# Geodetically observed surface displacements of the 1999 Chi-Chi, Taiwan, earthquake 

Ming Yang ${ }^{1}$, Ruey-Juin Rau ${ }^{2}$, Jyh-Yih Yu ${ }^{1}$, and Ting-To $\mathrm{Yu}^{2}$<br>${ }^{1}$ Department of Surveying Engineering, National Cheng Kung University, Tainan, Taiwan<br>${ }^{2}$ Satellite Geoinformatics Research Center, National Cheng Kung University, Tainan, Taiwan

(Received February 18, 2000; Revised May 17, 2000; Accepted May 18, 2000)

The 21 September 1999 Chi-Chi, Taiwan, earthquake of magnitude $\mathrm{M}_{\mathrm{W}}=7.6\left(\mathrm{M}_{\mathrm{L}}=7.3\right)$ severely deformed the Earth's crust in the central Taiwan region. The earthquake created an $85-\mathrm{km}$-long surface rupture along the Chelungpu fault. The epicenter was located at $23.85^{\circ} \mathrm{N}, 120.81^{\circ} \mathrm{E}$, near the southern end of the rupture zone. Threedimensional displacements of 285 geodetic control stations were determined in this study from Global Positioning System (GPS) observations collected before and after the earthquake. The detailed surface displacement field shows that individual stations are vertically uplifted by up to 4 m and displaced horizontally by up to 9 m , with the largest displacement occurring near the northern end of the ruptured thrust fault. The azimuth of the surface displacement field is approximately parallel to the direction of tectonic convergence of the Eurasian and Philippine Sea plates. The maximum three-dimensional displacement of 9.9 m is among the largest fault movements ever measured for modern earthquakes.

## 1. Introduction

Taiwan lies at the junction of the Eurasian plate and the Philippine Sea plate, which converge near latitude $24^{\circ} \mathrm{N}$ at $\sim 7 \mathrm{~cm} / \mathrm{yr}$ in a N50W direction (DeMets et al., 1990; Seno et al., 1993; Yu et al., 1997; Yu et al., 1999). As a result, this region is one of the world's most unstable areas with frequent major earthquakes. The 01:47 local time (17:47 GMT the previous day), 21 September 1999 Chi-Chi earthquake was the largest earthquake $\left(\mathrm{M}_{\mathrm{W}}=7.6, \mathrm{M}_{\mathrm{L}}=7.3\right)$ that struck the island in this century. This massive earthquake not only produced significant horizontal and vertical surface displacements over a very large area of $10000 \mathrm{~km}^{2}(100 \mathrm{~km} \times 100 \mathrm{~km})$, but also caused approximately 10000 collapsed structures in several cities along the ruptured Chelungpu fault, and over 2300 fatalities and 8700 injuries.

In this study, we used Global Positioning System (GPS) geodetic data to quantify the three-dimensional surface displacement pattern associated with the Chi-Chi earthquake. Pre-earthquake data were collected between 1995 and 1998 from global and regional permanent GPS tracking networks, as well as at Taiwan's first- and second-order geodetic control stations. Post-earthquake data were collected within one month of the earthquake, including field surveys at geodetic control points located in the central Taiwan area and continuous observations at stations of the regional GPS tracking network. The resultant high precision co-seismic displacement field of the earthquake can be further exploited to provide valuable information for seismologists and earthquake engineers to study the complex pattern of surface faulting in Taiwan.

## 2. GPS Data Processing

Since 1990, researchers from Taiwan started to use GPS interferometry to characterize regional tectonic motion and estimate relative velocities near and within the island ( Yu et al., 1997; Yu et al., 1999). It is clear in Fig. 1 that significant velocity contrasts are present in the central, south and east regions of the island. In 1995, a decision was made by the Ministry of the Interior, R.O.C. to establish a new geodetic datum, the Taiwan geodetic datum 1997 (TWD97), to replace the old reference frame created in the late 1970s by means of triangulation. The GPS-based TWD97 was directly linked with the International Terrestrial Reference Frame (ITRF) by connecting a regional GPS permanent tracking network with globally distributed International GPS Service (IGS) stations. The regional tracking network was further intensified with 726 first- and second-order geodetic control stations that covered the entire region of Taiwan with an average spacing of $10-15 \mathrm{~km}$, including the island of Taiwan and several islands across Taiwan Strait, adjacent to Mainland China.

In this study, pre-earthquake data were obtained in field surveys between April 1995 and May 1998 and from continuous observations at stations of the regional continuous GPS tracking network and the IGS global network. We divided these data into two groups. The first group contained daily GPS observations made at the global and regional tracking sites. The second group, however, only included measurements collected at the first- and second-order control stations during 124 field sessions, and continuously recorded regional tracking data covering 24 hours on the day of each field session. Forty-eight IGS stations were used in the study. Taiwan's only IGS site, TAIW, located in the northern part of the island, is the only station included in both the global and the regional networks. Figure 2 illustrates the geographical


Fig. 1. Taiwan tectonic velocity field after Yu et al. (1997).


Fig. 2. Spatial distribution of the TWD97 stations, excluding two second-order stations located on Nan-Sa Island in the South China Sea near the Philippines.

Table 1. GPS data reduction summary.

| Models | Values |
| :--- | :--- |
| Data intervals | 30 sec for tracking data, 15 sec for field survey data |
| Elevation angle cut-off | $15^{\circ}$ |
| GPS orbit | IGS precise ephemeris |
| Ionospheric delay | Zero (canceled by forming the ionosphere-free phase) |
| Tropospheric delay | Modified Hopfield model value with one estimated correction parameter per station every 4 hours |
| a priori phase sigma | $\pm 1 \mathrm{~cm}$ |
| Data editing threshold | 3 -sigma value |



Fig. 3. Daily solutions of baseline distance between IGS site GUAM and tracking station FLNM.


Fig. 4. Daily solutions of baseline distance between IGS site GUAM and tracking station KMNM.
distribution of the TWD97 stations. Installed in the regional tracking network were dual frequency TurboRogue receivers with Dorne \& Margolin geodetic antennas. The continuous data were recorded every 30 seconds by the regional tracking network, in accordance with the IGS standard. For the 124 field sessions, the fundamental session length was 45 hours, and the dual frequency observations recorded by GPS receivers of various types were sampled every 15 seconds. The number of GPS receivers used in the field surveys varied greatly, with a minimum of 2 and a maximum of

Table 2. ITRF94 epoch 1997.0 velocities and velocity/coordinate standard deviations for the nine regional tracking stations in the north-south ( N ), east-west (E), and vertical (U) directions.

| Station |  | Velocity <br> $(\mathrm{m} / \mathrm{yr})$ | Velocity Sigma <br> $( \pm \mathrm{m} / \mathrm{yr})$ | Coordinate <br> Sigma $( \pm \mathrm{m})$ |
| :--- | :---: | ---: | :---: | :---: |
| FLNM | N | 0.0076 | 0.0002 | 0.0003 |
|  | E | 0.0098 | 0.0005 | 0.0007 |
|  | U | -0.0179 | 0.0011 | 0.0013 |
| KDNM | N | -0.0069 | 0.0002 | 0.0003 |
|  | E | 0.0050 | 0.0005 | 0.0007 |
|  | U | -0.0170 | 0.0011 | 0.0014 |
| KMNM | N | -0.0092 | 0.0002 | 0.0003 |
|  | E | 0.0330 | 0.0005 | 0.0008 |
|  | U | -0.0181 | 0.0011 | 0.0015 |
| MZUM | N | -0.0096 | 0.0002 | 0.0003 |
|  | E | 0.0326 | 0.0005 | 0.0008 |
|  | U | -0.0216 | 0.0011 | 0.0019 |
| PKGM | N | 0.0000 | 0.0002 | 0.0003 |
|  | E | 0.0270 | 0.0005 | 0.0008 |
|  | U | -0.0665 | 0.0011 | 0.0015 |
| TAIW | N | -0.0086 | 0.0002 | 0.0002 |
|  | E | 0.0364 | 0.0005 | 0.0006 |
|  | U | -0.0374 | 0.0011 | 0.0014 |
| TMAM | N | 0.0021 | 0.0002 | 0.0003 |
|  | E | 0.0028 | 0.0005 | 0.0008 |
|  | U | -0.0170 | 0.0011 | 0.0016 |
| TNSM | N | -0.0063 | 0.0003 | 0.0004 |
|  | E | 0.0358 | 0.0010 | 0.0012 |
|  | U | -0.0367 | 0.0024 | 0.0028 |
|  | N | -0.0103 | 0.0005 | 0.0004 |
|  | U | 0.0352 | 0.0011 | 0.0008 |
|  |  | 0.0178 | 0.0011 | 0.0013 |

123 stations involved in a single session. As the GPS satellite geometry was different for various sessions, all stations were surveyed with multiple occupations.

During GPS data reduction, a number of physical parameters contained in the double-differenced phase observation equation must either be effectively modeled or estimated together with the unknown station coordinates. Generally these parameters include orbital positions of the GPS satellites, ionospheric and tropospheric delays, and carrier phase integer ambiguities (Beutler et al., 1996; Goad et al., 1996;

Table 3. Three-dimensional displacement vectors and associated sigma values sampled at 285 TWD97 stations.

| Station | Long. ( ${ }^{\circ}$ ) | Lat. ( ${ }^{\circ}$ ) | de (cm) | $\mathrm{dn}(\mathrm{cm})$ | du (cm) | $\sigma \mathrm{e}( \pm \mathrm{cm})$ | $\sigma \mathrm{n}( \pm \mathrm{cm})$ | $\sigma \mathrm{u}( \pm \mathrm{cm})$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| CK01 | 120.2104 | 22.9759 | -0.8 | 0.1 | 0.9 | 0.6 | 0.6 | 1.0 |
| DONS | 120.1537 | 23.4605 | 2.1 | 0.0 | 0.7 | 0.6 | 0.6 | 1.0 |
| E007 | 121.5520 | 23.8255 | -30.8 | 12.6 | -15.7 | 0.9 | 0.8 | 6.7 |
| E008 | 121.6143 | 23.9930 | -29.8 | 5.5 | -16.2 | 0.9 | 0.8 | 7.2 |
| E012 | 121.4163 | 23.1251 | -16.9 | 13.1 | 0.4 | 0.8 | 0.8 | 4.8 |
| E018 | 120.9100 | 22.4321 | -3.4 | -1.1 | -4.7 | 0.8 | 0.8 | 6.5 |
| E047 | 121.3595 | 23.4707 | -21.5 | 16.3 | -11.3 | 0.8 | 0.7 | 4.5 |
| E048 | 121.4051 | 23.7095 | -35.3 | 17.9 | -5.9 | 1.0 | 0.8 | 8.0 |
| E072 | 121.2177 | 23.1529 | -7.7 | 6.3 | -11.0 | 0.9 | 0.8 | 6.5 |
| E077 | 121.5250 | 23.5964 | -30.5 | 23.6 | -12.0 | 0.8 | 0.8 | 5.6 |
| E080 | 121.0131 | 23.2202 | -5.5 | 8.7 | -1.5 | 0.8 | 0.7 | 4.0 |
| E091 | 121.4946 | 24.1826 | -20.2 | -1.0 | -20.2 | 0.8 | 0.7 | 5.4 |
| E300 | 121.5009 | 23.5808 | -26.6 | 21.1 | -15.4 | 1.0 | 1.0 | 5.4 |
| E302 | 121.5206 | 23.9191 | -34.1 | 6.5 | -10.7 | 1.6 | 1.6 | 6.4 |
| E307 | 121.4916 | 23.8698 | -37.6 | 9.7 | 10.8 | 1.6 | 1.5 | 9.1 |
| E312 | 121.5040 | 23.4832 | -22.8 | 17.5 | -17.9 | 1.3 | 1.3 | 8.1 |
| E313 | 121.4265 | 23.6753 | -36.7 | 21.7 | -13.9 | 1.4 | 1.3 | 9.0 |
| E315 | 121.5868 | 23.8877 | -29.9 | 8.0 | -6.1 | 1.3 | 1.3 | 6.6 |
| E316 | 121.4677 | 23.8157 | -34.8 | 12.8 | -11.0 | 1.5 | 1.4 | 8.3 |
| E317 | 121.4617 | 23.7214 | -31.9 | 13.8 | -7.5 | 1.1 | 1.0 | 7.4 |
| E319 | 121.6163 | 24.0500 | -24.9 | -1.0 | -22.3 | 0.9 | 0.9 | 4.6 |
| E323 | 121.3588 | 23.3919 | -20.8 | 15.3 | -7.6 | 0.9 | 0.9 | 6.4 |
| E324 | 121.4104 | 23.4706 | -24.2 | 16.4 | -9.1 | 0.9 | 0.9 | 5.7 |
| E328 | 121.4972 | 23.6075 | -29.3 | 21.7 | -11.9 | 0.9 | 0.9 | 5.7 |
| E333 | 121.2798 | 23.1030 | -12.7 | 8.2 | -2.2 | 1.0 | 0.9 | 5.7 |
| E340 | 121.3524 | 23.4322 | -19.4 | 13.6 | -15.9 | 0.9 | 0.9 | 6.0 |
| E341 | 121.3550 | 23.3040 | -16.7 | 12.4 | -8.4 | 1.0 | 1.0 | 5.2 |
| E349 | 121.3248 | 23.3146 | -15.8 | 10.3 | -14.7 | 1.0 | 1.0 | 5.4 |
| E361 | 121.5587 | 23.7510 | -29.6 | 12.7 | -17.2 | 1.3 | 1.2 | 7.6 |
| E363 | 121.5081 | 24.2209 | -17.3 | -2.9 | -13.6 | 1.8 | 1.8 | 6.2 |
| E373 | 121.2880 | 23.2397 | -17.4 | 11.2 | -0.4 | 1.1 | 1.1 | 5.5 |
| E387 | 121.3272 | 23.2723 | -18.5 | 12.3 | -10.3 | 1.2 | 1.2 | 5.8 |
| E399 | 121.4950 | 23.4354 | -21.1 | 15.8 | -17.6 | 1.1 | 1.1 | 6.7 |
| E415 | 121.5730 | 24.0045 | -28.5 | 1.8 | -21.0 | 1.1 | 1.0 | 7.4 |
| E448 | 121.3994 | 24.1774 | -24.0 | 1.8 | -6.5 | 1.9 | 1.9 | 6.1 |
| E476 | 121.4343 | 23.6242 | -31.5 | 20.9 | -20.2 | 1.3 | 1.2 | 5.9 |
| E487 | 121.2571 | 23.2002 | -9.2 | 4.9 | -12.4 | 1.0 | 0.9 | 5.7 |
| E549 | 121.5405 | 23.8867 | -32.7 | 7.3 | -1.7 | 1.3 | 1.3 | 6.5 |
| E599 | 121.4914 | 23.6339 | -29.7 | 21.5 | -11.7 | 1.5 | 1.5 | 7.3 |
| E621 | 121.4462 | 23.4972 | -21.9 | 15.7 | -10.4 | 1.2 | 1.3 | 6.6 |
| E622 | 121.4027 | 23.5784 | -28.2 | 21.3 | -15.7 | 1.3 | 1.3 | 6.5 |
| E801 | 121.3183 | 23.3416 | -16.5 | 11.4 | -13.5 | 1.0 | 1.0 | 6.5 |
| E901 | 121.7694 | 24.3311 | -9.2 | -8.0 | -19.9 | 1.0 | 0.9 | 6.3 |
| E903 | 121.3767 | 23.5335 | -25.8 | 17.2 | -16.3 | 1.0 | 0.9 | 6.5 |
| FLNM | 121.4533 | 23.7463 | -29.3 | 13.9 | 0.8 | 0.6 | 0.6 | 1.0 |
| KDNM | 120.7820 | 21.9494 | -1.1 | 0.6 | 0.5 | 0.6 | 0.6 | 1.0 |
| KMNM | 118.3885 | 24.4638 | 0.0 | 0.0 | 0.0 |  |  |  |
| M002 | 120.2167 | 23.5993 | 1.4 | -2.1 | -27.2 | 0.7 | 0.7 | 3.6 |
| M003 | 120.3093 | 23.7974 | 6.1 | -3.7 | -48.4 | 0.7 | 0.7 | 2.6 |
| M007 | 120.7744 | 23.7562 | -108.3 | 71.7 | 49.6 | 0.7 | 0.7 | 2.7 |
| M031 | 121.3080 | 24.3377 | -7.7 | 6.6 | -5.3 | 0.7 | 0.7 | 2.9 |
| M036 | 121.1267 | 24.0129 | -168.1 | 73.8 | -69.8 | 0.8 | 0.8 | 4.8 |
| M043 | 120.8587 | 24.1293 | -199.2 | 277.0 | 135.2 | 0.7 | 0.7 | 2.6 |
| M044 | 120.5844 | 24.1381 | 43.1 | -22.8 | -2.1 | 0.7 | 0.6 | 2.5 |
| M045 | 120.6551 | 24.3563 | 29.7 | -29.2 | -0.6 | 0.7 | 0.6 | 2.4 |
| M046 | 120.7644 | 24.6013 | 3.4 | -10.1 | -9.9 | 0.7 | 0.6 | 2.6 |
| M047 | 120.9137 | 24.3672 | 45.0 | -62.9 | -39.4 | 0.7 | 0.7 | 2.8 |
| M048 | 120.8463 | 24.5560 | 3.8 | -17.5 | 9.6 | 1.2 | 1.3 | 4.8 |
| M049 | 120.4461 | 23.9786 | 20.6 | -8.2 | -9.2 | 0.7 | 0.7 | 2.7 |
| M075 | 120.8488 | 24.2793 | -485.6 | 702.6 | 77.6 | 0.7 | 0.7 | 2.9 |
| M081 | 120.9820 | 23.9739 | -197.0 | 125.0 | -49.0 | 0.7 | 0.7 | 2.7 |
| M083 | 120.8416 | 23.9346 | -235.2 | 167.8 | 74.9 | 0.8 | 0.7 | 4.3 |
| M085 | 120.6347 | 23.9276 | 63.6 | -20.9 | -9.8 | 0.7 | 0.7 | 2.6 |
| M089 | 121.2845 | 24.1524 | -51.4 | 20.3 | -33.0 | 0.7 | 0.7 | 3.1 |
| M091 | 121.1630 | 24.2512 | -14.6 | 24.2 | -2.1 | 0.7 | 0.7 | 2.6 |
| M092 | 120.3348 | 23.9536 | 10.2 | -5.3 | -13.1 | 0.9 | 0.8 | 6.1 |
| M093 | 120.4710 | 23.6938 | 9.6 | -5.1 | -0.8 | 0.7 | 0.7 | 2.6 |
| M300 | 120.4077 | 24.0204 | 14.2 | -7.6 | -8.2 | 1.0 | 0.9 | 3.7 |
| M301 | 120.8833 | 24.3915 | 17.1 | -45.9 | -7.4 | 1.3 | 1.3 | 6.0 |
| M303 | 120.9050 | 23.9951 | -207.9 | 147.7 | -8.1 | 2.2 | 2.0 | 10.5 |
| M305 | 120.8191 | 23.9982 | -306.0 | 221.8 | 129.3 | 2.3 | 1.8 | 7.9 |
| M307 | 120.8442 | 24.4444 | 13.5 | -31.4 | -11.5 | 1.1 | 1.0 | 5.0 |

Table 3. (continued).

| Station | Long. ( ${ }^{\circ}$ ) | Lat. ( ${ }^{\circ}$ ) | de (cm) | dn (cm) | du (cm) | $\sigma \mathrm{e}( \pm \mathrm{cm})$ | $\sigma \mathrm{n}( \pm \mathrm{cm})$ | $\sigma \mathrm{u}( \pm \mathrm{cm})$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| M309 | 120.8463 | 24.1940 | -347.8 | 448.2 | 158.0 | 0.9 | 0.9 | 3.5 |
| M311 | 120.9061 | 24.4676 | 2.7 | -26.5 | -1.5 | 1.1 | 1.1 | 5.0 |
| M312 | 120.8329 | 24.1713 | -328.4 | 468.7 | 176.0 | 1.0 | 0.9 | 3.5 |
| M314 | 120.7499 | 24.1031 | -522.6 | 499.9 | 203.8 | 1.0 | 0.9 | 3.3 |
| M315 | 120.7673 | 24.2988 | 60.8 | -81.4 | -10.5 | 1.7 | 1.5 | 5.7 |
| M316 | 120.7072 | 24.0204 | -354.0 | 368.6 | 269.3 | 1.3 | 1.3 | 4.9 |
| M317 | 120.4131 | 23.6350 | 5.1 | -3.8 | -7.4 | 1.0 | 0.9 | 3.9 |
| M322 | 120.7795 | 23.8370 | -277.6 | 195.2 | 134.3 | 2.6 | 2.4 | 9.1 |
| M323 | 121.2696 | 24.2848 | -14.9 | 11.3 | 0.4 | 1.0 | 0.9 | 4.3 |
| M324 | 120.7427 | 24.2202 | -347.4 | 839.8 | 401.7 | 0.8 | 0.8 | 3.2 |
| M325 | 121.0064 | 24.6442 | $-1.0$ | -1.2 | 1.5 | 1.6 | 1.5 | 6.6 |
| M326 | 120.5750 | 24.2542 | 31.5 | -22.3 | -3.1 | 1.0 | 0.9 | 3.6 |
| M327 | 120.6848 | 24.4938 | 12.4 | -17.0 | -12.0 | 1.0 | 1.0 | 4.2 |
| M328 | 120.8096 | 24.6271 | -0.6 | -10.5 | 1.5 | 1.4 | 1.3 | 5.4 |
| M329 | 120.6884 | 24.4434 | 19.9 | -24.5 | -6.2 | 1.0 | 1.0 | 4.1 |
| M330 | 120.8067 | 24.2245 | -350.3 | 628.2 | 41.4 | 1.0 | 1.0 | 3.6 |
| M333 | 120.6320 | 23.8441 | 60.5 | -20.6 | -15.6 | 1.0 | 0.9 | 4.9 |
| M334 | 120.7518 | 24.4676 | 7.1 | -17.7 | -7.4 | 0.9 | 0.9 | 3.3 |
| M335 | 120.6098 | 23.7226 | 38.4 | -10.8 | -6.5 | 1.5 | 1.4 | 5.3 |
| M336 | 120.7600 | 24.5371 | 7.7 | -14.6 | -5.8 | 1.4 | 1.4 | 5.5 |
| M338 | 120.8930 | 24.2818 | -595.9 | 631.5 | 91.7 | 3.9 | 3.3 | 11.3 |
| M340 | 120.7608 | 24.5065 | 10.1 | -18.5 | -13.4 | 1.6 | 1.6 | 5.5 |
| M341 | 120.3459 | 23.7204 | 4.8 | -6.8 | -20.2 | 0.8 | 0.8 | 3.4 |
| M343 | 120.1985 | 23.5608 | -2.1 | -2.9 | -13.4 | 0.8 | 0.8 | 4.3 |
| M345 | 120.7525 | 24.1391 | -614.5 | 645.0 | 99.8 | 1.2 | 1.0 | 3.8 |
| M346 | 120.9095 | 24.6592 | 0.9 | -6.3 | -3.7 | 0.8 | 0.8 | 3.3 |
| M349 | 120.6592 | 24.2171 | 56.3 | -41.8 | 3.7 | 0.9 | 0.9 | 3.4 |
| M350 | 120.7281 | 24.5012 | 9.4 | -16.1 | -10.4 | 1.3 | 1.4 | 9.1 |
| M351 | 120.5091 | 23.7845 | 18.2 | -11.1 | -5.8 | 1.0 | 1.0 | 3.8 |
| M353 | 120.6567 | 24.3078 | 37.7 | -34.6 | 9.6 | 0.9 | 0.9 | 3.3 |
| M354 | 120.9484 | 23.9314 | -181.3 | 123.5 | -32.7 | 2.4 | 2.0 | 7.4 |
| M356 | 120.7952 | 24.4683 | 9.6 | -24.7 | 8.1 | 1.1 | 1.0 | 4.3 |
| M357 | 120.7861 | 24.4207 | 19.4 | -33.2 | $-1.0$ | 0.9 | 0.9 | 4.8 |
| M358 | 120.9374 | 24.5902 | 0.8 | -7.2 | -17.9 | 1.1 | 1.0 | 4.9 |
| M359 | 120.7301 | 24.3773 | 30.1 | -38.0 | -6.9 | 1.2 | 1.2 | 4.8 |
| M360 | 120.9423 | 23.8663 | -164.7 | 95.8 | -31.7 | 1.8 | 1.8 | 8.6 |
| M361 | 120.5628 | 24.1741 | 36.6 | -20.7 | 3.3 | 0.8 | 0.8 | 2.9 |
| M363 | 120.6975 | 24.4173 | 22.4 | -25.0 | -5.7 | 1.1 | 1.1 | 4.3 |
| M365 | 120.6275 | 23.9839 | 66.0 | -22.1 | -14.9 | 0.9 | 0.9 | 3.4 |
| M367 | 120.6420 | 23.8200 | 68.6 | -21.4 | -18.1 | 1.0 | 1.0 | 4.7 |
| M372 | 120.5844 | 23.6597 | 9.0 | -1.3 | -20.0 | 1.7 | 1.8 | 5.4 |
| M373 | 120.5166 | 24.2223 | 26.1 | -15.5 | 0.2 | 0.8 | 0.8 | 2.9 |
| M374 | 120.8557 | 24.3585 | 34.9 | -64.1 | -6.8 | 1.1 | 1.1 | 5.0 |
| M375 | 120.2263 | 23.6910 | 2.8 | -3.7 | -15.1 | 1.2 | 1.2 | 5.9 |
| M376 | 120.9952 | 24.6211 | $-1.8$ | -0.9 | 0.5 | 1.3 | 1.2 | 6.1 |
| M377 | 120.9035 | 24.6314 | 0.3 | -5.9 | -6.4 | 1.1 | 1.0 | 6.1 |
| M378 | 120.3045 | 23.8786 | 4.6 | -3.7 | -42.2 | 1.0 | 1.0 | 4.0 |
| M379 | 120.9513 | 24.6932 | -0.8 | -4.5 | -4.5 | 0.9 | 0.9 | 3.9 |
| M380 | 120.8730 | 24.4875 | 5.5 | -19.9 | -7.6 | 1.0 | 1.0 | 3.9 |
| M382 | 120.9434 | 24.5035 | 1.2 | 3.2 | -16.8 | 1.1 | 1.0 | 5.4 |
| M383 | 120.4779 | 23.7962 | 14.4 | -6.6 | -6.8 | 1.0 | 1.0 | 3.9 |
| M384 | 120.1883 | 23.6490 | -2.2 | -2.2 | -9.5 | 0.9 | 0.9 | 4.7 |
| M386 | 120.7733 | 24.3803 | 28.7 | -43.1 | 1.2 | 1.2 | 1.2 | 4.5 |
| M387 | 120.6496 | 24.0310 | 79.0 | -33.4 | -11.7 | 0.9 | 0.9 | 3.4 |
| M390 | 120.2257 | 23.5302 | -4.6 | -2.7 | -13.5 | 1.0 | 1.0 | 4.1 |
| M392 | 120.3286 | 23.9040 | 6.7 | -5.2 | -43.2 | 1.1 | 1.1 | 4.6 |
| M393 | 120.7259 | 24.4589 | 14.1 | -20.3 | -10.4 | 1.1 | 1.0 | 5.0 |
| M394 | 120.6851 | 24.2613 | 55.0 | -47.9 | 3.7 | 2.3 | 2.5 | 9.4 |
| M395 | 120.5856 | 24.0518 | 44.5 | -19.0 | -9.5 | 1.0 | 1.0 | 3.4 |
| M398 | 120.7120 | 23.9122 | -268.0 | 17.3 | 226.4 | 1.2 | 1.2 | 4.8 |
| M400 | 120.7598 | 23.6783 | -145.4 | 42.9 | 44.0 | 1.3 | 1.2 | 5.5 |
| M402 | 120.9115 | 24.1015 | -253.1 | 169.4 | 47.9 | 1.1 | 1.0 | 6.3 |
| M407 | 120.9143 | 24.5592 | 0.9 | -10.1 | -3.3 | 1.0 | 1.0 | 4.3 |
| M408 | 120.8491 | 23.7769 | -144.8 | 83.0 | -27.3 | 1.5 | 1.2 | 5.2 |
| M410 | 120.1837 | 23.6899 | 2.3 | -2.5 | -8.4 | 0.9 | 0.9 | 5.6 |
| M411 | 120.3220 | 23.6009 | 0.8 | -2.9 | -15.5 | 1.3 | 1.2 | 5.1 |
| M412 | 120.2851 | 23.6424 | 2.4 | $-3.3$ | -22.2 | 1.9 | 2.1 | 7.6 |
| M415 | 120.5644 | 24.3239 | 23.9 | -21.5 | 5.9 | 0.9 | 1.0 | 5.0 |
| M416 | 120.8028 | 24.1796 | -381.1 | 567.9 | 101.8 | 1.0 | 1.0 | 3.5 |
| M424 | 120.5465 | 23.8222 | 26.3 | -9.1 | -12.4 | 1.1 | 1.1 | 4.1 |
| M425 | 121.2302 | 24.2241 | -33.0 | 12.8 | -14.9 | 1.0 | 0.9 | 4.0 |
| M426 | 120.9247 | 24.0470 | -218.1 | 162.8 | 14.9 | 1.3 | 1.2 | 5.8 |

Table 3. (continued).

| Station | Long. ( ${ }^{\circ}$ ) | Lat. ( ${ }^{\circ}$ ) | de (cm) | dn (cm) | du (cm) | $\sigma \mathrm{e}( \pm \mathrm{cm})$ | $\sigma \mathrm{n}( \pm \mathrm{cm})$ | $\sigma \mathrm{u}( \pm \mathrm{cm})$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| M427 | 120.7076 | 24.5389 | 7.3 | -13.5 | $-6.7$ | 1.0 | 0.9 | 4.4 |
| M428 | 120.6220 | 24.3274 | 30.1 | -27.4 | 3.4 | 0.8 | 0.8 | 3.0 |
| M433 | 120.7182 | 23.7350 | -40.2 | 346.0 | 35.9 | 1.3 | 1.3 | 6.4 |
| M436 | 120.7135 | 24.0613 | -331.9 | 283.8 | -33.1 | 1.3 | 1.3 | 5.9 |
| M446 | 120.1666 | 23.5593 | -2.5 | -3.5 | -13.3 | 1.5 | 1.6 | 11.8 |
| M453 | 120.4834 | 24.1525 | 22.2 | -11.0 | -2.9 | 0.9 | 0.8 | 3.2 |
| M454 | 120.5764 | 23.6306 | 14.2 | 2.0 | -13.7 | 1.4 | 1.4 | 4.6 |
| M456 | 120.7854 | 24.3340 | 44.7 | -65.1 | -14.9 | 1.4 | 1.3 | 5.6 |
| M458 | 120.5881 | 24.3425 | 24.8 | -20.5 | 12.5 | 0.8 | 0.8 | 3.4 |
| M459 | 120.2270 | 23.7509 | 6.1 | -3.8 | -11.2 | 1.0 | 0.9 | 4.8 |
| M461 | 120.5034 | 24.0538 | 27.4 | -12.4 | -8.5 | 1.1 | 1.0 | 4.0 |
| M467 | 120.6720 | 23.9986 | 97.6 | -38.3 | -18.4 | 0.9 | 0.9 | 3.5 |
| M473 | 120.2336 | 23.7240 | 2.8 | $-1.9$ | -18.9 | 2.5 | 2.3 | 8.7 |
| M474 | 120.8433 | 24.2345 | -350.1 | 529.6 | 125.8 | 1.2 | 1.2 | 4.5 |
| M477 | 121.3167 | 24.1871 | -29.2 | 3.2 | -11.5 | 0.9 | 0.8 | 3.9 |
| M478 | 120.6402 | 23.7704 | 57.6 | -15.1 | -9.3 | 1.4 | 1.4 | 5.0 |
| M479 | 120.7158 | 23.8436 | -321.9 | 97.9 | 256.7 | 1.1 | 1.0 | 5.3 |
| M482 | 120.7006 | 23.9666 | -372.9 | 347.8 | 332.6 | 1.0 | 1.0 | 4.8 |
| M486 | 120.4749 | 24.0902 | 25.6 | -12.2 | -2.9 | 0.8 | 0.8 | 3.0 |
| M487 | 121.2315 | 24.1165 | -86.9 | 43.3 | -59.7 | 1.4 | 1.4 | 5.6 |
| M491 | 121.2006 | 24.1514 | -79.2 | 25.8 | -16.0 | 1.8 | 1.9 | 5.6 |
| M493 | 120.7199 | 23.7754 | -249.9 | -55.3 | 109.5 | 1.5 | 1.3 | 6.1 |
| M494 | 121.1647 | 24.1611 | -82.5 | 27.1 | -21.2 | 1.4 | 1.4 | 4.8 |
| M501 | 120.9082 | 23.9512 | -193.8 | 140.8 | 4.4 | 1.0 | 1.0 | 4.5 |
| M507 | 120.8628 | 23.7243 | -155.8 | 82.7 | -38.8 | 0.9 | 0.8 | 3.8 |
| M509 | 120.8981 | 23.8140 | -161.8 | 74.1 | -42.4 | 1.2 | 1.1 | 5.9 |
| M514 | 120.4416 | 23.8673 | 13.8 | $-7.7$ | -13.2 | 1.0 | 1.0 | 4.0 |
| M527 | 120.7653 | 23.8935 | -262.7 | 376.9 | 119.9 | 1.0 | 1.0 | 4.3 |
| M533 | 120.2604 | 23.6973 | 0.9 | -3.4 | -19.6 | 1.6 | 1.5 | 6.3 |
| M553 | 120.2781 | 23.6106 | 1.3 | $-1.7$ | -21.4 | 2.5 | 2.3 | 8.1 |
| M554 | 120.4244 | 23.6828 | 7.2 | -4.7 | -8.6 | 1.2 | 1.2 | 4.5 |
| M561 | 120.4172 | 23.8170 | 10.3 | -6.8 | -18.6 | 2.1 | 2.0 | 7.2 |
| M573 | 120.4174 | 23.7828 | 10.2 | -5.5 | $-3.3$ | 1.0 | 1.0 | 3.9 |
| M574 | 120.3269 | 23.6816 | 1.2 | -5.0 | -25.7 | 1.2 | 1.2 | 4.6 |
| M581 | 120.9405 | 24.2291 | -274.2 | 226.6 | 116.3 | 1.9 | 1.8 | 6.0 |
| M584 | 120.9711 | 24.2104 | -62.6 | 71.7 | 211.3 | 1.8 | 1.7 | 5.3 |
| M586 | 120.6610 | 23.8825 | 71.8 | -26.6 | -15.4 | 1.0 | 1.0 | 4.9 |
| M587 | 120.8977 | 24.2187 | -287.6 | 455.1 | 32.4 | 1.6 | 1.6 | 5.2 |
| M593 | 121.2253 | 24.1917 | -52.1 | 19.8 | -18.1 | 1.0 | 1.0 | 4.1 |
| M599 | 121.1930 | 24.2508 | -23.4 | 19.0 | -18.5 | 1.0 | 0.9 | 4.3 |
| M601 | 120.7516 | 24.0028 | -378.1 | 337.0 | 323.8 | 1.2 | 1.2 | 4.8 |
| M614 | 120.6315 | 23.8892 | 58.7 | -19.7 | -20.4 | 1.0 | 0.9 | 5.2 |
| M674 | 120.1435 | 23.6340 | 0.7 | -1.7 | -7.5 | 1.1 | 1.0 | 6.0 |
| M694 | 120.5784 | 23.5834 | $-2.2$ | $-3.0$ | $-4.0$ | 1.2 | 1.2 | 6.9 |
| M714 | 120.8340 | 24.3245 | 47.1 | -77.6 | -10.9 | 1.8 | 1.8 | 6.6 |
| M801 | 120.8754 | 24.6840 | 0.0 | -5.3 | -2.4 | 0.9 | 0.9 | 3.8 |
| M802 | 120.8183 | 24.5619 | 3.0 | -12.8 | -9.1 | 0.9 | 0.9 | 4.3 |
| M804 | 120.7140 | 24.2491 | 66.4 | -60.1 | -4.1 | 0.8 | 0.8 | 3.4 |
| M805 | 120.6805 | 24.1708 | 74.5 | -48.1 | 3.7 | 0.8 | 0.8 | 3.2 |
| M806 | 120.6533 | 24.1537 | 64.2 | -39.2 | -6.2 | 0.8 | 0.8 | 3.0 |
| M807 | 120.4982 | 24.1172 | 25.2 | -13.3 | -3.5 | 0.8 | 0.8 | 3.0 |
| M808 | 120.6856 | 24.1106 | 89.6 | -51.2 | -11.0 | 0.9 | 0.9 | 3.2 |
| M809 | 120.4355 | 24.0571 | 19.4 | -9.1 | $-1.0$ | 1.0 | 1.0 | 3.4 |
| M810 | 120.5800 | 23.9627 | 43.8 | -12.6 | $-18.3$ | 0.9 | 0.9 | 3.3 |
| M811 | 120.4746 | 23.9612 | 17.2 | -10.3 | -17.3 | 0.8 | 0.8 | 3.3 |
| M812 | 120.3734 | 23.8999 | 9.1 | -6.7 | -40.7 | 1.5 | 1.1 | 4.8 |
| M813 | 120.5247 | 23.8749 | 24.7 | -7.5 | -15.3 | 0.8 | 0.8 | 3.4 |
| M814 | 120.5814 | 23.8645 | 38.7 | -13.7 | -14.7 | 0.9 | 0.9 | 4.0 |
| M816 | 120.4448 | 23.7080 | 9.3 | -4.3 | -9.9 | 0.8 | 0.8 | 3.5 |
| M901 | 120.8719 | 24.7146 | $-1.3$ | $-3.4$ | -7.3 | 1.1 | 1.1 | 4.5 |
| M902 | 120.9301 | 24.4512 | 8.8 | -16.9 | -2.1 | 1.6 | 1.7 | 6.8 |
| M903 | 120.6059 | 24.4158 | 19.5 | -18.2 | -10.6 | 0.8 | 0.8 | 3.0 |
| M904 | 120.6067 | 24.2985 | 34.0 | -26.7 | 6.0 | 0.8 | 0.8 | 3.1 |
| M905 | 121.2570 | 24.2534 | -17.8 | 9.2 | -6.3 | 1.0 | 1.0 | 5.1 |
| M906 | 120.5223 | 24.2562 | 23.7 | -18.0 | 1.5 | 1.0 | 1.0 | 3.6 |
| M907 | 120.6327 | 24.0677 | 62.4 | -29.8 | -6.9 | 0.9 | 0.9 | 3.2 |
| M908 | 120.5193 | 24.0155 | 27.6 | -12.3 | -11.3 | 1.0 | 1.0 | 3.5 |
| M909 | 120.4409 | 24.0095 | 16.7 | -8.4 | -10.2 | 0.9 | 0.9 | 3.5 |
| M910 | 120.4137 | 23.9564 | 11.9 | -5.4 | -15.7 | 1.0 | 0.9 | 3.6 |
| M911 | 120.4245 | 23.8929 | 14.4 | -6.8 | -8.5 | 0.8 | 0.8 | 3.4 |
| M912 | 120.9332 | 23.7754 | -152.2 | 80.5 | -47.4 | 0.9 | 0.9 | 4.2 |
| M913 | 120.9425 | 24.0175 | -200.2 | 145.8 | -36.2 | 1.3 | 1.2 | 5.9 |

Table 3. (continued).

| Station | Long. ( ${ }^{\circ}$ ) | Lat. ( ${ }^{\circ}$ ) | de (cm) | dn (cm) | du (cm) | $\sigma \mathrm{e}( \pm \mathrm{cm})$ | $\sigma \mathrm{n}( \pm \mathrm{cm})$ | $\sigma \mathrm{u}( \pm \mathrm{cm})$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| M914 | 120.3776 | 23.7581 | 7.6 | -7.1 | -14.0 | 1.0 | 1.0 | 3.8 |
| M915 | 120.8201 | 24.5230 | 6.7 | -17.3 | -12.8 | 1.0 | 1.0 | 3.8 |
| M916 | 120.7119 | 24.3315 | 39.1 | -41.8 | -5.4 | 1.0 | 1.0 | 3.5 |
| M917 | 120.6313 | 24.1744 | 54.6 | -33.7 | -3.1 | 0.8 | 0.8 | 3.1 |
| M918 | 120.5070 | 23.9531 | 23.6 | -8.9 | -22.3 | 0.8 | 0.8 | 3.1 |
| M938 | 121.1717 | 24.0807 | -118.1 | 36.9 | -30.2 | 1.7 | 1.7 | 5.5 |
| M959 | 121.1823 | 24.0291 | -118.9 | 15.7 | -43.5 | 1.3 | 1.3 | 4.6 |
| M961 | 121.1319 | 23.9798 | -130.1 | 27.0 | -55.5 | 1.2 | 1.2 | 4.7 |
| M999 | 120.8612 | 23.9717 | -231.8 | 184.3 | 55.2 | 1.5 | 1.4 | 9.2 |
| MZUM | 119.9331 | 26.1571 | -0.4 | -0.1 | 0.6 | 0.6 | 0.6 | 1.0 |
| N011 | 121.2915 | 25.1025 | 0.0 | 0.3 | -10.6 | 0.7 | 0.7 | 4.3 |
| N023 | 121.0500 | 24.6804 | -2.6 | 0.8 | -2.4 | 0.7 | 0.7 | 3.4 |
| N028 | 120.9439 | 24.7857 | $-1.2$ | -1.4 | 3.6 | 0.7 | 0.7 | 3.0 |
| N032 | 121.1139 | 24.5065 | -6.1 | 11.0 | -20.1 | 0.7 | 0.7 | 2.6 |
| N052 | 121.8678 | 24.5939 | 2.8 | -5.3 | -12.7 | 0.7 | 0.7 | 4.8 |
| N053 | 121.7779 | 24.3973 | -3.4 | -8.9 | -14.5 | 0.7 | 0.7 | 4.6 |
| N090 | 121.6189 | 24.6592 | 0.5 | -0.2 | -7.3 | 0.7 | 0.7 | 4.7 |
| N091 | 121.2521 | 25.0015 | 0.5 | -0.1 | -11.7 | 0.7 | 0.7 | 4.6 |
| PKGB | 120.3051 | 23.5796 | 1.5 | -1.7 | -5.9 | 2.8 | 3.4 | 9.4 |
| PKGM | 120.3054 | 23.5799 | 4.3 | $-0.3$ | 0.2 | 0.6 | 0.6 | 1.0 |
| S003 | 120.1627 | 23.1731 | -4.1 | -1.4 | -9.2 | 0.7 | 0.7 | 4.3 |
| S020 | 120.6231 | 23.5900 | -21.9 | -35.1 | -55.1 | 0.8 | 0.7 | 4.6 |
| S021 | 120.4807 | 23.5358 | -0.8 | -3.3 | -2.9 | 0.7 | 0.7 | 3.7 |
| S023 | 120.1887 | 23.3825 | -2.4 | -4.1 | -33.0 | 0.7 | 0.7 | 2.9 |
| S025 | 120.8244 | 23.2636 | -7.5 | -0.7 | 2.4 | 0.7 | 0.7 | 3.6 |
| S026 | 120.9572 | 23.4700 | -33.8 | 21.5 | -17.5 | 0.7 | 0.7 | 3.3 |
| S027 | 120.8895 | 23.4838 | -34.0 | 26.9 | -11.3 | 0.7 | 0.7 | 3.3 |
| S031 | 119.5690 | 23.5291 | -3.4 | -0.3 | $-1.6$ | 0.8 | 0.7 | 4.8 |
| S034 | 120.3817 | 22.5301 | -4.6 | -4.6 | -8.7 | 1.0 | 1.0 | 8.9 |
| S059 | 120.5081 | 23.1945 | -8.6 | -2.9 | -0.4 | 0.8 | 0.8 | 5.6 |
| S070 | 120.5620 | 23.4520 | -8.4 | -6.3 | 3.2 | 0.7 | 0.7 | 3.0 |
| S091 | 120.3124 | 23.3383 | -4.2 | -4.5 | -24.3 | 0.7 | 0.7 | 3.9 |
| S092 | 120.2904 | 23.4515 | -1.7 | -3.7 | -7.9 | 0.7 | 0.7 | 3.4 |
| S313 | 120.5636 | 23.2536 | -28.4 | -15.4 | 8.2 | 1.4 | 1.4 | 5.0 |
| S317 | 120.5822 | 23.3004 | -8.3 | -6.2 | 9.7 | 1.3 | 1.2 | 5.3 |
| S322 | 120.2962 | 23.4819 | 0.4 | -3.3 | -35.1 | 1.0 | 0.9 | 4.6 |
| S326 | 120.6949 | 23.4701 | -13.3 | -8.6 | -5.7 | 1.1 | 1.0 | 4.6 |
| S328 | 120.6080 | 23.5672 | -13.0 | -16.1 | -9.4 | 0.9 | 0.9 | 6.0 |
| S330 | 120.7100 | 23.5622 | -13.0 | -14.0 | -10.2 | 1.2 | 1.2 | 4.3 |
| S338 | 120.4086 | 23.5991 | 4.7 | -3.1 | -5.4 | 1.0 | 1.0 | 5.1 |
| S344 | 120.3471 | 23.5320 | $-1.0$ | -2.6 | $-7.1$ | 1.2 | 1.1 | 4.9 |
| S346 | 120.1930 | 23.2924 | -6.0 | -1.7 | -30.3 | 1.0 | 1.0 | 4.7 |
| S349 | 120.3038 | 23.3936 | -3.9 | -4.6 | -21.1 | 0.9 | 0.9 | 3.9 |
| S358 | 120.3940 | 23.5145 | -2.3 | -4.5 | -0.7 | 1.3 | 1.2 | 6.5 |
| S371 | 120.3219 | 23.4694 | -0.7 | -5.1 | -5.8 | 1.0 | 0.9 | 5.3 |
| S377 | 120.5251 | 23.4056 | -7.1 | -7.7 | 4.7 | 2.1 | 2.1 | 8.3 |
| S378 | 120.3639 | 23.5646 | 0.3 | -3.7 | $-7.0$ | 1.1 | 1.0 | 4.4 |
| S384 | 120.1553 | 23.4696 | -6.0 | -9.5 | -8.9 | 1.1 | 1.2 | 4.8 |
| S388 | 120.5975 | 23.3462 | -21.8 | -12.3 | -22.9 | 2.0 | 2.0 | 7.2 |
| S390 | 120.5665 | 23.4118 | -6.3 | -4.9 | 4.2 | 2.2 | 2.1 | 7.9 |
| S391 | 120.5197 | 23.5824 | 1.3 | -2.7 | -6.8 | 1.6 | 1.3 | 5.5 |
| S396 | 120.4919 | 23.4800 | $-1.1$ | -2.1 | -14.6 | 3.3 | 3.3 | 10.7 |
| S405 | 120.2754 | 23.4178 | -3.4 | -4.5 | -11.6 | 0.9 | 0.8 | 3.9 |
| S414 | 120.6487 | 23.4044 | -9.4 | -8.7 | 10.2 | 1.2 | 1.1 | 5.7 |
| S417 | 120.2299 | 23.4109 | -4.7 | -3.6 | -10.1 | 1.2 | 1.2 | 4.6 |
| S421 | 120.6038 | 23.4590 | -8.8 | -9.7 | -4.8 | 1.0 | 1.0 | 6.3 |
| S426 | 120.9163 | 23.2822 | $-9.3$ | 4.2 | -7.4 | 1.0 | 1.0 | 4.4 |
| S434 | 120.2310 | 23.4509 | $-5.0$ | -3.9 | $-10.5$ | 1.2 | 1.2 | 4.4 |
| S465 | 120.4222 | 23.4600 | -2.3 | -5.5 | -4.9 | 1.3 | 1.2 | 5.0 |
| S608 | 120.4436 | 23.4201 | -3.7 | -5.8 | 4.8 | 1.0 | 1.0 | 3.8 |
| S690 | 120.6579 | 23.4370 | -6.4 | -6.3 | 6.3 | 1.1 | 1.0 | 4.6 |
| S801 | 120.4583 | 23.6005 | 4.7 | -2.6 | -6.9 | 1.0 | 0.9 | 3.9 |
| S802 | 120.5474 | 23.5135 | -4.1 | -4.7 | -4.1 | 0.9 | 0.8 | 3.9 |
| S803 | 120.3957 | 23.4335 | -3.7 | -6.2 | -9.4 | 1.2 | 1.1 | 4.7 |
| S901 | 120.3611 | 23.5955 | $-0.9$ | -3.1 | -21.6 | 1.0 | 1.0 | 4.1 |
| S902 | 120.1904 | 23.4991 | -5.5 | $-1.0$ | -7.2 | 1.0 | 1.0 | 4.9 |
| S903 | 120.1819 | 23.4367 | -6.2 | -3.0 | -20.2 | 1.1 | 1.2 | 4.4 |
| TMAM | 121.0074 | 22.6161 | -1.6 | 1.7 | 0.1 | 0.6 | 0.6 | 1.1 |
| YMSM | 121.5740 | 25.1657 | 0.0 | 0.4 | 0.7 | 0.6 | 0.6 | 1.0 |



Fig. 5(a). Measured horizontal displacements associated with the Chi-Chi earthquake, where the main shock is shown as a star and station locations are indicated by triangles. Surface rupture is indicated by a thick line. Displacement of a single station is shown by a vector and corresponding 1 -sigma error ellipse.

Goad and Yang, 1997; Yang and Lo, 2000). Since highprecision orbits of the GPS satellites could be obtained from IGS data centers with an estimated coordinate RMS of 510 cm (Neilan et al., 1997; Beutler et al., 1999), in this study we used fixed IGS precise ephemeris. To remove the first-order ionospheric effect, the so-called ionosphere-free phase combination was formed (Beutler et al., 1996). The modified Hopfield model (Goad and Goodman, 1974) was used to give the nominal tropospheric delays on GPS phase measurements. Additionally, one correction parameter per station every 4 hours was estimated to absorb unmodelled tropospheric errors. A summary of our data reduction strategy is given in Table 1. We primarily used the Bernese 4.0 software, developed at the University of Berne, Switzerland, as our fundamental tool for GPS data analysis (Beutler et al., 1996).

The network adjustment was carried out in two steps. In the first step only data in the first group, i.e., daily measurements from the global and regional tracking networks, were analyzed. The coordinates and velocities of the IGS stations were stochastically constrained to their a priori values defined in the ITRF94, with the associated coordinate and velocity standard deviations defined in the same frame (Boucher et al., 1996). Given the high data density and sufficient elapse time, reliable coordinate and velocity estimates defined in the ITRF94 at epoch 1997.0 (approximately the mid-point of the data span) for the regional tracking stations were determined (Yang et al., 1999). The resultant millimeter-level coordinate and velocity standard deviations for the regional tracking stations are summarized in Table 2.

The coordinates of the 726 first- and second-order control stations were determined in the second step, where only the GPS data in the second group were analyzed. The stochastic information regarding the regional tracking stations obtained from the first step, i.e., the ITRF94 velocities and coordinates and their associated standard deviations listed in Table 2, was applied in the second step. The coordinate variation rates of the first- and second-order stations, however, were not estimated, as the number of occupations per station was not sufficient for us to recover reliable velocity information.

The resultant 1997.0 TWD97 station coordinates, including the regional tracking stations, were measured with accuracies ranging from 0.1 to 3.0 cm in the east-west and northsouth directions, and 0.1 to 9.7 cm in the vertical direction for most stations. The precision of the vertical component was noticeably worse than that of the horizontal components for the 726 first- and second-order points, which was mainly caused by the insufficient length of observation sessions (only $4-5 \mathrm{hr}$ ) for effective decorrelation of the vertical component with other error sources (Beutler et al., 1989; Kuang et al., 1996; Yang et al., 1999).

The collection of post-earthquake data at the TWD97 firstand second-order stations located in the central Taiwan area was completed within one month of the devastating event. Each station was occupied at least twice with field sessions of $4-5 \mathrm{hr}$ in length. The data were then combined with continuously recorded regional tracking data covering 24 hours on the day of each observation session. To identify seismic effects associated with the earthquake on the regional tracking stations, we examined several long baselines connecting


Fig. 5(b). Measured horizontal displacements associated with the Chi-Chi earthquake (near field).
the distant IGS site GUAM with the regional tracking stations for a period of 80 days (day 230-309). Two distinct cases are discussed here. Figure 3 displays the daily solutions of baseline length ( $\sim 2688 \mathrm{~km}$ ) for the GUAM-FLNM (located in the east coast of Taiwan Island) baseline. The earthquake occurred at 17:47 on day 263 (GMT), therefore the solution for that day was obtained using only data collected prior to the epoch. FLNM experienced an apparent co-seismic motion of the order of 30 centimeters, the largest among all continuous tracking stations. Nevertheless, no evidence of pre- or post-seismic motions can be definitely identified in Fig. 3. Figure 4 shows the daily solutions of baseline length ( $\sim 3000 \mathrm{~km}$ ) for the GUAM-KMNM (located on Kinman Island across Taiwan Strait) baseline. A secular decrease in the distance due to tectonic convergence can be observed from Fig. 4; however, different from the previous case, in this line we cannot positively single out any seismic signals associated with the earthquake.

To compute the post-earthquake coordinates of the TWD97 stations, again we adopted the same data processing strategy listed in Table 1. In the network adjustment, we only minimally constrained the position of the KMNM tracking station, where no definite seismic motion is detected (see Fig. 4). To accommodate secular crustal movements between the reference epoch at 1 January 1997 (1997.0) and


Fig. 6. Measured vertical displacements associated with the Chi-Chi earthquake, where the main shock is shown as a star and station locations are indicated by triangles. Surface rupture is indicated by a thick line. Displacement of a single station is shown by a vector and corresponding 1 -sigma error bar.
the earthquake epoch at 21 September 1999, annual station velocities for the TWD97 stations were interpolated from the velocity field given in Fig. 1 (Yu et al., 1997). Since the relative inter-seismic motions for the sampled stations are well known, there is little error introduced by interpolating these motions. The final surface displacement field is sampled at 285 GPS-derived vectors measured with 1-sigma errors ranging from 0.6 to 3.9 cm in the east-west direction, 0.6 to 3.4 cm in the north-south direction, and 1.0 to 11.8 cm in the vertical direction. The final displacement vectors and their associated sigma values are presented in Table 3.

## 3. Analysis

Figures 5(a), 5(b) and 6 illustrate the spatial distribution of the horizontal and vertical co-seismic displacement vectors. In the figures, the thick black line indicates the surface rupture produced by the earthquake and the epicenter is shown as a large star near the southern end of the rupture zone. The relative motion direction between GPS sites across the fault is northwestward in general, which is consistent with the relative motion of the Philippine Sea plate. The surface rupture extends for about 75 km along the north-south trending Chelungpu fault, but at the northern end of the fault, the rup-
ture extends towards the northeast for an additional 10 km in a major sub-event and splinters into complex branches (Ma et al., 1999). Individual GPS stations within 15 km east of the fault (the hanging-wall) generally are uplifted by $0.2-$ 4 m and displaced northwestward by $1.5-9 \mathrm{~m}$. The largest horizontal and vertical offsets are placed at the northern end of the ruptured Chelungpu fault. The GPS stations situated further to the east of the rupture zone all the way to the east coast generally are subsided by up to 0.8 m , and displaced northwestward by $0.1-3 \mathrm{~m}$. To the west of the fault (the footwall), in general, individual stations are subsided by up to 0.5 m and displaced southeastward by up to 1.2 m . It is also interesting to note that after the earthquake liquefactionrelated ground failures have been reported in regions near the western coastline, which can be identified with the erratically large subsidence quantities up to 0.5 m in the corresponding area (see Fig. 6).

## 4. Conclusion

Damaging earthquakes have previously occurred in western Taiwan several times this century: in 1904 (Tou-Liu $\mathrm{M}=6.1$ ), 1906 (Mei-Shan $\mathrm{M}=7.1$ ), 1916-17 (NanTou $\mathrm{M}=6.8$ ), 1935 (Hsin-Chu Tai-Chun $\mathrm{M}=7.1$ ), 1941 (Chung-Pu M = 7.1), 1946 (Hsin-Hua $M=6.1$ ), and 1964 (Bai-Ho $\mathrm{M}=6.3$ ). Although several of these earthquakes produced vertical slips of the order of 1 m (Cheng et al., 1999), none has released as much seismic energy as the ChiChi earthquake. As Taiwan's strongest earthquake of the century, this $\mathrm{M}_{\mathrm{w}}=7.6$ earthquake has produced spectacular surface ruptures among the largest fault movements ever observed from modern earthquakes (Ma et al., 1999).

The co-seismic displacements of the Chi-Chi earthquake were accurately determined in this study with geodetic data recorded by the dense Taiwanese GPS network before and after the earthquake. This paper describes the collection and analysis of the GPS data, and creates a comprehensive data set for the displacement field. The abundant information contained in the data set could be further inverted to determine the rupture geometry and slip distribution associated with the Chi-Chi earthquake in future geophysical studies.

Acknowledgments. The authors are grateful to the Ministry of the Interior, R.O.C. for financially supporting this research and to the Bureau of Land Survey, R.O.C. for its contribution in the collection of post-earthquake GPS data. We specially thank Dr. Kosuke

Heki and Dr. Zheng-Kang Shen for their important suggestions and constructive criticism.

## References

Beutler, G., I. Bauersima, B. Botton, W. Gurtner, M. Rothacher, and T. Schildknecht, Accuracy and biases in the geodetic application of the Global Positioning System, Manuscr. Geod., 14, 28-35, 1989.
Beutler, G., E. Brockmann, S. Fankhauser, W. Gurtner, J. Johnson, L. Mervart, M. Rothacher, S. Schaer, T. Springer, and R. Weber, Bernese GPS Software Version 4.0, University of Berne, Berne, Switzerland, 1996.
Beutler, M. Rothacher, S. Schaer, T. Springer, J. Kouba, and R. E. Neilan, The international GPS service (IGS): an interdisciplinary service in support of earth sciences, Adv. Space Res., 23, 631-653, 1999.
Boucher, C., Z. Altamimi, M. Feissel, and P. Sillard, Results and analysis of the ITRF94, IERS Technical Note 20, 206 pp., Observatoire de Paris, Paris, France, 1996.
Cheng, S.-N, Y.-T. Yeh, M.-T. Hsu, and T.-C. Shih, Photo album of ten disastrous earthquakes in Taiwan, CWB-9-1999-002-9, Central Weather Bureau and the Institute of Earth Sciences, Academia Sinica, Taiwan, R.O.C., 289 pp., 1999.

DeMets, C., R. G. Gordon, D. F. Argus, and S. Stein, Current plate motions, Geophys. J. Int., 101, 425-478, 1990.
Goad, C. C. and L. Goodman, A modified Hopfield tropospheric refraction correction model, Fall Annual Meeting of the Amer. Geophys. U., San Francisco, CA, U.S.A., Dec. 12-17, 1974.
Goad, C. C. and M. Yang, A new approach to precision airborne GPS positioning for photogrammetry, Photogrammetric Eng. \& Remote Sensing, 63, 1067-1077, 1997.
Goad, C. C., D. A. G.-Brzezinska, and M. Yang, Determination of highprecision GPS orbits using triple differencing technique, J. Geod., 70, 655-662, 1996.
Kuang, D., B. E. Schutz, and M. M. Watkins, On the structure of geometric positioning in GPS measurements, J. Geod., 71, 35-43, 1996.
Ma, K.-F., C.-T. Lee, and Y.-B. Tsai, The Chi-Chi, Taiwan earthquake: large surface displacements on an island thrust fault, Eos Trans. AGU, 80, 608-611, 1999.
Neilan, R. E., J. F. Zumberge, G. Beutler, and J. Kouba, The international GPS service: a global resource for GPS applications and research, in Proc. ION GPS-97, Sept. 16-19, Kansas City, MO, U.S.A., pp. 883-889, 1997.

Seno, T., S. Stein, and A. E. Gripp, A model for the motion of the Philippine Sea Plate consistent with NUVEL-1 and geological data, J. Geophys. Res., 98(B10), 17,941-17,948, 1993.
Yang, M. and C. F. Lo, Real-time kinematic GPS positioning for centimeter level ocean surface monitoring, Proc. Natl. Sci. Counc. ROC(A), 24, 7985, 2000.
Yang, M., C.-L. Tseng, J.-Y. Yu, and K.-H. Chen, Adjustment and accuracy analysis of Taiwan first-order GPS control network, J. Cadastral Surv., 18(2), 1-27, 1999 (in Chinese).
Yu, S.-B., H.-Y. Chen, and L.-C. Kuo, Velocity field of GPS stations in the Taiwan area, Tectonophys., 274, 41-59, 1997.
Yu, S.-B., L.-C. Kuo, R. S. Punongbayan, and E. G. Ramos, GPS observation of crustal deformation in the Taiwan-Luzon region, Geophys. Res. Lett., 26, 923-926, 1999.

