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Probability distribution of orbital crossing times in a protoplanetary system
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Long term behavior of five protoplanets was studied under the same conditions as those used in Chambers
et al. (1996). One major difference was the number of calculations carried out for one parameter set of initial
orbital distance. We reconfirmed their result for the orbital crossing times among five protoplanets starting from
circular and co-planar orbits with an equal distance of their semi major axes. For each distance, the distribution
of orbital crossing times was calculated from 500 sets of azimuthal positions of protoplanets randomly chosen.
The distribution of the times around the average value resembles each other for almost all orbital distance cases.
Based on a statistical certification we conclude that the fluctuations in orbital crossing times take “the log normal
function”. The dispersion of the log normal distribution function is equal to 0.2. This means that 70% of the
events of orbital crossing occurs in the range between 10−0.2 times earlier and 100.2 times later than the average
orbital crossing time.
Key words: Protoplanet, orbital crossing, planetary formation.

1. Introduction
In the last decade we have made major advances in stud-

ies of planetary formation processes. This is especially true
in terms of the accumulation of small planetesimals; we
now have the key to shorten time to build a protoplanet.
This is “Run away growth” originally proposed byWetherill
and Stewart (1989). In the swarm of planetesimals, energy
equipartition between bodies are established. This statis-
tical mechanism determines the average random velocities
as a decreasing function of mass of planetesimals. This is
well known as “dynamical friction” in the swarm (Stewart
and Wetherill, 1988). Under the effect of the dynamical
friction, the random velocity of protoplanets is suppressed
to be much smaller than that of field planetesimals (Stew-
art and Wetherill, 1988). In contrast, the random velocity
of planetesimal is almost equal to the escape velocity from
one planetesimal. As a result, the relative velocity between
a large protoplanet and a small-field planetesimal is much
smaller than the escape velocity from the protoplanet and
the ratio between these two velocities, which is called the
“Safronov parameter” (Safronov, 1969), becomes larger as
the protoplanet grows. This increase in Savronov parame-
ter enhances the collisional cross section of protoplanets to
planetesimals greatly, which is the run-away growth stage
(Wetherill and Stewart, 1989).
Wetherill and Stewart (1989) were the first to propose the

runaway growth, though they treated the swarm of planetes-
imal as “particles in a box”, neglecting the effect of strong
external solar gravity. Ida (1990) employed a sophisticated
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theoretical formulation to treat gravitational scattering in
the solar gravitational field which he called “Hill approxi-
mation” (Petit and Henon, 1987; Nakazawa and Ida, 1988),
and confirmed that dynamical friction actually works, and
the runaway growth as well, in a swarm of planetesimal
revolving around the Sun. Ida estimates the accumulation
time of moon sized protoplanets in the earth region at less
than one million years, though some questions remain, such
as “When does the runaway growth finish?”, “How are the
protoplanets distributed around the Sun after the process
ceased?”.
Kokubo and Ida (1998) were the first to study on the

spacial distribution among planetesimal and protoplanets
during the accumulation process. They carried out direct
orbital calculations, which is called “N-body simulations”,
on the swarm of planetesimals. From their results, about
ten protoplanets with about Martian mass were produced in
the region of present-day Venus, Earth, and Mars orbits. In
addition, the orbital distance between each protoplanet is
almost equal. This distance is about 10 mutual hill radius.
Protoplanets are arranged to revolve in circular orbits at an
equal distance in semi major axes. This is a condition of
protoplanets just after the runaway growth stage.
Chambers et al. (1996) studied the behavior of protoplan-

ets starting from the initial condition of protoplanets. They
put five or more Martian-sized protoplanets in the present-
day Venus, Earth, and Mars region. Initially the radial dis-
tance between each orbit was set to be equal. The dis-
tance was an important parameter in their study, as it is
in our study. They then started orbital calculations. Dur-
ing many orbital revolutions, protoplanets interact gravita-
tionally with each other and increase their eccentricities.
When a protoplanet reches an orbital eccentricity that is
large enough to approach an adjoining protoplanet, the pair
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of protoplanets can encounter each other in their mutual Hill
sphere (Petit and Henon, 1987; Nakazawa and Ida, 1988).
Chambers et al. called this event “orbital crossing”. Their
aim was to determine time needed for this orbital crossing
event as a function of orbital distance.
They put a parameter � to represent the initial orbital

distance between each planet. They put five planets in five
circular orbits around the sun. The difference in the semi-
major axis between adjoining orbits was set to � times Hill
radius, which is the radius of the mutual Hill sphere.
They pursued numerically the orbital evolution of plan-

ets with changing � from 3.6 to 8.0, for every 0.2. For each
value of �, five cases of initial azimuthal conditions among
five planets were examined. The most important results of
the Chambers et al. (1996) study are that the orbital crossing
time depends on the orbital distance � exponentially. Ac-
tually, from figure 1 in their work or Fig. 2(c) in this paper,
though a fitting line show some considerable discrepancies
from data points, we can recognize that the orbital crossing
times plotted logarithmically shows good linear correlation
with �.
Even if the initial orbital distance � is equal, the orbital

crossing time becomes different owing to the difference in
the initial azimuthal positions. Chambers et al. (1996) re-
ported that we have about one order of magnitude difference
between maximum and minimum orbital crossing time for
identical values of �, in some cases.
The orbital crossing time depends strongly on the ini-

tial orbital distance. Namely, unity increment in � results
in about one order of magnitude elongation of the orbital
crossing time. This result has a great importance on the
planetary formation process. Because protoplanets were
formed with distances about 10 Hill radius (Kokubo and
Ida, 1998), adopting their results to this case, the orbital
crossing time was determined to be over one billion years.
This long interval necessary for orbital crossing among
protoplanets could make the time for planetary formation
longer than the life time of protoplanetary nebula gas which
is about several million years (Strom et al., 1993; Strom,
1995). This raises some serious difficulties with the the-
ory of Jovian planets formation (e.g. Mizuno et al., 1978;
Ikoma et al., 2000). Owing to its importance to the study
of planetary formation theories, the relation of Chambers et
al. has been studied by many authors after it was proposed.
One extension of Chambers law with breaking the initial

condition that all protoplanets have zero eccentricity was at-
tempted by Yoshinaga et al. (1999). They initially pursued
orbital evolution of protoplanets which revolve around the
sun along eccentric orbits and suggested that initial eccen-
tricities make the orbital crossing time shorter than those
given by the Chambers law.
A strong perturbing source, namely Jupiter could have

a large effect on the evolution of protoplanets around the
present orbit of the Earth. Therefore if the Jovian planet is
accumulated earlier than terrestrial planets, we have to de-
velop some new expressions on orbital crossing times. Be-
cause Chambers et al. did not take Jupiter into account, Ito
and Tanikawa (1999) considered a new relation between ini-
tial orbital distance and orbital crossing time under the con-
dition that there are already giant planets, namely Jupiter

and Saturn. They presented two important results: one is
that strong gravitational perturbation from the giant plan-
ets effected a secular evolution on the eccentricities of pro-
toplanets and made the orbital crossing time shorter than
those in the case of no giant planets, the second is that a pro-
toplanet, especially the protoplanet revolving on the most
outer orbit, could make an orbital crossing not only with
other protoplanets but also with Jupiter. So the relation be-
tween orbital distance and the orbital crossing time should
be changed in the specific case that the orbital distance is
large enough to make the most outer protoplanet approach
the giant planet easily.
As mentioned before planetary accretion processes have

a strong relation to the random velocity of protoplanets and
planetesimals. The random velocity of planetesimals and
protoplanets are determined by the gravitational scattering
between them and some kinds of dissipative forces. The
gas drag force from protoplanetary nebula is the first candi-
date for the dissipative force on protoplanets (Adachi et al.,
1978). Although Chambers et al. supposed the protoplane-
tary system in vacuum, it is a straightforward extension of
Chambers et al. to consider the protoplanetary system in the
gas nebula.
Iwasaki et al. (2001) studied the orbital crossing time

for the protoplanetary systems using the same approach as
Chambers et al. except that the former consider protoplan-
ets revolving around the sun under the gas drag effects from
protoplanetary nebula (e.g. Adachi et al., 1976). They stud-
ied the behavior of protoplanets under a type of gas drag
force that is proportional to square of the random velocity,
namely the Stokes-type gas drag. Gas drag force suppresses
the eccentricities of protoplanets, as such, protoplanets can
hardly approach another one revolving on the adjoining or-
bit. Iwasaki et al. (2001) presented a critical orbital dis-
tance �c as a function of nebular gas densities that deter-
mine the strength of the gas drag force. In the case that the
orbital distance � is smaller than this critical value �c, the
protoplanet system has the orbital crossing event during a
length of time which is almost equal to the orbital crossing
time given in Chambers et al. (1996). On the other hand,
if the orbital distance exceeds the critical distance, the pro-
toplanet system does not have any orbital crossing event,
at least during a period which is one hundred times longer
than the orbital crossing time for the gas-free case.
In the same way, Iwasaki et al. (2002) studied the evolu-

tion of protoplanets under the effect of another type of gas
drag force that is expressed to be proportional linearly to
the random velocity. They also presented the critical orbital
distance�c in this case. For both cases of gas drag force the
critical orbital distance �c is determined from three pieces
of information: the first is the intensity of the drag force, the
second is orbital crossing time in the gas-free case, the third
is stirring rate of random velocity given from three bodies
using the distant encounter formulation by Hasegawa and
Nakazawa (1990), which is also formulated for the gas-free
case. This formula is very useful to study the orbital insta-
bilities among protoplanets in nebula gas.
These studies focused on modifying of the Chambers et

al. (1996) relation taking into account some additional fac-
tors which should be considered in actual planetary for-
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mation processes. However, the most important question,
‘Why does the Chambers relation exist?’ has never been
answered. The relation is a purely empirical law obtained
from numerical experiments under some restricted initial
conditions, namely zero eccentricities and equal orbital dis-
tance. So, every time we want to break the restriction on
the initial conditions we have to again perform numerous
orbital calculations on the protoplanetary system, as did
Chambers et al.
In other words, we need a theoretical model on the or-

bital crossing time which can readily explain the Cham-
bers relation under the condition that Chambers put in their
work. This model would also allow us to estimate the or-
bital crossing time in other cases than that of Chambers et
al. (1996). We have already started a systematic study on
the evolution of protoplanets. The study starts with a recon-
firmation of Chambers relation. The final goal is to obtain
a theoretical model, as mentioned above. This paper is the
first report based on this study.
The aim of this paper is twofold: (1) reconfirmation

of the Chambers relation, (2) determination of distribution
function of orbital crossing times, not only the average,
which is our main purpose. Figure 1 in Chambers et al.
(1996) suggests that orbital crossing times for identical ini-
tial orbital distance possibly scatter in one order of mag-
nitude range owing to the different initial azimuthal posi-
tions of protoplanets. If so, it is very important to con-
firm the distribution of orbital crossing times in one ensem-
ble for which an initial orbital distance is assigned in order
to carry out discussions on the possible accumulation time
among protoplanets. In addition, our study on the distri-
bution may provide information on the elemental processes
to produce the interesting Chambers relation on the average
value among the ensembles with different orbital distance
�.
We therefore start with a reconfirmation of Chambers

law. We explain our numerical simulation in brief in Sec-
tion 2. This is almost same as that in Chambers et al. (1996).
One different point is the number of trial runs executed for
one parameter �. We carried out 500 runs for each param-
eter �. The reason why we choose this number of sam-
ples for one ensemble is explained in Appendix with a short
explanation of a method in statistics called “Kolmogorov
Smilnov test”. In Section 3 we present our numerical re-
sults. A comparison between our results and those in Cham-
bers et al. are presented in detail. We can see that both sets
of results fit well to each other. Our main result is that the
distribution of orbital crossing time is deduced from a num-
ber of numerical results. In Section 4 we summarize our
results and give the conclusions. Discussions are presented
in Section 5.

2. Basic Equations and Initial Conditions
The basic equations in this study are the same to those

in Chambers et al. (1996). We consider five protoplanets
revolving around the Sun. We will put them in sequential
number, beginning with the one nearest to the Sun.
Let us suppose the first planet, namely the planet with its

orbit nearest to the Sun, has a semi-major axis a0, initially.
Hereafter we choose a0 as a unit of length. For other units,

we choose mass of the Sun, M�, as the unit of mass, and we
set the unit of time to make Kepler frequency �0 defined as

�0 =
√
GM�
a30

(1)

to be equal to unity.
Using the units mentioned above, the basic equations for

the five planets are written as

d2ri
dt2

= − ri
r3i

+
5∑

j�=i

m
rj − ri

∣∣rj − ri
∣∣3

(2)

where ri is a vector from the center of the Sun to the position
of the i-th planet and m is mass of one planet. In this
equation we neglect the recoil term to the Sun from five
planets because their mass is much smaller than unity. In
this study the mass of each planet is equal to each other
and we choose them to be equal to that in Chambers et
al. (1996), which is about equal to the mass of Mercury.
Because we choose the mass of the Sun as the unit of mass,
we set m = 1 × 10−7.
As same as the mass of protoplanets, we choose the ini-

tial conditions among them to be the same manner as in
Chambers et al. (1996). The semi-major axis of each planet
is initially given in the following manner:

ai+1 = ai + �

(
2m

3

)1/3 ai+1 + ai
2

(3)

In this equation ai represents the semi-major axis of the
i-th planet. As already mentioned, the first planet is the
innermost one, and its semi-major axis is chosen as a unit
in this study. So, a1 = 1. From this condition and Eq. (3)
we can obtain the semi-major axis from second to fifth
planets. In Eq. (3), � is an important parameter in this
study. We will examine the behavior of planets, placing
different initial conditions on �. We set it in the range from
4.0 to 8.0.
All planets initially placed in a co-planer and circular

Kepler orbit. So, the initial eccentricities and inclinations
are given as

ei = ii = 0. (4)

Because all planets are in co-planer orbits, the inclinations
of planets are always equal to zero in this work. We there-
fore consider 2-D problem only.
As we consider the 2-D problem, we need to specify

four orbital elements to determine the initial conditions on
each planet. Semi-major axis and eccentricity are given in
Eqs. (3) and (4). The argument of perihelion and time of
perihelion passage is well known from other orbital ele-
ments, though initial argument of perihelion can be set at
an arbitrary value, because all planets are in circular orbits.
So we put them as

�i = 0. (5)

It is more convenient to give the last initial condition as
the true anomaly of each planet than as the time of peri-
helion passage. Here we introduce cylindrical coordinates
centered at the position of the Sun, and we represent radial
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and azimuthal components of the i-th planet as ri and θi,
respectively. As already mentioned, all planets are in circu-
lar orbits initially. Therefore, the radial coordinate of i-th
planet is equal to it’s semi-major axis. The azimuthal com-
ponent of the i-th planet is chosen randomly between zero
and 2π .
The parameter � in Eq. (3) is important in this study. We

change it from 4.0 to 8.0 at 0.2 intervals. For each case of
� we calculate 500 trial runs of the orbital evolution of the
five planets and make one ensemble. In each run, different
sets of five random numbers are generated to assign the
azimuthal components of five planets.
We are now ready for numerical integration. We use the

8-th order Runge-Kutta method with an algorithm for inte-
gration of particles’ motion in strong external Solar gravity
field (Emori et al., 1994).
We pursue the orbital motion of five planets until a pair

among them approaches each other. When the distance
between two planets becomes shorter than the two body Hill
radius, h, defined as

h =
(
2m

3

)1/3

(6)

(Nakazawa and Ida, 1988), we stop the calculation and
record the time as the crossing time with the value of the
parameter �. For one trial run, one orbital crossing time
is recorded. Because we execute 500 trial runs for one
value of �, 500 crossing times is obtained for one case
of �. Using these 500 data points, the average crossing
time for � will be presented as in Chambers et al. (1996).
In addition, we evaluate the distribution of crossing time
around the average value.

3. Numerical Results
We first present the time evolution of the orbits for five

protoplanets in a case of � equal to 6.0. In Fig. 1 we
present the semi-major axis ai and eccentricity ei for each
planet. Semi-major axes are expressed in Fig. 1(a), the
eccentricities are expressed as the distance of the perihelion
and aphelion in Fig. 1(b).
We plot (ai − 1)/h in Fig. 1(a) for five planets given

their initial semi-major axis separated every �(= 6.0) as
functions of time. They revolved around the Sun for about
130,000 times. It takes 2π to revolve around the Sun at
position of r = 1 in our units of time and length. After such
a long period, a pair of planets, actually the second and third
planet in this case, approached each other and the distance
between them became shorter than their mutual hill radius
defined in Eq. (6). We then recorded the orbital crossing
time equal to 1.276 × 106.
Figure 1(a) reveals that the semi major axis of each planet

keeps its initial value just before the crossing time. Al-
though semi-major axes of all planets show fluctuations in
the last 5% of total crossing time, the deviations are smaller
than the initial orbital separation �, which is equal to 6
in the present case. Therefore, we conclude that the or-
bital crossing between the second and third planets was not
brought about by fluctuations in their semi-major axes.
The reason of orbital crossing is well represented in

Fig. 1(b). In this figure we plot two values namely (ai(1 +

Fig. 1. Orbital evolution of five protoplanets. Mass of a planet and initial
distance of semi-major axis between each planet are 1.0e−7 and 6.0,
respectively. In panel (a) semi-major axis of each planet is drawn. In
panel (b) radial distance of the perihelion and the aphelion of each planet
are presented. Horizontal axis is time in both panels. In horizontal
axis time is presented in the unit of 2π , which is equal to 1 year if the
reference orbit is chosen as a0 = 1 [AU].

ei) − 1)/h and (ai(1 − ei) − 1)/h), where h is the mutual
Hill radius defined in Eq. (6), for each planet as functions
of time. The former is the radial distance between the ori-
gin of coordinates and the perihelion of i-th planet, and the
latter is that of aphelion. So the half of the width between
two lines is equal to the eccentricity of each planet. Con-
trary to the evolution of semi-major axes, the eccentricities
of planets increased from an initial value zero continuously
with time, though the rates of increase enlarge abruptly at
95% of the total crossing time. In the last 5% of crossing
time, the eccentricities of planets grow steeply. As a result,
a perihelion of a planet moves inward and steps over the
aphelion of its inner neighboring planet. In the case of this
figure, the two orbits of the second and third planet crosses
each other owing to the fact that their eccentricities grow
large enough to compensate their initial radial distance �.
Iwasaki et al. (2001) have already reported a gradual in-

crease in eccentricities and a sudden jump in a short period
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Fig. 2. In panel (a), averaged orbital crossing time obtained from 500 ensembles for each � is presented with dispersion. Average value and dispersion
are defined in Eqs. (7) and (8), respectively. Average value is presented with a circle, and dispersion corresponds to half the length of the vertical bar
drawn on the circle. In panel (b), the dispersion is presented as a function of �. For comparison, in panel (c) we redraw results presented in Chambers
et al. (1996) for the case that five protoplanets each of them has 1 × 10−7M� as same as this work.

just before the orbital crossing time. Our results are on com-
mon ground about this point.
For one parameter � we carried out 500 trial runs with

changing initial azimuthal angle for each planet. In each
run we obtain the orbital crossing time in a same manner
explained for Fig. 1. Therefore, we obtain 500 different
orbital crossing times for one parameter �.
In Fig. 2(a) we represent average and dispersion calcu-

lated from 500 orbital crossing times for each value of �

from 4.0 to 8.0 every 0.2 interval. An average of orbital
crossing time is defined as

〈log(tc)〉� = 1

500

500∑

k=1

log(tc(�; k)) (7)

where tc(�; k) is an orbital crossing time obtained in the
k-th trial run in the ensemble for the case of orbital distance
parameter �. After the average was obtained, we obtain the
dispersion for the case of � as

σ(�) =
√√√√ 1

500

500∑

k=1

(log(tc(�; k)) − 〈log(tc)〉�)2. (8)

In Fig. 2, mean values of orbital crossing time 〈log(tc)〉�
is plotted (open circles) and σ(�) are represented by half
length of each short line stretching upward and downward
from each average value point.
We re-confirm the results shown in figure 2 of Chambers

et al. (1997) from our Fig. 2(a) and (c). As they pointed out,
the average values are well approximated by a linear line on
this plane. Therefore, the average of orbital crossing time

depends roughly on the parameter � exponentially. Not
only this characteristic feature of average orbital crossing
time, but also other details shown on the figure, for example
positions and magnitudes of many bumps show good agree-
ment to the result in Chambers et al. Iwasaki et al. (2001)
studied the orbital crossing time in the case that protoplan-
ets revolve in the gaseous nebula, however, they present
the orbital crossing time in the gas-free case for discussion.
Comparing their figure (figure 2 in Iwasaki et al. (2001))
provides re-confirmation of the results in Chambers et al.

The number of the trial runs for the initial azimuthal
positions of five protoplanets in both Chambers et al. and
Iwasaki et al. is equal to five. So, we found that five runs
for each case of � is enough to obtain the average value of
orbital crossing time. This fact suggests that the distribution
functions of orbital crossing time in every case of parameter
� may have one sharp peak around each average.
As seen in Fig. 2(a), σ(�) are almost equal to each other.

We draw σ(�) as a function of � in Fig. 2(b). Dispersions
of orbital crossing times are equal to 0.2 as long as � is in
the range of 4.0 to 5.0. It begins fluctuating as � becomes
lower than 5.0. At last σ(�) distributes between 0.15 and
0.25 in the range of � between 6.0 and 8.0. Looking at
the average orbital crossing times in Fig. 2(a), we recog-
nize that 〈log(tc)〉� can be approximated very well by a line
in the range of � smaller than 5.0. Though, as with the
fluctuation in the case of σ(�), in the range of � greater
than 5.0, 〈log(tc)〉� begins to deviate from the fitting line.
Furthermore, it becomes difficult to approximate the aver-
ages of orbital crossing time by one line in the range of �

larger than 6.0. To elusidate these behaviors of 〈log(tc)〉�
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Fig. 3. Comparisons between three distribution functions of orbital cross-
ing time. (a) The distribution for the case of � equal to 4, 5, and 6 are
presented in a style of cumulative distribution function. (b) The three
distributions are presented too. In this panel, the distribution around
mean value of each case is presented. To do so, each distribution is
presented for arguments based on the average orbital crossing time.

and σ(�), we have to pay attention to the distribution of the
orbital crossing time around 〈log(tc)〉� for each value of �.

As already shown, the dispersion of the orbital crossing
time σ(�) is almost equal to 0.2. If we assume that the
distribution of orbital crossing times can be approximated
well by the Gaussian distribution function—the validity of
this assumption will be discussed later—we can roughly es-
timate the degree of uncertainties of the orbital crossing
time. Namely, the dispersion being equal to 0.2 means
that about half of the orbital crossing times distribute in
the range of factor 2.25, namely between 0.63(10−0.2) and
1.6(100.2) times the average value. More than over about
95% of orbital crossing times distribute in the range of 6.3,
namely between 0.40(10−0.4) and 2.5(100.4) times the av-
erage value. We had an impression that the dispersion of
orbital crossing times could be equal to about one order of
magnitude from results in Chambers et al. (1997). How-
ever, from this result, we consider that the orbital crossing
times may distribute in more narrow width around the aver-
age value. To confirm this distribution of the orbital cross-
ing times, let us examine our results more precisely.
Before we present the distribution of orbital crossing

times let us explain how we display the distribution. We
introduce the probability distribution function f to express
the distribution of the orbital crossing time. The proba-
bility that we find orbit crossing time between log(tc) and
log(tc) + d log(tc) is expressed as f (log(tc); �) d log(tc).
The distribution function f is normalized as

∫ ∞

−∞
f (x; �) dx = 1 (9)

where we use x instead of log(tc) as a variable for integra-
tion. The parameter � as a argument of f represents that
this distribution function is given for the case of orbital sep-
aration equal to � times the mutual Hill radius.
We will use another expression of the distribution in

many cases. It is called the cumulative distribution func-
tion and is defined as

F(log(tc); �) =
∫ log(tc)

−∞
f (x; �) dx . (10)

The cumulative fraction tends to zero when log(tc) becomes
smaller and smaller, and unity when log(tc) becomes infi-
nite.
In Fig. 3(a) we show the distribution of 500 orbital cross-

ing times for each case of � equal to 4.0, 5.0, or 6.0 in the
form of cumulative distribution functions F . The horizontal
axis is orbital crossing time, namely log(tc), and the vertical
axis is F(log(tc); �). We realize that the cumulative distri-
bution changes from zero to unity gradually. The width in
which it changes is almost equal to or a little greater than
unity in the unit of the horizontal axis. This means that or-
bital crossing times for a value of � distribute with one or-
der of magnitude width around the average value, although
the gradient of cumulative distribution function, which is
equal to f (log(tc); �), is not constant. Obviously, for all
cases of �, the gradient is steepest at the center of the distri-
bution. This means that the distribution of the orbital cross-
ing time f (log(tc); �) has a sharp peak around an average
value 〈log(tc)〉�. As already mentioned, the dispersion of
the distribution is almost equal to 0.2. Therefore, the half
width of the distribution is smaller than unity.
Looking at Fig. 3(a) we realize that each distribution

has nearly same shape, excepting the difference between
average values of crossing times 〈log(tc)〉�. To compare
distributions around the average value 〈log(tc)〉� we redraw
the cumulative distribution with offset argument log(tc) −
〈log(tc)〉� in Fig. 3(b). This confirms that the distribution
functions resemble to each other.
A quantitative comparison between two ensembles on

the degree of similarity are possible by the usage of Kol-
mogorov Smirnov test. The test determines how two en-
sembles are similar by presenting a numerical value of prob-
abilities. We already have a quantitative comparison us-
ing this test on two ensembles, each of which is composed
from 500 samples. Details on this test are presented in Ap-
pendix. Based these comparisons we draw the following
conclusions:

1) The method may give probabilities with one order of
magnitude uncertainties.
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Table 1. Probabilities obtained by Kolmogorov Smirnov test comparing
ensembles for � = 4.0, 5.0, and 6.0.

� 5.0 6.0
4.0 4.60e−1 4.16e−2
5.0 — 4.76e−3

4

5

6

7

8

4 5 6 7 8

Fig. 4. Comparisons between two distribution functions of orbital crossing
time around mean value of each. Result of each pair is presented by
open or closed circle plotted on corresponding point on �-� plane.

2) In the case where the number of samples in one en-
semble is equal to 500, we can not detect a small dif-
ference in two ensembles. If the probability is greater
than 1/100, the two distributions are considered to be
the same with a precision that the difference is smaller
than 30% of the difference in sigma for two Gaussian
distribution functions.

3) When the Kolmogorov Smirnov test gives the proba-
bility smaller than 1/100 and larger than 1/1000, two
distributions may be different. Though, taking into ac-
count the uncertainties of given probability we can not
determine completely that they are different distribu-
tion.

4) When the Kolmogorov Smirnov test gives the proba-
bility smaller than 1/1000, we can determine that the
two distributions are different.

We calculated probabilities using the Kolmogorov
Smirnov test on the three cumulative distributions in
Fig. 3(b). The probabilities are shown in Table 1.
From the results in Table 1 and conclusions in Appendix

we evaluate the degree of similarity between the distribution
functions of the orbital crossing times around their average
value, namely distribution of log(tc) − 〈log(tc)〉� for differ-
ent values of �.
The distributions of orbital crossing time for � equal to

4.0 and 5.0 are the same, because the probability is greater
than 1/100. The distributions of � equal to 4.0 and 6.0 are
also the same.

The distributions of orbital crossing time for � equal to
5.0 and 6.0 may be different, because the probability is
smaller than 1/100. However, we can not exclude com-
pletely the possibility that they are same.
In the same manner we compare the orbital crossing

times for all cases of � we calculated. To show the prob-
abilities given by the Kolmogorov Smirnov test on the en-
sembles for two parameters, such as �1 and �2, we adopt
the following approach. If the probability is greater than
0.01 we plot an open circle on the position of (�1, �2). This
open circle means that the difference between two ensem-
bles is smaller than that between two Gaussian distribution
functions with 30% different dispersions.
If the probability is smaller than 0.01 and greater than

0.001 we plot a gray circle on the position. This gray cir-
cle means the two ensembles may be different. Finally, if
the probability is smaller than 0.001, we plot a black cir-
cle on the position. This black circle means that the two
ensembles are different. In Fig. 4 we present the results of
comparisons between ensembles of log(tc) − 〈log(tc)〉� for
each value of �. Horizontal and vertical axes represent �.
Plots represent probabilities in a manner that has already
been explained. Because we plot a mark from our compar-
ison of two ensembles for �1 and �2 at position (�1, �2),
this figure is symmetric to the diagonal line. To facilitate
locating a pair of ensembles to be compared, we plot two
plots for one pair of �1 and �2 on both sides of the diago-
nal line. We omit to plotting the results of our comparison
between identical ensembles.
We plotted 506(23 × 23 − 23) results in Fig. 4. Among

these plots, the number of black circles is 86, and that of
gray circles is 78. So, if we do not argue on that the differ-
ence between two ensembles is smaller than 30% the dif-
ference in dispersions between two Gaussian type distribu-
tions, we consider 171 pairs of ensemble to belong to the
same distribution function, at least. In addition to consider-
ing the fluctuation of probabilities given by the Kolmogorov
Smirnov test, we can say that 210 pairs of ensemble possi-
bly belong to the same distribution function.
On the 43 pairs of ensembles plotted with a black mark in

Fig. 4, we summarize two points. The first is that ensembles
of the orbital crossing time in cases that � is greater than
6.8 are different to each other in many cases and are also
different to the ensembles with � being smaller than 5.4 in
some cases. This is because the dispersions of the ensem-
bles with � being larger than 6.8 show a large fluctuation
from the common value in the range of � < 6.6, as shown
in Fig. 2.
The second point to be mentioned on Fig. 4 is about the

ensemble of � being equal to 5.6. From Fig. 2, the dis-
persion, σ(�), of this ensemble is equal to 0.2, though the
distribution is different from some ensembles in the range
between 3.6 and 5.2. The reason for these discrepancies
is not the difference in dispersions. The functional form of
the distribution function should be studied to understand the
discrepancy. To do that we need the ensembles of a normal-
ized variable, such as (log(tc) − 〈log(tc)〉�)/σ(�).
In Fig. 5 we present results of the Kolmogorv Smirnov

test put on two ensembles of (log(tc) − 〈log(tc)〉�)/σ(�)

for different �. We plotted the probabilities given by the
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Fig. 5. Comparisons between two distribution functions of normalized
orbital crossing time relative to mean value, (log(tc) − 〈log(tc)〉)/σ (�)

of each. Result of each pair is presented by open or closed circle plotted
on corresponding point on �-� plane.

test in the same manner as that in Fig. 4. As seen from this
figure, almost all ensembles belong to the same distribution
function. We can find some gray plots, which means that the
two ensembles may be different, but we can not determine
it completely, even though the number is much smaller
than the number of white plots. In addition, it is clear
that black plots, which indicate that the two ensembles are
different, are plotted only for the three cases of �, namely
5.6, 5.8, and 6.0. So we obtain the result that all ensembles
possibly belong to the same distribution function, excluding
the cases of � equal to 5.6, 5.8, or 6.0.
We then accumulate 20 ensembles of the normalized

value (log(tc) − 〈log(tc)〉�)/σ(�), excluding the cases of
� equal to 5.6, 5.8, and 6.0. As a result, an ensemble, in-
cluding 10000 data was given.
In Fig. 6(a) we present the distribution of orbital cross-

ing time around the average value. The horizontal axis is
(log(tc) − 〈log(tc)〉�)/σ(�). The distribution is displayed
as a histogram. The distribution function is almost sym-
metrical to the average value and looks like the Gaussian
distribution function, namely

N(x) = 1√
2π

exp

(
− x2

2

)
. (11)

To confirm differences between the Gaussian func-
tion defined in Eq. (11) and the distribution displayed in
Fig. 6(a), we make a cumulative distribution function from
the ensemble of orbital crossing time around the average
value, that is

F̃(x) = 1

20

∑

�

∫ σ(�)x+〈log(tc)〉�

−∞
f (x ′; �) dx ′ (12)

where f (x; �) is the distribution function of orbital cross-
ing time introduced just before Eq. (9). We sum up Eq. (12)

Fig. 6. (a) A Histogram of normalized orbital crossing time relative
to mean value, namely (log(tc) − 〈log(tc)〉)/σ (�) composed from 20
ensembles. Each ensemble contains 500 data sets. It looks like a
Gaussian distribution. (b) Cumulative distribution functions given from
the histogram shown in (a) and difference from cumulative expression
of Gaussian distribution function. The thick smooth curve displays
the cumulative distribution function. We confirm that it resembles the
Gaussian distribution function again from this curve. So, we confirm the
difference between them by plotting it with the thin line. The cumulative
distribution function should be referred with the vertical axis on the left
hand side and the curve of difference from the Gaussian distribution
functions should be referred with the vertical axis on the right hand side.

for all� carried out numerical calculations, except for cases
of 5.6, 5.8, and 6.0, so that we should obtain a numeri-
cal factor equal to 1/20 to normalize this cumulative dis-
tribution function. In Fig. 6(b) we present both of F̃(x)
and δ F̃(x), which is defined to be the difference between
F̃(x) and the cumulative distribution of Gaussian distribu-
tion function, namely

δ F̃(x) = F̃(x) − Erf(x) (13)

where Erf is the error function, defined as

Erf(x) = 0.5 +
∫ x

0
N(x ′)dx ′. (14)
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Horizontal axis x represents a difference in logarithmic or-
bital crossing time from the average defined in Eq. (7) nor-
malized by the dispersion given in Eq. (8) for each case of
�. If we need to translate x to orbital crossing time for the
case of � we can do it as

log(tc; �) = σ(�)x + 〈log(tc)〉�. (15)

The thick curve smoothly increasing from zero to unity is
F̃ , and the jagged plot is δ F̃ . The cumulative distribution F̃
should be referred to the left hand side vertical axis; on the
contrary, δ F̃ should be to the right hand one. The curve of F̃
tells us that it is quite similar to the Gaussian distribution.
In addition, we can confirm the difference between them
with the curve of δ F̃ . The maximum difference is smaller
than 0.02. So we can express the probability of having an
orbital crossing event among a system of five equal mass
protoplanets in time earlier than time t as follows:

P(t; �) = Erf((log(t) − 〈log(tc)〉�)/σ(�)) (16)

where Erf is defined in Eq. (14). So, the probability of hav-
ing the event at a time between T and T + dT is expressed
as

dP(t; �)

dt

∣∣∣∣
t=T

dT = N((log(T ) − 〈log(tc)〉�)/σ(�))dT,

(17)
where N(x) is the Gaussian distribution function defined in
Eq. (11).

4. Conclusion
Orbital instability time, which is the time needed for the

first orbital crossing event between a pair of two protoplan-
ets among five ones, a group of five protoplanets, has been
defined as probability distribution functions. In this study,
we consider five equal mass protoplanets having co-planar
and circular orbits around the Sun. The mass of each planet
is equal to 1 × 10−7M�. These settings of problem is iden-
tical to those in Chambers et al. (1996).
We obtain 500 orbital crossing times for one parameter

� that is the initial distance between semi-major axes of
protoplanets. Randomly chosen initial azimuthal positions
were given to each planet in every trial run. From these
samples, we calculate average value and dispersion for the
distribution of orbital crossing times. In addition, we em-
ploy the Kolmogorv Smilnov test to check the distribution
of orbital crossing times between each ensembles with dif-
ferent value of �. Through this analysis we finally present
a model on the probability of the distribution function of
orbital crossing times. Our conclusions are as follows:

1) The probability distribution of orbital crossing time is
well approximated by the Gaussian distribution func-
tion.

2) To evaluate the probability we need both the average
〈log(tc)〉� and the dispersion σ(�). The dispersion is
almost equal 0.2 in the range that� < 6.6. This means
that about 95% of orbital crossing times distribute in
the range of 0.40 and 2.5 relative to the average orbital
crossing time. In the range that � > 6.6, the disper-
sion distributes between 1.3 and 2.5. Though the prob-

ability distribution function given by Eq. (15) can be
used for all cases except for � = 5.6, 5.8, and 6.0.

3) With average 〈log(tc)〉� we once again confirm the
conclusion of Chambers et al. (1996). Not only the
trend that the logarithmic value of the orbital crossing
time is almost proportional to the orbital distance �

was reconfirmed, but also detailled features of the av-
erages, such that small but not negligible discrepancies
from the fitting line in the region of � greater than 4.8,
were well represented in this work, too.

5. Discussion
From the results presented in Chambers et al. (1996) we

had the impression that the orbital crossing times could have
uncertainties of about one order of magnitude. However,
we confirmed that they distribute with a sharper distribution
function. As shown in Fig. 6, the distribution function of
orbital crossing time, log tc is well approximated by the
Gaussian distribution function. In addition, the dispersion
is almost equal to 0.2 in the range that � < 6.6. This means
that about 95% of all orbital crossing times distribute in the
range of factors associated to the average orbital crossing
time between 0.40 and 2.5. Furthermore, 70% of these were
confined to be in the range between 0.63 and 1.6. So, if we
permit 30% errors, we can say that orbital crossing times
among five protoplanets are determined with an uncertainty
of factor 2.5. Moreover, 95% of the crossing events took
place in the range of uncertainties to be about factor 6.
The average orbital crossing time given for each param-

eter � was derived from 500 samples. It is very interesting
that the averages as a function of orbital distance � fits the
results presented by Chambers et al. (1996). This means
that it is enough to use only several samples for each � to
evaluate an average of them. Needless to say, this rapid
convergence is brought by the sharp distribution of orbital
crossing times around the average.
From our detailled analysis of average orbital crossing

time for each orbital distance �, we confirmed that, at some
given point of �, the average deviates from the fitting line.
From Fig. 2, we can say that as the orbital distance � in-
creases, the average orbital crossing time straggles with
larger discrepancies from a fitting line, and the dispersion
of the distribution σ begins to straggle too. As mentioned,
our results present a good agreement with the results re-
ported in Chambers et al. (1996) in terms of the behavior
of average orbital crossing times. We therefore expect that
we should find some physical conditions assignable for the
struggling features. The first candidates for the behavior is
the resonances between planets.
In this work we examined protoplanets with mass m =

1 × 10−7 so mutual hill radius between two protoplanets
defined in Eq. (6) is equal to 0.0041. Consequently, the or-
bital distances between any pair of protoplanets among the
group of five ones is very small compared to the reference
semi-major axis a1, even if the parameter � is equal to 8.
This means that if some kinds of resonance play an impor-
tant role on the straggling behavior of orbital crossing time,
the resonance should be a very high order one. Namely,
if a mean motion resonance expressed as N:N+1 causes the
straggling behavior, the number N must be much larger than
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unity. It is not clear whether such higher order resonances
can contribute to the orbital behavior of protoplanets.
Although the distribution of orbital crossing times is pre-

sented in this work, there are still some problems in the or-
bital evolution of protoplanets. The straggling behavior is
one of them. Therefore we need more studies on this theme.
We have started our studies with one on the protoplanet sys-
tem with wide range of protoplanet mass parameter. If we
consider two systems of protoplanets with three orders of
magnitude difference in planets mass, the orbital distance
between two protoplanets in each system is different with
one order of magnitude, even if the parameter � is equal
to each other. The contribution of some kinds of resonance
will be examined in this future study as wide mass parame-
ter.
Another future problem is that some kinds of resonance

between a protoplanet and other extra perturbing source,
namely Jovian planets, are important. In the study of ter-
restrial planet formation, this effect may be taken as an key
process. We have already had a report on the average or-
bital crossing times that the time is shortened by the extra
perturbation (Ito and Tanikawa, 1999). As yet, no studies
have been carried out on the distribution of the orbital cross-
ing times under such conditions. It is very difficult to infer
the effect of extra perturbations on the distribution function,
though we expect that we can do it if we have a theoretical
model of orbital evolution of protoplanets, which we will
attempt to construct in future studies.
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Appendix A. Kolmogorov Smirnov Test
In this study we use the “Kolmogorov Smirnov test”

(Press et al., 1986) to confirm whether two ensembles of
orbital crossing times belong to one distribution function or
not. Let us explain the procedure in this method briefly.
Suppose that there are two distribution functions expressed
in a style of the cumulative probability function, each of
which is composed from finite number samples. At first we
look for the maximum difference between these two distri-
bution functions. Let us express this with δ. Next by the
usage of the equation defined as

P = 2
∞∑

j=1

(−1)j exp

(
−

(
N1N2

N1 + N2

)
δ2 j2

)
(A.1)

where N1 and N2 is number of data in ensemble 1 and 2,
respectively. From this equation we obtain probability P .

If P is equal to unity, the two distribution functions are
completely same. On the other hand, in the case that P is
equal to zero, the two distributions are completely different.
If we compare two ensembles with a finite number of

samples, we may never find this Kolmogorov Smirnov test
giving the probability being equal to unity. This is because
even if two ensembles belong to same distribution function,
a finite sample number should bring some differences in
two cumulative distribution functions. For example, let us
generate two sets of ensembles which are composed from
samples brought from a Gaussian distribution function and
compare them with the method. The Gaussian distribution
function has dispersion σ equal to 1.0. The ensembles are
as follows;

1) Generate 500 random numbers between 0 and 1. Let
us denote them as xi.

2) For each random number we calculate vi which satis-
fies the following condition:

xi = (1 + Erf(vi/2σ))/2

where Erf is the error function.

Through this procedure with 11 different sets of random
numbers, we construct 11 ensembles for the same disper-
sion σ = 1.0, then we compare the first and each of the
other ten ensembles. In Table 2 we present ten probabilities
obtained from these comparisons.
As seen from Table 2, the probabilities distribute between

0.67 and 0.029. From this fact, we must notice that the
method gives probabilities with over one order of magni-
tude uncertainties, even for comparisons between samples
with one identical distribution function. So, in a case that
we compare two unknown ensembles we can not easily de-
cide the two ensembles belong to different distribution func-
tions even if the probability is smaller than 1.0.
We therefore need some quantitative comparisons be-

tween differences in two ensembles and the probabilities
given by Kolmogorov Smirnov tests. Let us therefore com-
pare two ensembles selected from two Gaussian distribu-
tions with different dispersion σ . From these data, we
present a relation between differences in dispersion and the
probability given by Kolmogorov Smirnov test.
Our first step is to construct one ensemble composed

from 500 samples randomly selected from a Gaussian dis-
tribution function with σ equal to 1.0. We call this ensemble
our reference ensemble. Next we construct 20 ensembles,
each of which is composed of 500 samples randomly se-
lected from a Gaussian distribution function with same σ

equal to 1.0. We call these ensembles our test ensembles.
We compare the reference ensemble and each of the test en-
sembles, and obtain 20 probabilities. We then obtain the
average of these. In the case of a comparison of two ensem-
bles of which the components are sampled from a Gaussian

Table 2. Probabilities obtained by Kolmogorov Smirnov test comparing two ensembles composed from 500 samples randomly sampled from a Gaussian
distribution function. First ensemble is compared with from 2nd to 11th ensemble.

2 3 4 5 6 7 8 9 10 11

1 0.61 0.15 0.51 0.29 0.23 0.029 0.069 0.67 0.41 0.13
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Fig. 7. Quantitative comparison between probabilities given by the Kol-
mogorov Smirnov test and the difference of distribution functions. Hori-
zontal axis, �σ is difference in dispersions of two Gaussian distribution
functions. Vertical axis, log(P) is average probability of two ensembles
randomly chosen from the two Gaussian distribution functions. Each
ensemble is composed from 500 samples.

distribution function with the same dispersion, the averaged
probability is equal to 0.43. We repeat the generation of test
ensembles with changing dispersions from 1.1 to 2.0 for ev-
ery 0.1 interval and calculate the averaged probabilities by
comparing these with reference ensemble. In Fig. 7, we plot
averaged probabilities as a function of differences in disper-
sions between the reference ensemble and test ensembles.
Namely, the averaged probability given by the Kolmogorov
Smirnov test between the reference ensemble and test en-
sembles with σ equal to 1.1 is plotted as �σ = 0.1. The
probabilities are plotted in logarithmic scale.
As shown in Fig. 7 probabilities decreases very steeply

as the difference between two dispersion grows. At the
same time, it is evident that this test cannot detect small dif-
ference in distribution function such that the discrepancies
in dispersions of two distribution functions is smaller than
30%, because we have seen from Table 2 that even if two
ensembles are sampled from same distribution functions
Kolmogorov Smirnov test can give the probability equal to
0.029, and this probability is equal to average probability
on two ensembles sampled from two Gaussian distribution
functions which dispersions have 30% difference.
From these comparison we have following conclusions:

1) The method may give probabilities with one order of
magnitude uncertainties.

2) In the case that the number of samples in one ensemble
is equal to 500, we can not detect a small difference in
two ensembles. If the distribution is Gaussian distri-
bution, the mimimun difference which can be detect
by this method is 30% in sigma. So, if the probability
is geater than 1/100, we should the two distribution
function may be similar. The word “similar” includes
about 30% error.

3) When Kolmogorov Smirnov test gives the probability
smaller than 1/100, the difference beween two distri-
bution function is larger that in two Gaussian distri-
bution functions with difference in dispersions being

equal to 30%. Though, taking into account the un-
certainties of given probability we can not determine
completely that they are different distribution.

4) When Kolmogorov Smirnov test gives the probability
smaller than 1/1000, the difference beween two distri-
bution function is larger than that in two Gaussian dis-
tribution functions with difference in dispersions being
equal to 40%. In this case we can determine that the
two distribution is different.

Finaly we must mention that the results presented here
is based on comparison two ensembles composed from 500
samples. If in the comparison between ensembles which is
composed from more large number of samples, we can not
use these results.
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