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Dip distribution of Oita–Kumamoto 
Tectonic Line located in central Kyushu, Japan, 
estimated by eigenvectors of gravity gradient 
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Abstract: We estimated the dip distribution of Oita–Kumamoto Tectonic Line located in central Kyushu, Japan, by 
using the dip of the maximum eigenvector of the gravity gradient tensor. A series of earthquakes in Kumamoto and 
Oita beginning on 14 April 2016 occurred along this tectonic line, the largest of which was M = 7.3. Because a gravity 
gradiometry survey has not been conducted in the study area, we calculated the gravity gradient tensor from the 
Bouguer gravity anomaly and employed it to the analysis. The general dip distribution of the Oita–Kumamoto Tec‑
tonic Line was found to be about 65° and tends to be higher towards its eastern end. In addition, we estimated the 
dip around the largest earthquake to be about 60° from the gravity gradient tensor. This result agrees with the dip of 
the earthquake source fault obtained by Global Navigation Satellite System data analysis.

Keywords: Dip distribution, Oita–Kumamoto Tectonic Line, Kumamoto earthquake, Gravity gradient tensor, 
Eigenvector, Futagawa fault system, Aso caldera, Hohi volcanic zone

© 2016 The Author(s). This article is distributed under the terms of the Creative Commons Attribution 4.0 International License 
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, 
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, 
and indicate if changes were made.

Introduction
A series of earthquakes in Kumamoto and Oita began 
on 14 April 2016 in the areas along the Oita–Kumamoto 
Tectonic Line in central Kyushu, Japan (Fig. 1). The Oita–
Kumamoto Tectonic Line is an area of high horizontal 
gravity gradient anomaly (e.g. Tsuboi et al. 1956) located 
at the boundary between Cenozoic volcanic rocks and 
Palaeozoic and Mesozoic Erathems (e.g. Kamata and 
Kodama 1993). This tectonic line consists of many active 
faults (e.g. Research Group for Active Faults 1991).

The central Kyushu area is well known for its active 
volcanoes and calderas such as the Aso and Shishimuta 
calderas (e.g. Yokoyama 1963; Kubotera et al. 1969; Kom-
azawa 1995; Kamata 1989). This area also includes the 
Beppu–Shimabara Graben (Matsumoto 1979) in addition 
to brisk seismic activities with focal mechanisms of lat-
eral faulting, normal faulting or both (e.g. Shimizu et al. 
1993; Sudo 1993). The strain field in Kyushu during the 

last 100  years, which was obtained by geodetic survey, 
indicates N–S extension (Tada 1984). Matsumoto et  al. 
(2015) reported that the stress condition determined by 
focal mechanisms in the seismogenic layer, shallower 
than 30 km, has compressive and tensile axes of WSW–
ENE and NNW–SSE directions. They also reported that 
the seismicity around the shear zone at the southern edge 
of the Beppu–Shimabara Graben is strike-slip faulting 
and that in the graben is normal faulting.

In general, subsurface structures play important roles 
in the understanding and discussion of tectonics of active 
areas. Frequently employed geophysical survey methods 
in these volcanic areas include geoelectromagnetic and 
gravity surveys (e.g. Mogi and Nakama 1993; Komazawa 
1995; Kusumoto et al. 1996; Handa 2005). In recent years, 
gravity gradiometry has been introduced (e.g. Jekeli 1988; 
Dransfield 2010; Chowdhury and Cevallos 2013; Braga 
et al. 2014).

This type of survey observes a gravity gradient ten-
sor consisting of six components of three-dimensional 
(3-D) gradients of gravitation by a causative body and has 
higher sensitivity than gravity surveys. Various analysis 
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techniques using gravity gradient tensors have been 
developed and have given excellent results in subsurface 
structure estimations and edge detections (e.g. Zhang 
et  al. 2000; Beiki 2010; Martinez et  al. 2013; Cevallos 
2014; Li 2015). In the recent years, techniques estimat-
ing the dip of a geological structure boundary by using 
the gradient tensor of the potential fields have been 
developed and have shown good results (e.g. Beiki 2013; 
Kusumoto 2015, 2016; Itoh et  al. 2016). The dip of the 
structure plays an important role in numerical simula-
tions that quantitatively examine tectonics (e.g. Finch 
et al. 2004; Itoh et al. 2014; Kusumoto et al. 2015).

In this paper, as a quick report, we show the dip distri-
bution of the Oita–Kumamoto Tectonic Line estimated 
by the technique suggested by Beiki (2013) and Kusumoto 
(2015). With the exception of some geothermal areas, 
gravity gradiometry survey has not been conducted thus 
far in central Kyushu. Therefore, we estimated the grav-
ity gradient tensor by using calculations based on Mickus 

and Hinojosa (2001) to obtain the tensor from the gravity 
anomaly, which was used for this study.

Gravity anomaly and gravity gradient tensor
Figure  2 shows the residual Bouguer gravity anomaly 
map of which the first trend surface was removed from 
the original Bouguer gravity anomaly by using the least 
squares method in order to eliminate the effect of the 
subducting plate. A Bouguer density of 2670  kg/m3 
was employed here. In this study, the gravity anomaly 
database by Komazawa (2004) was employed. Because 
this database provides mesh data with intervals of 
1  km ×  1  km, we discuss structures larger than several 
kilometres.

The figure indicates negative gravity anomalies caused 
by the Shishimuta and Aso calderas and some tectonic 
sedimentary basins such as Beppu Bay. In addition, high 
horizontal gravity gradient belts caused by the Median 
Tectonic Line and the Oita–Kumamoto Tectonic Line are 

Fig. 1 Location map of study area. The black dashed line is the Oita–Kumamoto Tectonic Line, and the blue line is the Median Tectonic Line (MTL), 
which is the largest tectonic line with a right‑lateral fault component in south‑western Japan. The light grey area with blue dashed line indicates 
the Hohi volcanic zone (Kamata 1989). The area between ochreous lines is the Beppu–Shimabara Graben (Matsumoto 1979). Red lines indicate the 
calderas; green lines are active faults (e.g. Research Group for Active Faults 1991), and red stars indicate epicentres of which the magnitude was more 
than 5 in earthquakes occurring between 14 April and 19 April 2016
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shown. The Beppu–Shimabara Graben shown in Fig.  1 
corresponds to the negative gravity anomaly area in the 
north-east and to a gravity low area less than about 20 
mGal in the south-west.

The gravity gradient tensor Γ is defined on the basis of 
differential coefficients of the gravity potential (e.g. Torge 
1989; Hofmann-Wellenhof and Moritz 2005). Defining gx, 
gy, gz as the first derivative of the gravity potential along 
the x-, y-, and z-directions, the gravity gradient tensor Γ 
is shown as

Here, gz is the gravity anomaly, and gzz is the verti-
cal gradient of the gravity anomaly. The gravity gradient 
tensor is symmetric (e.g. Torge 1989), and the sum of its 
diagonal components is zero because the gravity poten-
tial satisfies the Laplace equation.

Although the gravity gradient tensor is generally meas-
ured by gravity gradiometry (e.g. Lee 2001; Barnes and 
Lumley 2011; Dransfield and Christensen 2013), the 
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tensor can be obtained from the gravity anomaly data 
by using calculations shown in Mickus and Hinojosa 
(2001). Mickus and Hinojosa (2001) showed the follow-
ing procedures: (1) apply a 2-D Fourier transformation to 
the gravity anomaly; (2) estimate the gravity potential by 
integration of the gravity anomaly in the Fourier domain; 
(3) calculate the gravity gradient components by second-
order derivatives of the potential in each direction; and 
(4) apply a 2-D Fourier inverse transformation to finally 
obtain all components of the tensor in the spatial domain. 
Integration and differentiation of a function in the Fou-
rier domain are equivalent to division and multiplication 
by powers of wave number (e.g. Blakely 1996).

This method is excellent and mathematically sound. 
However, because the second-order derivatives of the 
potential in the Fourier domain and Fourier inverse 
transformation emphasise short wavelength signals 
including noise, we obtained components of the gravity 
gradient tensor by numerical differentiation of gx, gy, and 
gz in the space domain. The components of gx and gy were 
calculated by the method of Mickus and Hinojosa (2001). 
The horizontal derivatives of gx, gy, and gz were calculated 
using simple finite-difference methods (e.g. Blakely 1996). 
The vertical gravity gradient, gzz, has been computed as 

Fig. 2 Residual Bouguer gravity anomaly map of the study area. The contour interval is 2.5 mGal. In this map, the regional linear trend of the 
Bouguer gravity anomalies such as the effect of the subducting plate was estimated and removed by using the least squares method. The Bouguer 
gravity anomaly used here is based on the gravity anomaly database (1 km × 1 km mesh data) of Komazawa (2004); a Bouguer density of 2670 kg/
m3 was employed
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gzz = −(gxx + gyy), since the gravity potential satisfies the 
Laplace’s equation.

In the analysis of subsurface structures using the gravity 
gradient tensor, the horizontal gravity gradient method 
is the most widely used for finding structure boundaries 
such as faults or contacts between different materials 
(e.g. Blakely and Simpson 1986; Shichi et al. 1992; Kudo 
and Kono 1999; Yamamoto 2003). The horizontal gravity 
gradient (HG) is given using the components of the ten-
sor shown in Eq. (1) as

Figure 3a shows a map of the horizontal gravity gradi-
ent. Figure 3b shows areas of more than 25 E (Eötvös: 1 
E  =  0.1  mGal/km) from which structural boundaries 
such as the outlines of the Median Tectonic Line, Oita–
Kumamoto Tectonic Line, Shishimuta and Aso calderas 
are extracted. It was found that a series of earthquakes 
occurred on the high gravity gradient belt. At the west-
ern terminations of the Median Tectonic Line and of the 
Futagawa fault system belonging to the Oita–Kumamoto 
Tectonic Line, steep gravity gradient areas reach 100 E.

Dip estimation of fault or density structure 
boundary
Because the maximum eigenvector (v1) of the gradient 
tensor of the potential field indicates the direction of the 
causative body (Beiki and Pedersen 2010), Beiki (2013) 
suggested that the dip of the causative body can be esti-
mated from the respective x, y, and z components (v1x, 
v1y, v1z) of the maximum eigenvector, v1, as follows:

This equation is valid in estimating the dip of the causa-
tive body if the body is a 2-D structure like a dyke as 
shown in Fig. 4a. Structural characteristics of subsurface 
structure can be evaluated by a dimensionality index. 
Since the index is <0.5 if the body causing a gravity 
anomaly is a 2-D structure, it is recommended that this 
calculation would be conducted under the condition of 
a dimensionality index of <0.5 (Beiki and Pedersen 2010; 
Beiki 2013). The dimensionality index (DI) is defined as 
(Perdersen and Rasmussen 1990)

Here, I1 and I2 are invariants of the gravity gradient ten-
sor. Each invariant is given by three eigenvalues (λ1, λ2, 
λ3) of the tensor as follows:
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Kusumoto (2015) considered that a basement consists 
of an assembly of high-density columns (Fig.  4b) and 
applied this idea to analysis of fault dip. To effectively 
estimate the dip of the fault or density structure bound-
ary, Kusumoto (2015) recommended that the estimation 
would be conducted at areas of high horizontal gravity 
gradient. In this study, the dip of the structure bound-
ary was estimated in the area satisfying the conditions of 
which tectonic lines are extracted precisely and are 2-D 
structure, namely the areas of HG ≥ 25 E and DI ≤ 0.5.

Results and discussion
Figure  5 shows the estimated dip distribution of large 
structure boundaries recognised by high horizontal grav-
ity gradient anomalies. The dips of the Median Tectonic 
Line and Oita–Kumamoto Tectonic Line ranged from of 
30° to 80° and were estimated as high-angle tectonic lines 
or an assembly of high-angle faults. In addition, the dip 
of the caldera wall of the Aso caldera was estimated to be 
50°–70°.

In part of the Median Tectonic Line, the dip is very 
high and exceeds 70° in some areas. It is well known that 
the Median Tectonic Line had moved as a right-lateral 
fault in the Quaternary; thus, the high dips reaching 70° 
or 80° are expected. The dips of the Median Tectonic Line 
become low gradually to the north in the Beppu Bay area. 
Although Kusumoto (2015) reported that this dip estima-
tion technique tends to underestimate the actual dip in 
deep parts when applied to normal faults, seismic reflec-
tion surveys have confirmed dips of normal faults distrib-
uted in Beppu Bay to be 17° and 7° by seismic reflection 
surveys (e.g. Itoh et al. 2014). Therefore, the dip distribu-
tion calculated from the gravity gradient tensor agrees 
with the observed data.

In part of the Oita–Kumamoto Tectonic Line, the gen-
eral dip was estimated to be about 65°. Because large-
scale seismic survey has not been conducted around this 
tectonic line, its actual dip is unknown. However, the dip 
estimated from the gravity gradient tensor agrees with 
the fault dip obtained from crustal movement due to an 
earthquake in the Futagawa fault system.

The largest earthquake, M = 7.3, occurred on 15 April 
2016 in a series of earthquakes at the centre of the Fut-
agawa fault system; its fault parameters are estimated 
from crustal movement data observed by GNSS (The 
Headquarters for Earthquake Research Promotion 2016). 
According to The Headquarters for Earthquake Research 
Promotion (2016), the earthquake source fault is right 
lateral with a normal fault component, and the upper 
depth, length, width, azimuth, dip, slip angle, and slip 

(5)
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amount of the fault are estimated to be 0.1, 27.1, 12.3 km, 
235°, 60°, −161°, and 3.5 m, respectively. Figure 5 shows 
that the dips estimated from the gravity gradient tensor 

are 30°–40° at the northern side and roughly 55°–65° at 
the southern side. Because the earthquake source fault 
dips to the north, and this technique tends underestimate 

Fig. 3 Horizontal gravity gradient map. a Horizontal gravity gradient map of which all data are shown; the contour interval is 10 E (Eötvös: 1 E = 0.1 
mGal/km). b Horizontal gravity gradient map of which areas of more than 25 E are shown by coloured contours; the contour interval is 5 E
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the actual dip in deep part for normal faults, the dips 
estimated from the gravity gradient tensor were found to 
agree with the fault dip obtained by crustal movement in 
the central eastern part of the Futagawa fault system.

From these discussions, it appears that the dip estima-
tion technique using eigenvectors and eigenvalues of the 
gravity gradient tensor effectively provided the dip of 
the Oita–Kumamoto Tectonic Line, which we conclude 
to be generally about 65°. In detail, the dip of the Oita–
Kumamoto Tectonic Line tends to be higher towards its 
eastern end and exceeds 70° at the area connecting to 
the Median Tectonic Line. The dip in the Futagawa fault 
system area is relatively low at about 60°. This variation 
or trend is divided into eastern and western areas by the 
Aso caldera. Although a series of earthquakes occurred 
along the Oita–Kumamoto Tectonic Line, the cause or 
origin and formation processes of this tectonic line might 
be different in each segment.

Although the tectonics in the western part of the Aso 
caldera are unknown in detail, the eastern part of the Aso 
caldera is known as the Hohi volcanic zone (e.g. Kamata 

1989), which consists of a half-graben with volcanic activ-
ities that began in 6 Ma (e.g. Kamata 1989) and pull-apart 
basins that were formed after the half-graben formation 
in about 1.5  Ma (e.g. Itoh et  al. 1998). These structures 
and their formation processes have been restored by 
numerical simulations assuming high-dip (80°) normal 
faulting and right-lateral faulting (e.g. Kusumoto et  al. 
1999). It appears that the formation of the half-graben in 
6 Ma plays an important role in understanding the spa-
tial variation of dip distribution because the Oita–Kuma-
moto Tectonic Line is the boundary between Cenozoic 
volcanic rocks and Palaeozoic and Mesozoic Erathems.

In this study, we used the existing gravity anomaly data-
base (Komazawa 2004) which compiled 1  km  ×  1  km 
mesh data of the Bouguer gravity anomaly obtained by 
Bouguer density of 2670 kg/m3. Although changes of the 
mesh size and the Bouguer density vary aspects of some 
maps, it seems that they would not make serious dif-
ferences in the general situation. However, to obtain a 
detailed fault shape and to discuss the cause of a series 
of earthquakes tectonically, in addition to discussions on 
change of the Bouguer density, it is effective to use a dense 
gravity database or to conduct gravity gradiometer survey 
and seismic reflection survey around fault zones in the 
future studies.

Conclusion
In this study, we estimated the dip distribution of the 
Oita–Kumamoto Tectonic Line where a series of earth-
quakes began on 14 April 2016. For dip estimation, the 
method using the dip of the maximum eigenvector of the 
gravity gradient tensor was employed. Because gravity 
gradiometry survey has not been conducted in the study 
area, the tensor was obtained by calculations from the 
Bouguer gravity anomaly. The estimation was conducted 
in an area satisfying the following conditions: (1) a hori-
zontal gravity gradient larger than 25 E and (2) a dimen-
sionality index <0.5.

We obtained that the dip of the Oita–Kumamoto Tec-
tonic Line is generally about 65°. The fault dip around the 
largest earthquake of M = 7.3 in a series of earthquakes 
was estimated to be about 60°, which agrees with the dip 
of the earthquake source fault obtained by GNSS data 
analysis.

In addition, we found that the dip distribution of 
the Oita–Kumamoto Tectonic Line tends to be higher 
towards its eastern end, exceeding 70° at the area con-
necting with the Median Tectonic Line. On the other 
hand, the dip in the Futagawa fault system area is rela-
tively low. This spatial variation of dip distribution has 
been attributed to the formation of a half-graben with 
volcanic activities that began in 6  Ma. However, more 
observations and discussions including numerical 

Fig. 4 Schematic illustration of the eigenvectors for two‑dimensional 
(2‑D) structures such as dykes and faults. a Basic model. In this figure, 
v1 is the maximum eigenvectors of the gravity gradient tensor and 
points to the causative body. The angle α between the surface and 
the maximum eigenvector is the dip of the causative body. b Fault 
dip model. A basement consists of an assembly of high‑density 
columns, and the angle, α, indicates the fault dip
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simulations are needed to understand these results 
because details of the tectonics in the Futagawa fault sys-
tem area are unknown.
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