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Abstract 

The High Frequency Analyzer (HFA) is a subsystem of the Plasma Wave Experiment onboard the Arase (ERG) space-
craft. The main purposes of the HFA include (1) determining the electron number density around the spacecraft 
from observations of upper hybrid resonance (UHR) waves, (2) measuring the electromagnetic field component of 
whistler-mode chorus in a frequency range above 20 kHz, and (3) observing radio and plasma waves excited in the 
storm-time magnetosphere. Two components of AC electric fields detected by Wire Probe Antenna and one com-
ponent of AC magnetic fields detected by Magnetic Search Coils are fed to the HFA. By applying analog and digital 
signal processing in the HFA, the spectrograms of two electric fields (EE mode) or one electric field and one magnetic 
field (EB mode) in a frequency range from 10 kHz to 10 MHz are obtained at an interval of 8 s. For the observation of 
plasmapause, the HFA can also be operated in PP (plasmapause) mode, in which spectrograms of one electric field 
component below 1 MHz are obtained at an interval of 1 s. In the initial HFA operations from January to July, 2017, the 
following results are obtained: (1) UHR waves, auroral kilometric radiation (AKR), whistler-mode chorus, electrostatic 
electron cyclotron harmonic waves, and nonthermal terrestrial continuum radiation were observed by the HFA in 
geomagnetically quiet and disturbed conditions. (2) In the test operations of the polarization observations on June 
10, 2017, the fundamental R-X and L-O mode AKR and the second-harmonic R-X mode AKR from different sources in 
the northern polar region were observed. (3) The semiautomatic UHR frequency identification by the computer and 
a human operator was applied to the HFA spectrograms. In the identification by the computer, we used an algorithm 
for narrowing down the candidates of UHR frequency by checking intensity and bandwidth. Then, the identified UHR 
frequency by the computer was checked and corrected if needed by the human operator. Electron number density 
derived from the determined UHR frequency will be useful for the investigation of the storm-time evolution of the 
plasmasphere and topside ionosphere.
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Introduction
The High Frequency Analyzer (HFA) is a subsystem of 
the Plasma Wave Experiment (PWE) onboard the Arase 
(ERG, Exploration of energization and Radiation in Geo-
space) spacecraft for the observation of radio and plasma 
waves in a frequency range from 10 kHz to 10 MHz. The 
Arase spacecraft was launched on December 20, 2016. 
The inclination of the Arase satellite is 31°, and the alti-
tudes of the apogee and perigee are ~ 32,000 and 460 km, 
respectively. The orbital period is approximately 570 min. 
The purpose of the mission is to explore the plasma 
dynamics of Earth’s radiation belt using electric and 
magnetic field instruments covering a wide frequency 
range and electron and ion detectors over a wide energy 
range (Miyoshi et  al. 2012; Miyoshi et  al. in review). A 
new instrument, S-WPIA (Software-Type Wave–Par-
ticle Interaction Analyzer), was installed on the satellite 
to perform direct measurement of the energy exchange 
between plasma waves and particles (Katoh et  al. 2018; 
Hikishima et  al. 2018). The observations of DC electric 
fields and AC electromagnetic fields of radio and plasma 
waves are performed by the PWE (Kasahara et al. 2018b), 
which consists of four sets of Wire Probe Antenna 
(WPT) (Kasaba et al. 2017), three-axial Magnetic Search 
Coils (MSC) (Ozaki et al. 2018), and a DC Electric Field 
Detector (EFD) (Kasaba et al. 2017), Wave Form Capture 
and Onboard Frequency Analyzer (WFC/OFA) (Kasa-
hara et al. 2018b; Matsuda et al. 2018), and HFA.

Under the Arase mission, the HFA is expected to per-
form the following: (1) Determine the electron number 
density around the spacecraft based on observations of 
upper hybrid resonance (UHR) waves. Previous studies 
suggested that the whistler-mode chorus emission just 
outside of the plasmapause contributed to the recovery 
of the radiation belt electrons in the recovery phase of 
geomagnetic storms (e.g., Miyoshi et  al. 2003). Know-
ing the location of the plasmapause is of fundamental 
importance for understanding the distribution of the 
plasma waves associated with the loss and generation of 
the relativistic electrons. In addition, electron number 
density is a key parameter in discussion of resonance 
conditions between the plasma waves and electrons 
that generate the plasma waves. The energy range of the 
electrons estimated from the resonance conditions will 
be useful in onboard analyses of wave–particle interac-
tions by S-WPIA. (2) Measure the electromagnetic field 
component of the whistler-mode chorus in a frequency 
range above 20  kHz up to 100  kHz. The whistler-mode 
chorus is one of the most important targets of the Arase 
mission. Throughout most of the orbit, the chorus can 
be observed by WFC/OFA, which covers a frequency 
range below 20 kHz. However, around the perigee where 
the electron cyclotron frequency is higher than 20 kHz, 

the frequency range of the chorus cannot be covered by 
WFC/OFA. Therefore, the HFA was designed to meas-
ure not only the AC electric fields, which are enough for 
observation of UHR, but also AC magnetic fields above 
20  kHz. (3) Detect radio and plasma waves excited by 
wave–particle interactions and mode conversion pro-
cesses in storm-time magnetosphere. The frequency of 
radio and plasma waves depends on the electron cyclo-
tron frequency and the plasma frequency in their source 
regions. The electron cyclotron frequency and plasma 
frequency in the inner magnetosphere and upper iono-
sphere mostly fall in the HFA range of 10 kHz to 10 MHz.

In order to achieve the requirements mentioned 
above, the HFA was designed based on the heritage of 
radio and plasma wave receivers installed on Japanese 
spacecraft such as Jikiken (EXOS-B) (Oya et  al. 1981), 
Ohzora (EXOS-C) (Oya et al. 1985), Akebono (EXOS-D) 
(Oya et  al. 1990), Nozomi (Planet-B) (Ono et  al. 1998), 
and Kaguya (SELENE; Selenological and Engineering 
Explorer) (Ono et  al. 2008, 2010). To determine some 
specifications such as frequency resolution and dynamic 
range, we considered the past analyses of datasets 
obtained by Akebono/PWS (Plasma Waves and Sounder 
Experiment). The hardware design of the HFA was based 
on that of the NPW-W (Natural Plasma Wave-Wave-
form) receiver of Kaguya/LRS (Lunar Radar Sounder).

This paper is an initial report of the details regarding 
the HFA instrument and some of the results obtained in 
the initial HFA operation. In “Instruments” section, the 
detailed design of the hardware, onboard digital signal 
processing, and software of the HFA are described. In 
“Initial results” section, some initial results obtained dur-
ing the period from January to July, 2017, are reported. 
In “Conclusion” section, a conclusion regarding the HFA 
initial analysis results is presented.

Instruments
A block diagram of HFA is shown in Fig. 1. The HFA is a 
subcomponent of the PWE onboard the Arase spacecraft. 
Two electric field components, Eu and Ev, are detected by 
WPT sensors (WPT-S-U1, WPT-S-U2, WPT-S-V1, and 
WPT-S-V2), converted to voltage signals, and fed to the 
HFA via the WPT preamplifiers (WPT-PRE-U1, WPT-
PRE-U2, WPT-S-V1, and WPT-S-V2) and the differential 
amplifier in WFC/OFA. In addition, one component of 
the magnetic field, Bγ, is detected by the MSC, converted 
to a voltage signal, and fed to the HFA via the MSC pre-
amplifier (MSC-PRE). The directions of Eu and Ev are 
perpendicular to the spin axis of the spacecraft, which is 
within 15° toward the sun. The direction of Bγ is parallel 
to the spin axis of the spacecraft (Kasahara et al. 2018b). 
The HFA consists of two channels of the analog receiver 
circuit (HFA-A) and digital circuit (HFA-D), with two 
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analog-to-digital converters (ADC) and one field pro-
grammable gate array (FPGA). In HFA-A, two signals 
from among the three possible inputs, Eu, Ev, and Bγ, are 
selected by radio frequency (RF) signal switch and fed 
to two channels of the receivers. The receivers consist of 
attenuators (0 or 10 dB), a high-pass filter (HPF), and a 
low-pass filter (LPF). The frequency range of Eu and Ev 
from WPT is from a few Hz to 10 MHz (Kasahara et al. 
2018b), and the frequency range of Bγ from MSC is from 
a few Hz to 100  kHz (Ozaki et  al. 2018). The passband 
of the receiver is from 10  kHz to 10  MHz. The analog 
signals are sampled by ADC with a 16-bit resolution in 
HFA-D with a sampling rate of 25 MHz. The spectra are 
obtained from the sampled digital waveform data in two 
signal processing modes. In 10 MHz mode, fast Fourier 
transform (FFT) is directly applied to the 2048 points of 
the digital waveform data. The spectrum below 12.5 MHz 
with 1024 frequency steps can be obtained. The fre-
quency resolution is 12 kHz. In 1 MHz mode, a cascade 
integrator-comb (CIC) filter with a passband below 
1 MHz and decimation is applied to the signal from ADC, 
which is converted to waveform data at 2.5 MSPS. FFT 
is applied to the 2048 points of the 2.5 MSPS waveform. 
The spectrum below 1.25 MHz with 1024 frequency steps 

can be obtained. The frequency resolution is 1.2  kHz. 
Averaging over one spin period (8 s) can be applied to the 
obtained power spectrum and cross spectrum, which is 
useful for noise reduction.

The digital data of the spectrum are sent to a central 
processing unit (CPU) board in the PWE via the Space-
wire interface and edited into mission data packets to 
be saved to the data recorder or sent via telemetry at the 
allowed rate. Two independent CPU boards (CPU#8 and 
CPU#9) are installed in the PWE, and CPU#8 is used for 
the HFA onboard data processing. Under nominal opera-
tion, three operation modes, EE, EB, and PP modes, are 
selected depending on the spacecraft location (Table 1). 
The EE mode is used around the apogee of the spacecraft 
orbit. In EE mode, Eu and Ev are selected by input signal 
switch, and power spectra of the electric fields, 
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frequency range from 10  kHz to 10  MHz with 479 fre-
quency steps, are obtained at 8-s intervals. Ẽu and Ẽv are 
the Fourier complex coefficients of Eu and Ev, respec-
tively. ẼL , and ẼR are given by

Fig. 1 Block diagram of HFA

Table 1 Operation modes of HFA

Mode Region Input Output Frequency range Steps Interval (s)

EE-UV Apogee Eu, Ev <|Eu|2> 10 kHz–10 MHz 479 8

<|Eu|2> 10 kHz–10 MHz 479 8

EE-LR Apogee Eu, Ev <|EL|2> 10 kHz–10 MHz 479 8

<|ER|2> 10 kHz–10 MHz 479 8

EB Perigee Ev, Bγ <|Ev|2> 10 kHz–10 MHz 479 8

<|Bγ|
2> 10 kHz–100 kHz 160 8

<Ev
*Bγ> 10 kHz–100 kHz 160 8

PP-1 Plasmapause Eu, Ev <|Eu|2 >+<|Ev|2> 10 kHz–400 kHz 200 1

PP-2 Plasmapause Eu, Ev <|Eu|2 >+<|Ev|2> 100 kHz–1 MHz 200 1
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where * indicates a complex conjugate and Im indicates 
an imaginary part. 〈 〉 denotes the ensemble average of 
eight raw spectra obtained during one spin period. A 
frequency table of downlinked spectrum data is shown 
in Table 2. The downlinked spectrum data below 1 MHz 
and above 1 MHz are generated from 2.5 and 25 MSPS 
raw spectrum data, respectively. In order to reduce the 
data output rate, averaging among the intensities of raw 
spectra at neighboring frequency steps is also performed. 
The EB mode is used around the perigee, where the elec-
tron cyclotron frequency is higher than 20 kHz and the 
magnetic field component of the chorus emissions can-
not be measured by WFC/OFA. In EB mode, Ev and Bγ 
are selected by input signal switch, and power spectrum 
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are obtained at 1-s intervals in order to obtain high-reso-
lution data of plasmapause structures.

In addition to editing the mission data packets, 
onboard software for the HFA is required to perform 
onboard automatic determination of UHR frequency 
using the HFA spectrogram. The determined UHR fre-
quency is provided to S-WPIA at an interval of 1  s for 
onboard determination of the expected velocity of the 
resonant electrons with observed chorus emissions.

Initial results
Radio and plasma waves during geomagnetically quiet 
and disturbed periods
Typical spectrograms of radio and plasma waves obtained 
by HFA during geomagnetically quiet period (March 26, 
2017; 0 ≤ Kp ≤ 2 ) and disturbed periods (March 27, 2017; 
2 ≤ Kp ≤ 6 ) are shown in Fig. 2a, b, respectively. In both 
spectrograms, UHR waves, auroral kilometric radiation 
(AKR), and whistler-mode waves were observed. During 
the disturbed period, we find not only more intense AKR 
and whistler-mode waves but also electrostatic cyclo-
tron harmonic (ESCH) waves and a nonthermal terres-
trial continuum (NTC) (Brown 1973; Gurnett and Shaw 
1973; Gurnett 1975). An expanded spectrogram of the 
ESCH waves is shown in Fig. 3. The ESCH emissions are 
found between the harmonics of electron cyclotron fre-
quencies. The appearance and enhancement of radio and 
plasma waves such as UHR, ESCH, and NTC waves in a 
frequency range covered by the HFA in geomagnetically 
disturbed conditions suggest that there are energetic elec-
trons that may be a free energy source of the plasma waves 
in the storm-time magnetosphere. It is therefore impor-
tant to perform a detailed comparison between HFA data 
and the energetic electron data obtained by Arase/LEP-e 
(Low-Energy Particle Experiments-Electron Analyzer) 
(Kazama et al. 2017) and Arase/MEP-e (Medium-Energy 
Particle Experiments-Electron Analyzer) (Kasahara et  al. 
2018a). An example of the spectrograms obtained in PP-1 
and EB modes is shown in Fig.  4. The AC electric field 
(|Eu|2 + |Ev|2 in PP-1 mode before 05:00 UT and |Ev|2 in 
EB mode after 05:00 UT) is indicated in Fig. 4a. The AC 
magnetic field (|Bγ|2 in EB mode) is indicated in Fig. 4b. 
Spectra of the electric and magnetic fields of the whistler-
mode wave above 10 kHz were observed by the HFA in EB 
mode. Example of the high-time resolution spectrogram 
obtained in PP-1 mode is shown in Fig. 5. The spacecraft 
passed through the plasmapause from 07:42 to 07:51 UT. 
We observe fluctuations in the UHR frequency at the 
plasmapause and fine structures in AKR.   

After confirming that the gains of Eu and Ev are 
the same in the EE-UV mode operation performed 
in initial check phase, we started the operation in 
EE-LR mode, in which the left- and right-handed 

Table 2 Frequency table of downlinked spectrum data

Step Frequency (MHz) Bandwidth (kHz)

0–129 0.0024–0.1599 1.2

130–179 0.1624–0.2820 2.4

180–229 0.2856–0.5249 4.9

230–279 0.5322–1.0107 9.8

280–328 1.0132–1.5991 12.2

329–378 1.6235–2.8198 24.4

379–428 2.8564–5.2490 48.8

429–478 5.3223–10.1074 97.7
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the radio and plasma waves are indicated in Fig.  6a, b, 
respectively. Since the polarization in the HFA observa-
tion is defined with respect to the anti-sunward direc-
tion, and the magnetic field is in the sunward direction 
in the northern hemisphere on the night side, the posi-
tive axial ratio (red) indicates left-hand polarization 
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Fig. 2 Typical HFA spectrogram obtained during geomagnetically quiet (a) and disturbed (b) periods
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with respect to the magnetic field; a negative axial ratio 
(blue) indicates right-hand polarization with respect to 
the magnetic field. AKR in a frequency range from 100 
to 500 kHz is found in the spectrograms. There are both 
polarized components below 300 kHz and right-handed 
component only above the 300 kHz. In addition, although 
some of left-handed components (red) below 300  kHz 
are masked by intense right-handed components (blue), 
left-handed components (red) below 300  kHz always 
accompany right-handed components (blue) with similar 
spectral structures above 300  kHz. In this observation, 
the spacecraft is around a geocentric distance of 5 RE and 
a geomagnetic latitude of +30°, and AKR from the south-
ern polar region cannot be observed due to shielding by 
the plasmasphere. Therefore, the AKR is considered to be 
from two different sources in the northern polar regions. 
One is the typical R-X mode AKR below 300  kHz, and 
the other is the fundamental L-O mode AKR below 
300  kHz, with the second-harmonic component in R-X 
mode as reported by several previous studies (Benson 
1982; Mellott et al. 1986). They are suggested to be gener-
ated depending on plasma density in AKR sources; when 
fpe/fce is less than 0.3, a high growth rate in R-X mode is 
expected. When fpe/fce is as large as 0.3, the growth rate 
in the fundamental L-O mode and second-harmonic R-X 
mode can be higher than that in the fundamental R-X 
mode (Wu and Qiu 1983; Melrose et al. 1984). The AKR 
from two sources at different locations is considered to 
be observed simultaneously probably due to the effects 

of mode filtering around the plasmasphere, as discussed 
by Hashimoto (1984). We also checked the survey plot of 
Cluster/WBD (Gurnett et  al. 1997) provided via http://
www-pw.physi cs.uiowa .edu/clust er/ and confirmed 
that the spectra of intense (probably right-handed) AKR 
observed by Cluster in the southern hemisphere are quite 
different from the spectra of left-handed AKR observed 
by Arase in the northern hemisphere. This also suggests 
that the left-handed AKR observed by Arase in the north-
ern hemisphere is not from the R-X mode AKR sources 
in the southern hemisphere. The start of EE-LR mode 
observation will bring us useful datasets for discussions 
on the plasma conditions, generation mechanisms at the 
AKR sources, and AKR propagation from the sources in 
the both northern and southern polar regions.

Datasets obtained in EE-LR mode will also be use-
ful with regard to discussions on not only AKR but also 
kilometric continuum (KC). Since KC is observed as L-O 
mode waves in most cases, KC is considered to be gener-
ated by the linear mode conversion processes in plasma 
density gradients around the plasmapause. On the other 
hand, Kalaee and Katoh (2016) reported that R-X mode 
KC are also observed by the Akebono satellite, suggest-
ing that R-X mode waves can be generated by nonlinear 
interactions between Z-mode waves and energetic elec-
trons based on simulations. Further discussion will be 
enabled by HFA EE-LR mode data and energetic electron 
data around the plasmapause obtained by Arase/LEP-e 
(Kazama et al. 2017) and MEP-e (Kasahara et al. 2018a).
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Fig. 3 Expanded spectrogram of ESCH waves. The harmonics of the electron cyclotron frequencies are indicated by white curves
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UHR frequency identification for derivation of electron 
number density
Electron number density is a key parameter in the dis-
cussion of structure and evolution of the plasmasphere, 
as well as the resonance conditions of electrons with 
plasma waves in the wave–particle interaction phenom-
ena. Because UHR frequency, the upper frequency of the 
UHR waves, depends on the plasma frequency fpe and 

electron cyclotron frequency fce, and because fce can be 
derived from magnetic field intensity measured by the 
Arase/Magnetic Field Experiment (MGF) (Matsuoka 
et  al. 2018), we can thus derive fpe and electron num-
ber density. While the derivation of the electron num-
ber density from UHR frequency and fce is quite easy, it 
is not easy to obtain the UHR frequency from the HFA 
spectrogram data. The first difficulty is that the number 
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Fig. 4 Example of the spectrograms obtained in PP-1 and EB modes. The AC electric field is indicated in a. The AC magnetic field is indicated in b. 
The electron cyclotron frequency is indicated by white curve
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of HFA spectrograms is too large for a manual trace of 
UHR emissions in the spectrogram. We usually obtain 
about six spectrograms between the apogee and perigee 
per day. If we use 10 min on average for a manual trace 
of UHR frequency in each spectrogram, 30 h of work is 
required for one month of HFA spectrogram data. This 
is not impossible but very difficult to execute with con-
stant quality by a human operator. The second difficulty 
is that there are cases in which UHR emissions are diffi-
cult to identify. Under geomagnetically quiet conditions, 
as shown in Fig.  2a, UHR emissions are easy to iden-
tify. However, under disturbed conditions, as shown in 
Fig. 2b, UHR emissions become difficult to identify, espe-
cially outside of the plasmasphere. Therefore, trials for 
full automatic identification of the UHR waves by com-
puter will require a significant amount of time and effort, 
and this does not seem to be a good approach for obtain-
ing the electron number density as early as possible.

In this study, we chose an approach with semiauto-
matic identification of UHR frequency by the computer 
and a human operator. First, we applied an algorithm for 
identification of the UHR frequency to the HFA spectro-
gram data. The algorithm was developed not to identify 
UHR frequency in all cases but to identify it in easy cases. 
Then, a human operator checked the identifications 
made by the computer and corrected them if needed. A 
similar approach was also used by Kurth et al. (2015) to 
identify UHR frequency in spectrograms obtained by the 
Van Allen Probe. They also mentioned that inspections 
and corrections by a human operator were necessary. 

They used an algorithm called AURA (automated upper 
hybrid resonance detection algorithm), which identifies 
the UHR frequency at the peak of the spectrum weighted 
by a Gaussian function whose peak is at the previously 
identified UHR frequency. Although the algorithm is 
quite simple, and seems sufficiently effective, we used 
another step-by-step algorithm so that we could arrange 
multiple criteria and parameters manually to improve 
UHR identification.

In the step-by-step algorithm used in this study, candi-
dates of UHR frequency in the spectrogram are selected 
by checking for several conditions. As a typical example, 
the result of UHR identification in the HFA spectrogram 
obtained on March 26, 2017, is shown in Fig. 7. In Step 
1, we prepared the spectrogram data with 479 frequency 
steps at an interval of 1 min (Fig. 7a). In Step 2, the emis-
sions with an intensity greater than 4 × 10−8  Vm−1Hz−1/2 
(10  dB above the noise level averaged over one spin 
period) in a frequency range above the electron cyclotron 
frequency were selected out as candidates of UHR fre-
quency (Fig. 7b). In Step 3, known artificial noises were 
removed (Fig. 7c). In Step 4, a median filter was applied 
to windows with a size of five frequency steps (Fig. 7d). 
In Step 5, the emissions with a bandwidth larger than 
200  kHz were removed (Fig.  7e). In Step 6, the upper 
limit frequency of the emissions was selected (Fig. 7f ).

In case of the spectrogram obtained on March 26, 
2017, under geomagnetically quiet conditions, the UHR 
frequency could be identified well by the algorithm men-
tioned above, as shown in Fig.  8a. However, in case of 
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Fig. 5 Example of the high-time resolution spectrogram obtained around the plasmapause in PP-1 mode
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spectrogram obtained on March 27, 2017, under geomag-
netically disturbed conditions, the UHR frequency could 
not be identified well by the same algorithm. Therefore, 
we performed manual corrections in cases such as this. 
As shown during the periods of 5:00–7:00, 8:00–9:00, 
15:00–16:00, and 18:00–19:00 UT in Fig.  8b, incorrect 
traces by the computer were retraced by the human oper-
ator. As shown during the periods of 13:00–15:00, and 

19:00–22:00 UT in Fig. 8c, UHR identification was often 
difficult, even by the human operator. In such cases, the 
human operator only performed removal of the incorrect 
traces by the computer.

The semiautomatic UHR identification mentioned 
above was applied to the HFA spectrogram datasets 
obtained from January to July, 2017. The electron num-
ber densities derived from the UHR frequency from the 
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HFA and electron cyclotron frequency from Arase/MGF 
as a function of L value are shown in Fig. 9. We find two 
distinct trends: One is with respect to the electron num-
ber density in the plasmasphere, and the other concerns 
that in the trough regions outside of the plasmapause, 
as reported by Sheeley et  al. (2001) based on CRRES 
(The Combined Release and Radiation Effects Satellite) 
observations. While most profiles of the plasmaspheric 
electron number density are within 7 RE, there are also 
some profiles extending to 8–8.5 RE. The nearest trough 
is around 2.5–3 RE, which seems to include the inner 
trough within the plasmapause. The dataset of electron 
number density inside and outside the plasmasphere dur-
ing several months obtained by Arase will be useful for 
discussions of the evolution of the plasmasphere. Several 

studies have suggested that some unusual electric fields 
appear in the storm-time inner magnetosphere, in addi-
tion to convection electric fields, as modeled by May-
nard and Chen (1975). Oya (1997) suggested the effects 
of betatron electric fields on the plasmaspheric struc-
tures based on UHR observations by the Akebono satel-
lite. Based on the statistical analyses of the electric field 
data obtained by the Akebono satellite, Nishimura et al. 
(2006) suggested that storm-time electric field compo-
nents appear around L = 3. They are considered to evolve 
depending not simply on geomagnetic indices such as 
Kp, Dst, and AE, but also with respect to the phases of 
geomagnetic storms. Further investigation of the evo-
lutions of plasmaspheric structures and the contribu-
tions of such storm-time electric fields on them will be 
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Fig. 7 Automatic determination of UHR frequency. a Spectrogram measured by HFA. b The emissions with an intensity greater than 4 × 10−8 
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Fig. 8 Comparisons of identified UHR frequency. a UHR frequency automatically determined under geomagnetically quiet conditions. b UHR 
frequency automatically determined under geomagnetically disturbed conditions. c UHR frequency after the manual correction of that in b 
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possible with electron number density datasets obtained 
from HFA observations. Since the perigee of the Arase is 
460 km, the dataset will be useful for studies of the top-
side ionosphere.

Conclusion
HFA is designed to (1) determine the electron number 
density around the spacecraft from the observation of 
UHR waves, (2) measure the electromagnetic field com-
ponent of the whistler-mode chorus in a frequency range 
above 20 kHz up to 100 kHz, and (3) observe radio and 
plasma waves excited by wave–particle interactions and 
mode conversion processes in a storm-time magneto-
sphere. AC electric fields Eu and Ev detected by WPT-S 
and the AC magnetic field Bγ detected by MSC are fed to 
the HFA. By applying analog and digital signal process-
ing in the HFA, the spectrograms of two electric fields 
(EE mode) or one electric filed and one magnetic field 
(EB mode) in a frequency range from 10 kHz to 10 MHz 
are obtained at an interval of 8 s. For the observation of 
plasmapause, the HFA can also be operated in PP mode, 
in which spectrograms of one electric field component 
below 1 MHz are obtained at an interval of 1  s. During 
the initial HFA operations from January to July, 2017, 
the following results were obtained: (1) UHR wave, AKR, 
whistler-mode chorus, ESCH wave, and NTC radiation 
could be observed by HFA. Their intensity depended 
upon geomagnetic conditions. (2) During the test opera-
tion in EE-LR mode on June 10, 2017, the fundamental 
R-X and L-O mode AKR and the second-harmonic R-X 
mode AKR from different sources in the northern polar 
region were observed. (3) A semiautomatic UHR fre-
quency identification by the computer and a human 

operator was applied to the HFA spectrograms obtained 
from January to July, 2017. In the identification by the 
computer, we used an algorithm for narrowing down the 
candidates of UHR frequency that included an inten-
sity check, removal of the known noises, median filter, 
and bandwidth check. After identification by the com-
puter, the identified UHR frequency was checked and 
corrected, if needed, by the human operator. From the 
determined UHR frequency, electron number density in 
the plasmasphere and trough regions outside of the plas-
mapause from January to July, 2017, was derived, which 
were similar with those reported in the previous studies 
(Sheeley et al. 2001).

The algorithm and parameters used in the automatic 
part of UHR identification will be used in the HFA opera-
tion for providing electron number density to S-WPIA, 
which is being tested. Electron number density obtained 
from semiautomatic UHR identification will be essential 
for analyses of wave–particle interactions between the 
whistler-mode chorus and energetic electrons, which is 
a focus of the Arase mission. In addition, the dataset of 
electron number density will be useful for investigating 
storm-time evolutions of the plasmasphere and topside 
ionosphere.
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