can provide data well within the accu-
racy requirements for geomagnetic observatories, and com-
parable to carefully performed DI-Flux measurements. The
standard deviation of the difference between the measure-
ments with the automated system and the Niemegk obser-
vatory data is less than 1.5 nT in each component.

The automation of absolute measurements has several
advantages:

1) Fully automated observatories can be set up at remote
locations, where frequent access or the presence of
trained personnel can be problematic.

2) The quality of the measurements becomes independent
of the qualification of the personnel.

3) Absolute measurements can be performed more fre-
quently, relaxing the requirements on stability of vario-
meters.

So far, our prototype instrument has been operating fully
automatically for short time intervals only. The next step
will be to prove the instrument’s robustness for unattended
long term measurements. We are currently working on
some improvements to overcome a few potential problems
for long-term operation, which we noted during the test
runs. Then the instrument will be operated in Geomagnetic
Observatory Niemegk continuously.

Up to now, the prototype is adapted to the existing local
conditions to the absolute house in Niemegk. For a new
automated observatory in a remote region, the whole system
including the azimuth marks could be situated underneath
the surface, and power requirements could be lowered, so
that all components could operate with battery supply only.

The current instrument design is suitable for use at mid
and high latitudes, but not for low latitudes, because the
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measurement axes should be not parallel to the total force.
A future task will be to develop a re-designed version of the
device for use at low latitudes.

The fully automated absolute instrument remedies the
need for manual operation of a DI-Flux theodolite at ge-
omagnetic observatories. Thus, it paves the way towards
fully automated observatories, which are needed to fill gaps
in remote areas of the global geomagnetic observatory net-
work.
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Appendix A.
In all figures concerning the design of the three rotations

(Figs. A.1–A.4), normal forces are labelled with (n), forces
in rotation direction with (r ).
Rotation about the measurement axis (Rotation A)

The torque to rotate the basket depends on the friction
of the bearing and the unbalance of the basket with respect
to its rotation axis. No lock mechanism is necessary be-
cause the position after rotation has to be stable only for
the sampling time of a fluxgate magnetometer reading. The
stiffness of the basket must be high, therefore the mass is in
the order of 10 kg. On the other side the radius of the axis
is 0.01 m only and materials with low friction coefficient
(about 0.1) are selected for axis and bearing blocks. The
gravity force of the unbalance can be minimized by balance
weights in a way that friction is higher than the unbalance

Fig. A.1. Bearing of basket. The following forces and moments
have to be considered: F (n)

gravity = 100 N, F (r)
friction = 0.1 · F (n)

gravity,

Mfriction = F (nr)
friction · r , Munbalance ≤ Mfriction

Fig. A.2. Bearing of sensor: The friction force determined by friction
coefficient μ and the normal forces

.

at any point. This corresponds with a displacement of the
center of gravity of less than 1 mm. The necessary torque
MB to rotate the basket can be calculated by:

MB ≥ 2 · 0.1 · 100 N · 0.01 m = 0.2 N m (A.1)

The required torque is ten times higher than the torque pro-
vided by the piezo motor. Therefore, a gear mechanism
is necessary. Considering gear loss and aging of friction
properties a gear reduction of 40 was realized for the bas-
ket rotation. To decouple the basket rotation mechanically
from the turn table an additional weight of 500 g is turned
by the piezo motor around the rotation axis of the basket.
The weight is accommodated in a distance of 70 mm per-
pendicular to the rotation axis. The torque of 0.35 N m is
high enough (see Eq. (A.1)) to keep the unbalanced weight
of motor and gear permanently on the bottom side like a
ship’s keel (see Fig. 5). In this way the angular position of
the basket can be controlled by rotating the keel versus the
rotation axis.
Rotation of the sensor inside the basket (Rotation B)

The sensor accommodation is shown in Fig. A.2. The
sensor is pressed against a base plate by a spring. To ro-
tate the sensor the friction between surface materials (alu-
minum) and washer (reinforced plastics) has to be over-
come. The torque is given as the product of friction coeffi-
cient μ (in this case about 0.33), the normal force and the
radius of the friction bearing (rb,B). To guarantee a stable
sensor accommodation at arbitrary sensor orientation, the
spring force has to be much higher than the gravity force.
Assuming a safety factor of 4, a sensor mass of 200 g and
the worst case assumption that the normal force is the sum
of gravity and spring force, the torque MS of the drive unit
can be estimated as follow:

MS ≥ F (r)

friction · r = 0.33 · (2 N + 8 N) · 0.03 m = 0.1 N m
(A.2)

To perform this rotation by a second piezo motor, a gear re-
duction of 20 is necessary to overcome the required torque.
Change of orientation of the measurement axis (Rota-
tion C)

Turning the whole system into a second measurement di-
rection and back requires a rotation around axis C in Fig.1.
Therefore, the system is placed on a turn-table. Although
the requirement on absolute accuracy of the adjustment of
the measurement axes is relaxed by the measurement range
of the optical system (see next section), the requirement
on stability during one measurement sequence is extremely
high. It corresponds to an accuracy of an absolute measure-
ment which is in the order of 4 arcsec. For a table with a
lock mechanism on the outer radius of rl of 200 mm this
corresponds to a stability of 4 μm. Consequently the ta-
ble has to be firmly locked in well defined end positions
to keep the measurement axis steady during the rotation of
sensor and basket. This is achieved by locking the rotating
part of the table by means of a ball of a diameter of 5 mm,
which is pressed in a notch of the steady part of the table by
a vertically mounted spring (see Fig. A.4). Both, the force
to rotate the table and the force to bring the system into
and out of the locking mechanism have to be considered
for estimating the necessary drive torque. Using a bearing
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Fig. A.3. Steady part of the turn table. The piston is moved by switching compressed air alternating into the left or right tube. The rotatable part is
pushed by the piston into its end positions defined by the notches.

Fig. A.4. Mechanism to lock the rotating part of the turn-table in the two
measurement directions, respectively, by means of a ball that is pressed
into a notch by a spring. The friction force can be derived by the mass of
the table and friction coefficient of the bearing F (r)

friction = 0.02 · F (n)
gravity.

The spring force which is equal to the lock force has to be significantly
higher than the friction force F (n)

spring = F (r)
lock ≥ 4 · F (n)

friction.

based on silicon nitride balls (radius of bearing rb,C=164
mm, friction coefficient μ=0.02) the friction force of the 15
kg rotating part could be reduced to 3 N. The lock force has
to be significantly higher, and therefore a safety factor of 4
has been considered. Assuming a friction free lock mech-
anism and a ramp angle of 45◦ the necessary spring force
has to be equal to the lock force. The torque MT which is
necessary to bring the turn table in the other end position
can be estimated as follow:

MT ≥ F (r)

lock · rl + F (r)

friction · rb,C
∼= 3 N m (A.3)

Due to the high torque requirements of the turn-table we
investigated pneumatic and hydraulic solutions for this ro-
tation. Our current solution, based on a pneumatic drive
unit, is shown in Fig. A.3. The force depends on effective
area A and air pressure P . With a bellows diameter of 12
mm the torque for a pressure of 2 bar can be calculated as
follows:

MT = P · A · r = 2 bar · 113 mm2 · 0.164 m = 3.71 N m
(A.4)

This is more than required to overcome friction and locking
as calculated in Eq. (A.4). Furthermore, a damping mech-
anism was added to limit the angular velocity and to avoid
bouncing due to too much kinetic energy in the system.
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