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Abstract 

Real magnetotelluric (MT) data errors are commonly correlated, but MT inversions routinely neglect such correla-
tions without an investigation on the impact of this simplification. This paper applies a hierarchical trans-dimensional 
(trans-D) Bayesian inversion to examine the effect of correlated MT data errors on the inversion for subsurface 
geoelectrical structures, and the model parameterization (the number of conductivity interfaces) is treated as an 
unknown. In the inversion considering error correlations, the data errors are parameterized by the first-order autore-
gressive (AR(1)) process, which is included as an unknown in the inversion. The data information itself determines the 
AR(1) parameter. The trans-D inversion applies the reversible-jump Markov chain Monte Carlo algorithm to sample the 
trans-D posterior probability density (PPD) for the model parameters, model parameterization and AR(1) parameters, 
accounting for the uncertainties of the model dimension and data error correlation in the uncertainty estimates of 
the conductivity profile. In the inversion ignoring the correlation, we neglect the correlation effect by turning off the 
AR(1) parameter. Then the correlation effect on the MT inversion can be examined upon comparing the posterior 
marginal conductivity profiles from the two inversions. Further investigation is then carried out for a synthetic case 
and a real MT data example. The results indicate that for strong correlation cases, neglecting error correlations can 
significantly affect the inversion results.
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Introduction
Magnetotelluric (MT) data inversions are widely car-
ried out to understand the subsurface geoelectrical 
structure with applications such as geothermal inves-
tigations (Heise et  al. 2008; He et  al. 2016), exploration 
for ore deposits (Zhang and Chouteau 1992) and hydro-
carbon reservoirs (He et al. 2010), and tectonic imaging 
(Becken and Ritter 2012; Espurt et  al. 2014; Goto et  al. 
2005). MT inversions are commonly conducted based 
on the assumption that the data errors are uncorrelated 
either over frequencies or over space with the considera-
tion of variances (not covariances) in the inversion (e.g., 
Yoshimura et  al. 2018; Grayver 2015; Guo et  al. 2011; 
Usui et  al. 2016; Wheelock 2012). This simplification 
makes the calculation of the data misfit function easier 

and more efficient. For example, many studies utilize only 
diagonal elements (variances) of the data covariance 
matrix to construct the weighting matrix for data misfit 
calculations (e.g., Grayver 2015; Guo et  al. 2011), while 
other studies treat all errors as providing equal contri-
butions to the inversion by employing identical data 
variances (Lee et  al. 2009). The validity of these simpli-
fications depends on how strongly the correction of the 
data errors affects those errors.

It is well known that MT transfer functions estimated 
from the variations of horizontal electromagnetic fields 
can include frequency- and spatially correlated noise. Fre-
quency-correlated noise can arise from the data measure-
ment process (Egbert 1997; Eisel and Egbert 2001) and the 
simplified error statistics used in the inversion (e.g., due 
to the idealized physics of source and forward models and 
the simplified parameterizations of the Earth models). 
Relative to frequency-correlated errors, spatially corre-
lated errors have been studied more extensively (Goubau 
et al. 1978; Gamble et al. 1979; Goubau et al. 1984). Even 

Open Access

*Correspondence:  liurongkaoyan@126.com
1 School of Geosciences and Info-physics, Central South University, 
Lushan Road South 932, Changsha 410083, China
Full list of author information is available at the end of the article

http://orcid.org/0000-0003-2937-4658
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40623-019-1118-3&domain=pdf


Page 2 of 13Guo et al. Earth, Planets and Space          (2019) 71:134 

with the most advanced data processing techniques, it is 
impossible to completely eliminate such errors from esti-
mated MT transfer functions (Ritter et  al. 1998; Weck-
mann et  al. 2005). Due to these ubiquitous correlations, 
it is worthwhile to closely investigate their effect on MT 
inversions, which is the major goal of this paper.

The importance of properly handling correlated errors 
in inversions has been demonstrated in the literature 
(Sambridge 1999; Agostinetti and Malinverno 2010; 
Dosso and Dettmer 2011) based on point estimate inver-
sions. While quantitatively evaluating the effect of error 
correlations on inversion results can be nontrivial in sin-
gle best-fit model inversions (Backus 1970; Oldenburg 
1983), Bayesian inversions can easily consider the error 
correlation effect in the estimates of nonlinear parameter 
uncertainties, providing a natural scheme to assess such 
effects on the inversion results. For example, the effects of 
error correlations in the inversion of ocean acoustic data 
for seabed geoacoustic parameters with a known model 
parameterization were examined by Dosso et  al. (2006) 
and Huang et  al. (2007), who found that the inversion 
results are strongly affected by neglecting those correla-
tions, producing significantly underestimated parameter 
uncertainties. In fixed-dimensional MT Bayesian inver-
sions, the impacts of both frequency- and spatially cor-
related noise on the inversion results (both parameter 
estimates and parameter uncertainties) were extensively 
investigated (Guo et  al. 2014). Their work indicates that 
ignoring the correlated noise in an inversion can result in 
a potentially serious bias on the parameter estimation and 
an unrealistic underestimation of the parameter uncer-
tainties; thus, the results should not be used routinely 
without a close examination.

Due to its ability to account for uncertainties in model 
parameterizations, the trans-dimensional (trans-D) 
Bayesian inversion technique (Mandolesi et  al. 2018; 
Blatter et al. 2019), in which the model dimension is con-
sidered unknown and determined in the inversion based 
on the data and prior information, has recently become 
a common approach for Bayesian inversion applications. 
In the more general Bayesian inversion scheme, while 
the literature (Bodin et  al. 2012; Gehrmann et  al. 2015) 
focuses on estimating the data error correlation based 
on data residuals in the inversion, some authors (Dett-
mer et  al. 2012; Ray et  al. 2013b) reexamined the data 
error correlation effect on the inversion results for geo-
physical applications. Neglecting correlated errors leads 
to inversion results with underestimated uncertainties, 
multimodal marginals and abundant dubious structures 
(Ray et  al. 2013a). Fortunately, these phenomena can 
be handled properly by considering data error correla-
tions in trans-D inversions using parametric AR models 
(Warner, et  al. 2015; Steininger et  al. 2013, Xiang et  al. 

2018), described by relatively few numbers of low-order 
AR parameters, which are also treated as unknown and 
are sampled trans-dimensionally as model parameters in 
the inversion. However, due to the common practice of 
neglecting error correlations in MT inversions, an exami-
nation of the effect of ignoring the correlation on the 
inversion results for a more general trans-D MT Bayes-
ian inversion (treating the data error as an unknown) is of 
practical importance, as the topic has not yet been inves-
tigated in the literature and is the focus of this paper.

In this paper, a quantitative examination of the effect of 
neglecting error correlations over a range of frequencies is 
performed based on a trans-D Bayesian inversion, in which 
the uncertainty of the model parameterization is accounted 
for in the posterior and is thus included in the uncertainties 
of the inversion results. This is accomplished by compar-
ing the marginal probability profiles of the conductivity for 
inversions based on sampling over the trans-D AR model 
space and sampling of the data variance (i.e., with and with-
out accounting for data error correlations). An advanced 
reversible-jump Markov chain Monte Carlo (rjMCMC) 
sampling algorithm is applied to sample the multiple model 
subspaces of different dimensions, by employing tech-
niques such as parallel tempering (Jasra et al. 2007; Dosso 
et  al. 2012; Dettmer and Dosso 2012; Sambridge 2013), 
principal component (PC) space parameter perturbations, 
and birth proposals from the prior (Dosso et al. 2014; Xiang 
et al. 2018). Data errors are parameterized by the first-order 
AR process (denoted AR(1) in this paper) and sampled 
trans-dimensionally in the inversion considering the error 
correlation while fixing AR(1) at 0 in the cases where the 
error correlation is neglected.

Inverse theory and algorithms
Trans‑D Bayesian formulation
In the trans-D Bayesian approach, the model of unknown 
parameters mk with Mk dimensions and data d with N 
dimensions are related by Bayes’ rule as follows (Green 
1995; Sambridge et  al. 2006; Dosso et  al. 2014; Xiang 
et al. 2018)

where the denominator is the total evidence, that is the 
integral over all k-dimensional models mk and over all 
discrete values k. In Eq.  (1), P(k)P(mk |k) denotes the 
prior information of the state (k ,mk) , and P(d|mk , k) 
denotes the data information, which can be interpreted 
as the likelihood of (k ,mk) given (fixed) observed data 
d. The denominator on the right side of Eq.  (1) repre-
sents the total evidence of the set of models. On the 
left side, P(k ,mk |d ) is the posteriori probability density 
(PPD), defined over the trans-D model space (k ,mk) , 

(1)

P(k ,mkd) =
P(k)P(mk |k)P(d|mk , k)

∑

k ′∈K ∫Mk′
P(k ′)P(m′

k ′
|k ′)P(d|k ′,m′

k ′
) dm′

k′
,
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providing the most general solution to the Bayesian 
inverse problem.

Due to the variable parameterization in a trans-D 
inversion, the results are typically considered in terms of 
profiles of the parameter of interest. For instance, for a 
depth-dependent MT inversion, the results can be con-
sidered in terms of the marginal probability profile of 
the conductivity computed at a given depth z by finding 
the histogram of all sampled conductivities at depth z by 
a trans-D Markov chain method (see “Reversible-jump 
MCMC sampling” section).

Reversible‑jump MCMC sampling
By generalizing the Metropolis–Hastings criterion, tran-
sitions from the current state (k ,mk) of the chain to a 
proposed state (k ,mk) are accepted with the probabil-
ity given by the Metropolis–Hastings–Green criterion 
(Green 1995)

where |J| is the determinant of the Jacobian matrix for a 
diffeomorphism from (k ,mk) to ( k ′,m′

k ′
 ). The reversible-

jump MCMC algorithm is commonly implemented by 
the birth–death scheme in practical applications (Green 
1995; Malinverno 2002; Sambridge et  al. 2006; Dosso 
et  al. 2014). The birth–death scheme applied here is 
based on a layered geoelectrical partition model (Xiang, 
et al. 2018), the parameters of which consist of k interface 
depths zk above a maximum depth zb (such that the data 
are insensitive to the conductivity below this depth), and 
the conductivity σ of each of the k + 1 layers. The conduc-
tivity of a layer is associated with its lower interface, and 
the deepest layer represents a uniform half-space. The 
prior for σ is taken to be (logarithmically) uniform over 
a bounded interval [ σmin; σmax]. The prior for the num-
ber of interfaces k is also uniform over a bounded interval 
[kmin; kmax]. In the birth–death scheme, one of three types 
of steps (perturbation, birth and death) is applied at each 
iteration. The perturbation step applies perturbations to 
the current parameters, without a change in the model 
dimension (k is unchanged). In the birth step, a new layer 
interface is generated randomly over [0, zb], increasing k 
by 1, and the conductivity parameter of the new layer is 
drawn from some distributions (e.g., a Gaussian distri-
bution). A death move randomly selects and deletes an 
existing layer, decreasing k by 1; the conductivity param-
eter of the new, thicker layer is set to that below the 
removed interface. The above birth–death scheme leads 
to a unit determinant of the Jacobian matrix J (Green 
1995).

(2)

A
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|J|

]

,

If the parameters for the birth steps are proposed from 
the prior, the Metropolis–Hastings–Green criterion for 
perturbation, birth and death reduces to (Dosso et al. 2014)

In this paper, an advanced sampling algorithm based 
on the application of a parallel tempering technique, 
and efficient proposals for perturbation and birth steps 
is used to examine the effect of ignoring data error cor-
relations in inversions. The parallel tempering technique 
(Jasra et al. 2007; Dosso et al. 2012) employs a series of 
parallel interacting Markov chains with successively 
relaxed likelihood functions to achieve a reasonable 
acceptance rate for the birth/death steps and to transit 
between multiple modes, which may exist for nonlin-
ear problems (particularly in high-dimensional param-
eter subspaces). The parameter perturbation is carried 
out in the principal component (PC) space (Dosso et al. 
2014), defined by the eigenvectors of the unit-lag model 
covariance to overcome the inefficient sampling problem 
caused by parameter correlations. The proposal for the 
birth step originates from the parameter uniform prior, 
as proposed by previous study (Dosso et  al. 2014); this 
approach has been verified to be more efficient in MT 
Bayesian inversion (Xiang et al. 2018) than in other local-
ized distributions (e.g., the Gaussian distribution).

Trans‑D autoregressive data error model
To carry out trans-D Bayesian inversions, the data error 
distribution, P(d|mk , k) , must be specified. However, due 
to the complicated sources of errors (including errors in 
the measurement and theory), the specific form of this dis-
tribution is typically unknown. In practice, a simple mul-
tivariate (complex) Gaussian distribution can generally be 
applied based on the central-limit theorem (Dettmer et al. 
2012; Steininger et al. 2013; Xiang, et al. 2018), given by

where Cd is the data covariance matrix, d(k ,mk) presents 
the modeled data, and * is the conjugate transpose. For 
uncorrelated data errors, the data covariance Cd is diag-
onal with elements representing the data variances. For 
data contaminated with correlated noise, Cd is generally 
not diagonal, and the off-diagonal elements quantify the 
correlations between errors (e.g., at different frequen-
cies). In most geophysical inversions, the data error cor-
relation (i.e., the off-diagonal terms of Cd ) is routinely 
ignored without justification.

(3)AP,B,D

(

k ′,m
′

k ′ |k ,mk

)

= min

[

1,
L
(

k ′,m
′

k′

)

L(k ,mk )

]

.

(4)

P(d|mk , k) =
1

πN |Cd |
exp

(

−(d − d(k ,mk))
∗

C−1

d (d − d(k ,mk))

)

,
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In this section, we apply the AR(1) process to model 
the error correlations between frequencies. Note that 
while it is possible to consider higher-order AR pro-
cesses to model errors, our experience is that great care is 
required beyond the first order as higher-order processes 
can be sufficiently general to model the informative data 
structure rather than just errors, degrading the inversion 
results. In the AR(1) model, the data can be written as

where εi is the uncorrelated Gaussian random error for 
data point i, and

is the correlated error component which depends on the 
AR(1) parameter a and d1(a) = 0 (assuming the correla-
tion process begins with the first datum). Mathematically, 
a is limited to [− 1, 1], with positive values indicating 
errors with serial correlation and negative values indi-
cating anticorrelation. Assuming that we have removed 
the correlation part of the error  di(a), Cd is the diagonal 
data covariance matrix with only elements composed of 
variances. For generality, the covariance matrix is further 
treated as Cd = s2C′d, where C′d includes the prelimi-
nary relative data variance estimates and s is an unknown 
scale factor for all data (Xiang et al. 2018). To include the 
AR(1) model in an inversion, the likelihood in Eq. (4) can 
be rewritten in the form

where s and a are hyperparameters included in the inver-
sion. An implicit sampling method is applied here for the 
scale factor s (see Xiang et al. 2018 for more details). Dur-
ing sampling, the AR(1) process is applied (turned on) if 
needed (e.g., by the data), but this process is not applied 
(turned off) if it is unnecessary; this is performed to avoid 
overparameterizing the error model. For the parallel tem-
pering technique (Xiang et  al. 2018) used in this paper, 
an arbitrary sampling temperature T ≥ 1 can be used, and 
the likelihood is relaxed by 1/T.

(5)di = di(k ,mk)+ di(a)+ εi, i = 1, . . . ,N ,

(6)di(a) = a(di−1 − di−1(k ,mk)),

(7)

P(d|mk , k) =
1

πN s2
∣

∣C
′

d

∣

∣

exp
(

−(d − d(k ,mk)− d(a))∗

(s2C
′

d)
−1(d − d(k ,mk)− d(a))

)

Synthetic test case
In this section, an eight-layer model is considered to 
examine the correlation effect on MT Bayesian inver-
sions with both the model parameterization and the data 
error parameterization unknown (the true model is listed 
in Table 1 and the considered AR(1) parameters are 0.3 
and 0.8). Synthetic impedance data are generated at 40 
logarithmically spaced periods from 0.0025 to 250 s with 
the addition of 2% correlated Gaussian-distributed noise. 
The priors applied in the inversion are uniform distribu-
tions in the range [1, 30] for the parameterization index 
number k, and the range [− 5, 1] S m−1 for the log con-
ductivity; the maximum penetrating depth is set to zb 
= 100  km. The prior information for AR(1) is set to be 
uniform on [− 0.5, 1], and the state space of the AR error 
process is given to be [0, 1] (i.e., AR(0) and AR(1)). A total 
of 5 chains are applied in the parallel tempering scheme 
with temperatures of  Ti = 1.5(i−1), i = 1,…,5. The sampling 
starts at a best-fit model solution from a fixed-D MT 
inversion using a nonlinear optimization method. Then 
a burn-in process (typically consisting of several tens of 
thousands of samples) is applied, after which samples of 
untempered (T = 1) MCMC chains are used to calculate 
the PPD properties. Convergence of the chain is veri-
fied by comparing the conductivity marginal probability 
profiles computed from two-thirds of the samples with 
those computed for all samples (no significant difference 
indicates a convergence, typically reached at several tens 
of millions of samples). The acceptance rates in the sam-
pling for each step are adjusted to be approximately 30%.

As a general MT inversion, we treat both the model 
parameterization and the data error model as unknowns 
supported by the data. The effects of data error correla-
tions on trans-D inversions are examined by comparing 
the marginal profiles of the conductivity for an inversion 
considering the AR(1) model for the data errors with 
those considering a model ignoring data error correla-
tions. The inversion results in terms of the marginal pro-
files for the interface depth and conductivity are shown 
in Fig. 1.

In general, when correlated errors are considered in 
the inversion, the conductivity marginal profiles cap-
ture the features of the true model very well, whereas 
ignoring the correlation in the inversion leads to 

Table 1 The true parameters of the eight-layer model

Layer 1 2 3 4 5 6 7 8

Conductivity (S m−1) 0.0004 0.001 0.01 0.1 0.01 0.04 0.1 0.4

Thickness (m) 600 800 800 1200 3600 2000 2000 Half-space
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structures with a very spurious resolution. In the case 
with a correlation of 0.3, ignoring the error correla-
tion (Fig.  1b) tends to produce unjustified and slightly 
varying conductivity structures at great depth. In the 
case with a correlation of 0.8, ignoring the correla-
tion in the inversion (Fig.  1d) leads to an incorrectly 
fine resolution for structures in the second layer and 
in the sixth and seventh layers. When the correlated 
errors are considered, the conductivity uncertainties 
are reasonably resolved. Ignoring the correlation in 
the inversion produces a conductivity marginal pro-
file with slightly smaller uncertainties for most layers, 
and thus, the profile pretends to exhibit data that con-
tain more information about the model structure then 
are actually contained therein. The large uncertainty 
for the fifth layer can be understood as the insensitiv-
ity of a relatively low conductivity structure to the data, 
as the layer sits within a conductor. When the corre-
lated errors are considered, the marginal profile for the 

interface depth shows that most interfaces are resolved 
with reasonable uncertainties and there is some sen-
sitivity to the second layer interface and eighth layer 
interface, although the general form of the conductivity 
profile is well resolved. For the inversion that does not 
consider error correlations, the probabilities of most 
interfaces present results similar to the conductivity 
marginal profiles.

The predicted data density plots calculated using the 
model ensemble from the trans-D PPD are shown in 
Fig. 2. When correlated errors are ignored, the predicted 
data uncertainties for both the real and the imaginary 
parts of the impedance data are smaller than those con-
sider error correlation in the inversion.

The effect of including an AR model in the inversion is 
examined by posterior analysis of the normalized total 
residual, defined by

Fig. 1 Marginal profiles of the interface depth and conductivity for the eight-layer case from the inversions (a, c) with and (b, d) without 
considering error correlations. The upper panels are for the AR(1) parameter a = 0.3, and the lower panels are for a = 0.8. Solid lines show the true 
values
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Density maps of the data residuals normalized by the 
sample standard deviations based on the posterior are 
shown in Fig. 3. In the cases with correlations of 0.3 and 
0.8, when correlated errors are ignored, the data residuals 
for both the real and the imaginary parts of the imped-
ance data are much larger than those considering error 
correlations in the inversion. The test runs for the ran-
domness of the residuals indicates that, in the case with 
a correlation of 0.3, 93% of the real residuals and 99% of 
the imaginary residuals support the null hypothesis (by 
applying the AR(1) model in the inversion), compared to 
49% and 78%, respectively, for the inversion without con-
sidering the effect of error correlations; in the case with a 
correlation of 0.8, 98% and 99% of the real and imaginary 
residuals, respectively, support the null hypothesis for the 
inversions considering error correlations compared to 0% 

(8)ri =
di − di(k ,mk)− di(a)

si

and 0%, respectively, for the inversions without including 
the correlation.

The marginal distributions for the number of interfaces 
k in the cases with correlations of 0.3 and 0.8 are shown 
in Fig.  4, which shows that the probability distribution 
for the index k is not well constrained by the data with a 
heavy right tail. For both cases, the minimum number of 
interfaces is 4, and the probability peaks at approximately 
10, which is close to the number of interfaces of the true 
model. When correlated errors are ignored, the uncertain-
ties in the number of interfaces of the model (8 layers) are 
larger than those in inversions considering error correla-
tions for the cases with correlations of both 0.3 and 0.8.

A summary of the inversion results for the data errors 
at T = 1 is shown in Fig. 5. The inversion results for the 
AR(1) parameters peak at approximately 0.5 and 0.75 
for the cases with correlations of 0.3 and 0.8, respec-
tively, which both slightly deviate from the true val-
ues. Using the AR(1) parameters to represent the noise 

Fig. 2 Densities of the predicted data for the eight-layer model from the posterior samples for the inversions (a, c) with and (b, d) without 
considering error correlations. The upper panels are for the AR(1) parameter a = 0.3, and the lower panels are for a = 0.8. Circles with error bars 
represent the noisy synthetic data
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in the inversion leads to a high percentage of AR(1)-on 
rjMCMC samples for both cases, and the t test for the 
AR(1) parameter produces tamax = 4.21 in the case with 

a 0.3 correlation and tamax = 20.93 in the case with a 0.8 
correlation, indicating that the AR(1) parameter is sig-
nificant. Hence, by including the AR(1) parameters in 

Fig. 3 Density maps of the posterior data residuals normalized by sample standard deviations for the eight-layer model from the inversions (a, c) 
with and (b, d) without considering error correlations. The upper panels are for the AR(1) parameter a = 0.3, and the lower panels are for a = 0.8

Fig. 4 1D marginal distributions of the number of interfaces k and the data misfit for the eight-layer model from the inversions (a, c) with and (b, 
d) without considering error correlations. The upper panels are for the AR(1) parameter a = 0.3, and the lower panels are for a = 0.8. Dotted lines 
represent true interfaces
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the inversion, the recovered error scale hyperparameter s 
tends to be larger than both the true value and the values 
obtained by ignoring the error correlation.

Real application
This section considers the measured COPROD1 MT data 
(Jones and Hutton 1979), which have been used widely as 
a 1D inversion example (e.g., Constable et al. 1987; Guo 
et al. 2011; Guo 2011). These data are composed of MT 
impedance responses at 15 periods from 28.5 to 1960.7 s. 
The standard data errors given by Constable et al. (1987) 
are used here. The model is taken to represent the log 
conductivity to determine the structure over several 
orders of magnitude. Bounded uniform priors are applied 
over  [10−5, 1] S m−1 for the conductivity, and the maxi-
mum penetrating depth is set to zb= 1000 km. The num-
ber of interfaces k is taken to be a uniform distribution 
over the range [1, 30], the prior information for AR(1) 
is set to be uniform on [− 0.5, 1], and the state space 
of the AR error process is given to be [0, 1] (i.e., AR(0) 
and AR(1)). A total of 5 chains are applied in the parallel 
tempering scheme, where the temperatures  Ti = 1.5(i−1), 
i = 1,…,5 are used in the synthetic case.

First, the results of the trans-D inversion are consid-
ered in terms of the interface probability densities and 

marginal profiles for the conductivity, as shown in Fig. 6. 
The interface marginal profiles show poor resolutions at 
the layer interfaces, probably due to the diffusive nature 
of electromagnetic waves. However, the marginal profile 
of the conductivity illustrates a general four layer model; 
large interface-depth uncertainties are observed for the 
first and second recovered layers, and thus, the interface 
profile density is indistinguishable between these lay-
ers. The model indicated in the conductivity marginal 
profile consists of an upper resistive layer approximately 
10  km thick above a relatively high conductivity layer 
(approximately 10–60  km) and a resistive layer. Below 
approximately 400  km, the probability density becomes 
multimodal with two possibilities: either the resis-
tive layer extends to 1000 km or there is a transition to 
a somewhat more conductive half-space, the latter is 
consistent with the results inferred by Guo et al. (2011). 
The conductivity uncertainties are quite large over the 
uppermost ~ 10  km, probably caused by the poor high-
frequency coverage for the COPROD1 data. The data 
resolve the structure at an intermediate depth with rela-
tively small uncertainties between ~ 10 km and ~ 400 km 
but poorly constrain the deeper structure. The results for 
the inversions with and without considering error corre-
lations are almost identical.

Fig. 5 Posterior error results for the eight-layer model. a, d are the 1D marginal distributions for the first-order autoregressive parameter a and error 
scale hyperparameter s, respectively. Solid line and dashed lines show the results for a = 0.3 with and without considering the error correlation, 
respectively, and the dashed-dotted lines and lines with asterisks are for a = 0.8. b, c indicate portions of AR(1)-on and AR(1)-off rjMCMC samples for 
a = 0.3 and a = 0.8, respectively. Dotted lines represent true values
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The predicted data density plots calculated using the 
model ensemble from the trans-D PPD are shown in 
Fig. 7. When correlated errors are ignored, the predicted 
data uncertainties for both the real and the imaginary 
parts of the impedance data are almost the same as those 
of the inversions that consider error correlations.

The density plots of the data residuals normalized by 
the sample standard deviations for the model ensemble 
from the posterior are shown in Fig.  8. When corre-
lated errors are ignored, the data residuals for both the 
real and the imaginary parts of the impedance data are 
slightly larger than those of the inversions that consider 
error correlations. The test runs for the randomness of 
the residuals indicate that 97% of the real residuals and 
99% of the imaginary residuals support the null hypoth-
esis (after applying the AR(1) model in the inversion), 
compared to 98% and 99%, respectively, for the inver-
sion without considering the effect of error correlation. 
This indicates that the data noise follows a Gaussian 

distribution without significant correlations between 
each data point, which may explain why the results in 
Figs. 6, 7 for the inversions with and without consider-
ing error correlations are almost the same.

Figure  9 shows the marginal density distribution for 
the number of interfaces k and data misfit. The peak of 
the marginal density for index k is at approximately 6, 
and the uncertainty is large due to the insensitivity of 
the MT data to the interface, as observed in the litera-
ture for MT problems (Xiang et al. 2018).

A summary of the inversion results for the data errors 
at T = 1 is shown in Fig. 10. The inversion results for the 
AR(1) parameter peak at approximately 0, again indi-
cating that the data errors are mostly independent. The 
t test for the AR(1) parameter produces tamax = − 0.19 
indicating that the AR(1) parameter is insignificant. 
Using the AR(1) process to represent the noise in the 
inversion leads to a relatively low percentage of AR(1)-
on rjMCMC samples, probably due to the insignificant 

Fig. 6 Marginal profiles of the interface depth and conductivity for the COPROD1 data from the inversions (a) with and (b) without considering 
error correlations
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error correlation present in the data. The error scale 
hyperparameter s is narrowly constrained, indicating 
that the data are sensitive to s for both the inversions 
with and the inversions without considering error cor-
relations. Their marginal distributions are almost the 
same with peaks at approximately 0.76.

Conclusions
In this paper, a trans-D Bayesian method is applied to 
investigate the data error correlation effect on the inver-
sion of MT data for subsurface conductivity structures. 
To avoid unnecessary complexity in the error model, 
the error process is parameterized by the first-order 
AR process. In hierarchic Bayesian inversions, the AR 
parameters are treated as unknowns and are included as 
hyperparameters that are sampled by the trans-D algo-
rithm over the prior subspace (e.g., AR(0) and AR(1) are 
used in this paper). The limited knowledge on the data 

Fig. 7 Densities of the predicted data from the posterior samples for the inversions (a) with and (b) without considering the AR(1) process. Circles 
with error bars represent the COPROD1 data

Fig. 8 Probability density plots of the posterior data residuals 
normalized by the sample standard deviations for the inversions (a) 
with and (b) without considering error correlations
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error parameterization can be quantified in the posterior 
model uncertainty estimates. Ignoring the serial correla-
tion certainly affects the model uncertainty estimation 
and model estimates in an unknown way since additional 
model structures are required to fit the correlated part of 
the data. Thus, inversions with AR(1) models and without 
considering error correlations are compared to examine 
the effect of neglecting the correlation on the inversion 
results.

The above inversion approaches are applied to an 
eight-layer synthetic model and to the measured 
COPROD1 MT dataset. In both cases, the data can 
resolve both the model parameterization and the data 
error parameterization with reasonable uncertainties, 
indicating that the data contain enough information 

about the model and data error parameterizations as 
well as the model information. For the synthetic cases, 
ignoring the data error correlations leads to a general 
underestimation of the model uncertainties and overfit-
ting of the data. When ignoring the serial correlations 
in data errors, the inversion for the case with a correla-
tion of 0.3 tends to produce deeper small-scale struc-
tures to account for error correlations; for the synthetic 
data with a correlation of 0.8, the inversion results from 
the case neglecting the correlation lose resolution for 
the second layer, and the sixth and seventh layers of 
the true model. For the COPROD1 MT data, the recov-
ered AR(1) parameter peaks at 0, indicating that the 
data error correlation is essentially weak. The inversion 
results for the data with and without considering error 

Fig. 9 1D marginal distributions for the number of interfaces k and data misfit for the inversions (a) with and (b) without considering error 
correlations
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correlations are almost identical except for a slight 
underestimation of the model uncertainty when simply 
ignoring the correlation effect.
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