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Abstract 

Magnetotelluric (MT) method is widely used for revealing deep electrical structure. However, natural MT signals are 
susceptible to cultural noises. In particular, the existing data-processing methods usually fail to work when MT data 
are contaminated by persistent or coherent noises. To improve the quality of MT data collected with strong ambient 
noises, we propose a novel time-series editing method based on the improved shift-invariant sparse coding (ISISC), a 
data-driven machine learning algorithm. First, a redundant dictionary is learned autonomously from the raw MT data. 
Second, cultural noises are reconstructed using the learned dictionary and the orthogonal matching pursuit (OMP) 
algorithm. Finally, the de-noised MT data are obtained by subtracting the reconstructed cultural noises from the raw 
MT data. The synthetic data, field experimental data and measured data are tested to verify the effectiveness of the 
newly proposed method. The results show that our new scheme can effectively remove strong cultural noises and 
has better adaptability and efficiency than the predefined dictionary-based methods. The method can be used as an 
alternative when a remote reference station is not available.
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Introduction
The magnetotelluric (MT) method employs natural elec-
tromagnetic fields as sources, reaching a prospecting 
depth of 600 km or more (Simpson and Bahr 2005; Garcia 
et al. 2015). It is a popular and indispensable method for 
deep mineral resources exploration and electrical con-
ductivity structure probing of the Earth (Guo et al. 2019). 
However, natural MT signals are weak, non-stationary 
and broadband in frequency, and therefore susceptible 
to cultural noises (Cai et  al. 2009; Neukirch and Garcia 
2014). As the proportion of urbanization continues to 
increase, the distribution of cultural noises is becoming 
wider and wider, which severely limits the application of 
the MT method.

Methods to deal with MT noises are mainly include 
remote reference (RR) technique (Gamble et  al. 1979), 
robust statistic estimate (Egbert 1986, 1997; Garcia and 
Jones 2008) and signal–noise separation in time domain 
(Trad and Travassos 2000; Neukirch and Garcia 2014). 
With the development of urbanization, the construction 
of remote reference stations becomes more and more dif-
ficult. The remote reference technique often fails in noisy 
environments because it only works if the noise is inco-
herent between local and remote reference stations. This 
assumption is increasingly violated due to the large-scale 
construction of infrastructure (rail networks, pipelines, 
power systems, industrial and mining enterprises, etc.). 
Robust statistic estimate method requires that most of 
the data should be noise-free, while some types of noise 
are persistent and appear during the entire observation 
process. In this case, the robust statistic method may 
lead to worse results (Escalas et al. 2013; Campanya et al. 
2014; Larnier et al. 2016; Tang et al. 2018).

By removing noises in time domain, the time-series 
editing methods can directly and effectively improve 
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the quality of MT data (Trad and travassos 2000; Tang 
et  al. 2013, 2018; Neukirch and Garcia 2014; Larnier 
et  al. 2016). The most representative time-series editing 
method is the wavelet transform-based scheme. Math-
ematical morphological filtering, empirical mode decom-
position and combinations between them are also used 
for MT time-series editing (Cai 2016; Li et  al. 2017). 
However, the time domain signal–noise separation meth-
ods mentioned above have the risk of losing effective sig-
nals, especially the low-frequency signal (Li et al. 2020). 
In other words, no matter the time-series segment being 
processed is clean or noisy, some components will be 
removed if using the methods mentioned above (Li et al. 
2018).

To solve this problem, sparse representation was 
applied to MT signal processing (Tang et al. 2017; Li et al. 
2017). By designing a redundant dictionary (or called 
over-complete dictionary, see details later) that matches 
with cultural noises but is not sensitive to useful MT 
signals, cultural noises can be effectively removed while 
retaining useful signals. However, cultural noises in the 
measured data are complex and diverse. Predesigned 
redundant dictionaries have obvious limitations. For 
instance, a simple redundant dictionary can only effec-
tively deal with a certain type or a few types of noises. 
Besides, a complex redundant dictionary is time consum-
ing because the number of atoms (each column in the 
dictionary is an atom) in the dictionary is too large.

Olshausen and Field (1996) used self-learned diction-
aries for sparse representations of natural images, and 
since then self-learned dictionaries have received wide-
spread attention. Shift-invariant sparse coding (SISC) is 
a data-driven machine learning algorithm (Blumensath 
and Davies 2005, 2006). It learns the feature structures 
(the so-called redundant dictionary) autonomously from 
a given sample set and uses convolution as a shift opera-
tor to conveniently represent multiple features with one 
atom. In other words, SISC can acquire the regular pat-
tern of the signal autonomously. Currently, SISC has 
been modified several times and is successfully applied 
to heartbeat signal processing (Blumensath and Davies 
2005), speech signal processing (Plumbley et  al. 2006), 
and mechanical fault feature extraction (Liu et  al. 2011; 
Zhu et  al. 2016). In this paper, we extend the improved 
shift-invariant sparse coding (ISISC; Zhu et  al. 2015; 
Wang et  al. 2015) to noise attenuation of MT data and 
attempt to obtain better flexibility and efficiency by 
replacing predesigned redundant dictionary with self-
learned redundant dictionary.

The rest of this paper is organized as follows. Sec-
tion  “Improved shift-invariant sparse coding” gives the 
theory of ISISC; Sect.  “Synthetic case studies” presents 
the analysis of synthetic data; field experimental data and 

measured MT data are studied in Sect.  “Real case stud-
ies”; the conclusions will be given in the final section.

Improved shift‑invariant sparse coding
The shift‑invariant sparse coding model
In the traditional model of sparse representation (Mal-
lat and Zhang 1993), a signal or image is represented as 
a linear combination of the redundant dictionary and 
coefficients. Thus similar or identical feature structures 
at different locations in the time series require multiple 
atoms to represent. In addition, the redundant diction-
ary in the traditional sparse representation is manually 
predefined. In actual demand, the predefined diction-
ary is not flexible enough for complex signals (Jafari 
and Plumbley 2011; Chen 2017).

Shift-invariant sparse coding is a machine learning 
algorithm based on data-driven framework. It employs 
convolution as a shift operator to satisfy the property of 
shift-invariant, and represents the signal as a convolu-
tion of the dictionary and the coefficients. This allows 
feature atoms to be translated, flipped, and scaled any-
where in the time series, thereby facilitating the use of 
one atom to conveniently represent multiple features 
at different locations. What is more, the redundant 
dictionary in SISC is learned from the raw time series 
adaptively. In other words, SISC is able to learn the laws 
of signals autonomously and is effective for all kinds of 
morphological features, which is highly suitable for the 
processing of complex time series.

For the discrete signal set Y = [y1, y2, . . . yk ]
T  , shift-

invariant sparse coding expresses yk as the sum of 
convolutions of the atoms dm and sparse coding coef-
ficients sm,k:

where Yk = [y1, y2, · · · yN ]
T is a time-series segment with 

N sampling points. D = [d1, d2, · · · dM]T ∈ RQ×M is the 
so-called redundant dictionary, or called over-complete 
dictionary, in which dm is an atom in dictionary D and 
the number of atoms M is larger than N. In most cases 
the number of atoms M is much larger than N. In other 
words, signal yk can be represented using the diction-
ary D in many ways. This is why dictionary D is called a 
redundant dictionary. ε stands for Gaussian white noise. 
“*” denotes the operation of convolution. sm,k ∈ RP and 
sm,k is sparse (most of the elements in sm,k are zero). 
Q < N, P < N and Q + P−1 = N.

As shown in Eq. (1), both the atom dm and the coef-
ficient sm,k in the model of SISC are unknown. The 
optimization problem is non-convex and difficult to 
obtain a stable solution if dm and sm,k are obtained 

(1)yk =

M∑

m=1

dm ∗ sm,k + ε,
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simultaneously. Many scholars solved this problem 
by turning it into a convex optimization problem. The 
atom dm and coefficients sm,k are updated alternately in 
their schemes (Smith and Lewicki 2006; Plumbley et al. 
2006; Aharon et al. 2006). When dm is known, sm,k can 
be obtained based on the convex optimization method; 
correspondingly, when sm,k is constant, dm can be 
solved based on the convex optimization method. Spar-
sity is the common goal of the above two optimization 
problems, and the cost function for evaluating the spar-
sity of yk is (Liu et al., 2011; Wang et al., 2015):

where ‖.‖F represents the F-order norm, β is a parameter 
of constraint used to balance reconstruction error and 
sparsity. The learned atom dm usually needs to be nor-
malized, i.e., 

∥∥dm
∥∥2
2
= 1.

Solving the sparse coding coefficients
Keeping the dictionary unchanged, the sparse represen-
tation coefficients can be obtained by matching pursuit 
(MP) algorithm (Mallat and Zhang 1993) or orthogonal 
matching pursuit (OMP) algorithm (Pati et  al. 1993). 
OMP is improved from MP by adding the step of orthog-
onalization. We use OMP to solve the coding coefficients 
because it has a better characteristic of convergence.

Imaging yk is the signal to be represented, gi,u is the 
atom obtained by shifting u points from the learned fea-
ture structure, its length is the same as signal yk, and || 
gi,u || = 1. L denotes the number of iterations, rL repre-
sents the residual after the Lth iteration, ψL represents 
the selected set of atoms after the Lth iteration. The steps 
of the OMP algorithm are as follows:

1. Initializations, r0 = yk, ψ0 = ∅, L = 1;
2. Pursuit of the atom gi,u that satisfies the following 

equation:

3. Update the selected set of atoms, ψL = ψL−1 ∪ {gLi,u};
4. Calculate the projection coefficients according to 

least squares method sL = (Ψ̃ T
L �L)

−1 · Ψ̃ T
L ỹk , and 

subsequently, residual rL = yk − sL�L , reconstructed 
signal ŷk = sL�L;

5. L = L+1 and return to step 2 if L is smaller than the 
maximum number of iterations. Otherwise, output 
the current reconstructed signal and the correspond-
ing residual.

(2)

ψ(θ) = min
d,s

K∑

k=1

∥∥∥∥∥yk −
M∑

m=1

dm ∗ sm,k

∥∥∥∥∥

2

2

+ β ·
∑

m,k

∥∥sm,k

∥∥
1
,

(3)
∣∣〈rL, gLi,u

〉∣∣ = sup
1≤i≤Q

(
sup

0≤u≤P

∣∣〈rL, gLi,u
〉∣∣
)
;

Dictionary learning
Make full use of the idea of K-SVD algorithm (Aharon 
et al. 2006), Wang et al. (2015) updated the atoms one by 
one, rather than all at once. They termed the new method 
ISISC and show that ISISC is superior to the gradient-
based SISC (GSISC) in accuracy and efficiency. In the 
stage of dictionary learning, the atoms are updated while 
the coding coefficients stay unchanged. The optimization 
function can be simplified as:

where  Ei,k represents the recovery error of all the atoms 
except the ith atom with respect to the kth signal. The 
update of the ith atom can be translated into solving an 
equation for di. Since di ∗ si,k = si,k ∗ di , when only tak-
ing the kth signal into consideration, the optimization of 
Eq.  (4) equals to the solution of the following equation 
(Zhu et al. 2016):

Considering the matrix on the left side of Eq. (5) as a spe-
cial Toeplitz matrix of coefficients si,k , the above equation 
can be written as Toep(si,k) · di = Ei,k . Since the coeffi-
cient si,k is sparse, many of the row vectors in the matrix 
Toep(si,k) are 0 vectors, and these 0 vectors have no effect 
on the result. Remove these 0 vectors from Toep(si,k) and 
the corresponding row vectors from Ei, then Eq. (5) can 
be written as Toep(s̃i,k) · di = Ẽi,k . When taking all K sig-
nals into consideration, the optimization function can be 
expressed as:

(4)

ψ̄(θ) = min
d

N�

i=1

�����yk −
M�

m=1

dm ∗ sm,k

�����

2

2

= min
d

K�

k=1

������


yk −

M�

m�=i

dm ∗ sm,k


− di ∗ si,k

������

2

2

= min
d

K�

k=1

��Ei,k − di ∗ si,k
��2
2
,

(5)




s1i,k
s2i,k s1i,k
... s2i,k

. . .

sPi,k
...

. . . s1i,k

sPi,k
. . . s2i,k
. . .

...

sPi,k




·




d1m
d2m
...

d
Q
m


 =




E1
i,k

E2
i,k
...

EN
i,k


.
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Simplifying Eq. (6) to S∙di= E, and according to the least 
squares method, the feature atom can be derived as 
di = (STS)−1(STE) . Since (STS) ∈ RQ×Q and in most 
cases, Q ≪ N, the above equation can be transformed into 
a small-scale linear equation. The solution can be directly 
obtained by Cholesky decomposition, LU decomposition 
and other methods. Each atom is updated in a random 
order, and finally gets all the feature structures, i.e., fea-
ture atoms. The learned dictionary is obtained by nor-
malizing all the feature atoms, i.e., di = di/||di||

2
2.

The flow diagram of data processing
Here, we give the flow diagram of data processing for MT 
data:

Input: raw MT data Y.
Initialization: give the initial value to the dictionary 

D and the sparse representation coefficient S randomly, 
z = 0.

Repeat the following:
{
z = z+1;
Solving the sparse coding coefficients;
Update the dictionary;
}
Until z reaches the maximum number of iterations.
Output: the learned dictionary D, sparse coding coef-

ficients S and the reconstructed signal Ȳ .

The reconstructed signals are components with abnor-
mally large amplitude or obvious regularity. These com-
ponents are noise according to the characteristics of 
natural magnetotelluric signals. Therefore, the de-noised 
MT data can be obtained by subtracting the recon-
structed signal from the original signal.

Synthetic case studies
Square-wave noise and impulsive noise are two common 
types of noises during natural field source electromagnetic 
exploration. These two types of noise are usually very large 
in amplitude and theoretically have an infinite number of 
harmonic components, thus affecting multiple frequency 
bands of the apparent resistivity and phase curves. It is very 
difficult to deal with these types of noise. The pseudo-ran-
dom square-wave signal contains a variety of square-wave 
structures of different widths. The charge–discharge-like 
waveforms have both abrupt components similar to impul-
sive noises and stationary components similar to harmon-
ics. In this section, pseudo-random square-wave noise and 

(6)




Toep(s̃i,1)
Toep(s̃i,2)

...
Toep(s̃i,K )


 · di =




Ẽi,1

Ẽi,2

...

Ẽi,K


.

charge–discharge-like noises are used to verify the effec-
tiveness and performance of different de-noising meth-
ods since they can simulate the complex noises in the real 
world.

Noisy MT data are obtained by adding simulated pseudo-
random square-wave noises or charge–discharge-like 
noises to measured noise-free MT data. Signal-to-noise 
ratio (SNR), recovery error (E), normalized cross-correla-
tion (NCC) and time consuming (T) are used to quantita-
tively evaluate the results of noise attenuation. SNR, E and 
NCC are defined as (Candès and Wakin 2008; Li et al. 2017; 
Zhang et al. 2019):

where y(n) represents the original signal; r(n) stands for 
the de-noised signal; N is the length of signal. All data 
processing work in this paper is completed on the lap-
top of ThinkPad W530 (CPU, i7-3610, 2.3  GHz; RAM, 
8.00 GB).

Noise attenuation for square‑wave noises
Figure 1a shows the original noise-free MT data, which 
are collected in Qaidam Basin using MTU (Phoenix 
Geophysics Ltd), *with a sampling rate of 15  Hz. Fig-
ure 1b is the synthetic noisy data which is obtained by 
adding simulated pseudo-random square-wave noise 
to noise-free MT data. Figure  1c is the de-noised sig-
nal using predefined square-wave dictionary (SD) 
based method (Tang et al. 2017; Li et al. 2017). In this 
method, an improved OMP (IOMP) algorithm is used 
to improve the efficiency. Please refer to related litera-
tures for more details about the method. Figure  1d is 
the de-noised signal using our new method proposed 
in this paper. Figure  1 demonstrates that both meth-
ods completely eliminate noises. However, compared 
with the original spectrum, it is clear that the results 
obtained by the predefined dictionary-based method 
lose some of the low-frequency effective signals. In 
contrast, our new method yields no visible distortion.

As shown in Table  1, both predefined dictionary 
and learned dictionary-based methods have achieved 
good de-noising results; SNR, E and NCC are greatly 

(7)SNR = 20 lg

∥∥y(n)
∥∥
2∥∥y(n)− r(n)
∥∥
2

,

(8)E =

∥∥y(n)− r(n)
∥∥
2∥∥y(n)

∥∥
2

,

(9)NCC =

N
Σ
n=1

y(n) · r(n)

√
(

N
Σ
n=1

y2(n)) · (
N
Σ
n=1

r2(n))

,
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improved over the noisy signal. However, result 
obtained by our method has a better signal-to-noise 
ratio, smaller recovery error and higher normalized 
cross-correlation. Especially the time consumption is 
much smaller than the predefined dictionary-based 
method.

Noise attenuation for charge–discharge‑like noises
Figure  2a is the original noise-free MT data, which 
is collected in Qaidam Basin, with a sampling rate 
of 150  Hz. Figure  2b is the noisy MT signal which is 
obtained by adding simulated charge–discharge-like 
noises to noise-free MT data. Figure 2c is the de-noised 
signal using predefined pulse dictionary (PD, contains 

charge–discharge-like atoms) based method (Wang et al. 
2013). In this method, the algorithm of particle swarm 
optimization (PSO) is used to improve the efficiency. Fig-
ure 2d is the de-noised signal using ISISC-based method 
proposed in this paper. Both predefined dictionary and 
learned dictionary-based methods effectively remove 
noises. However, the damage of low-frequency signal can 
be easily found from the spectrum obtained by the pulse 
dictionary-based method. In addition, the increase of the 
spectrum around 50 Hz indicates that pulse dictionary-
based method generates some new noises.

As shown in Table  2, the pulse dictionary-based 
method also obtained good NCC, E and SNR because 
some atoms in the dictionary are very similar to the sim-
ulated charge–discharge-like noises. Nevertheless, the 
results obtained by pulse dictionary are far from satisfac-
tory because it takes 440.2  s. The ISISC-based method 
adaptively learns the dictionary from the noisy data and 
is therefore not limited by the type of noise. The value of 
NCC obtained by ISISC surged up to 0.9827, recovery 
error decreased from 57.0588 to 0.1849, SNR increased 
from -35.1264  dB to 14.6597  dB, time consumption 
decreased from 440.2  s to 1.2  s. Obviously, the results 
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Fig. 1 Results of pseudo-random square-wave noise processing. a Original noise-free MT signal; b the synthetic noisy signal; c de-noised by 
square-wave dictionary-based method (IOMP-SD); d de-noised by ISISC. The left panels are time domain waveforms and the right panels are their 
spectra

Table 1 Quantitative evaluation of  pseudo‑random 
square‑wave noise processing results

NCC E SNR (dB) T (s)

Before processing 0.0561 182.91 − 45.2448 /

IOMP-SD 0.8035 0.5952 4.5057 278.7

ISISC 0.9777 0.2097 13.5657 3.7
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achieved by ISISC-based method is significantly better 
than the predefined dictionary-based method.

Real case studies
Experimental data in Liangshan Prefecture, Sichuan 
Province
In order to verify the validity of the data-processing 
method and to evaluate the data processing results rea-
sonably, we conducted a MT data observation experi-
ment in Liangshan Prefecture, Sichuan Province, 
China, in 2014. The experimental instruments are the 
magnetotelluric data acquisition system MTU-5A 
(Phoenix Geophysics Ltd) and the controlled-source 
electromagnetic method (CSEM) transmitter GGT-30 

(Zonge International INC.). The data obtained at this sta-
tion is recorded as ASY0002B.

The experiment lasted for 100 min, in which the first 
60 min were observed normally according to the stand-
ard procedure (the transmitter did not work), and the 
data observed during this time period was marked as 
 D1. In the next 40  min, the transmitter continuously 
transmits electric-dipole source signals with different 
frequencies. The maximum transmitting current was 
about 20 A. The length of the electric dipole was 1.2 km 
and the electric-dipole was parallel to the receiving 
dipole of x-direction. The transmitter was 1.2 km away 
from the observation station (the Rx–Tx distance was 
1.2 km), and the data observed in this time period was 
marked as  D2. Since the vicinity of the observation site 
was sparsely populated and there was almost no elec-
tromagnetic noise, the  D1 data set is high-quality data. 
The apparent resistivity and phase curves obtained 
using this data set can be seen as the real geoelectric 
responses, so they can be used as a reference for com-
parison. Note that the controlled-source signals in our 
experiment are treated as noises because they are not 
plane wave. Therefore, the  D2 data set is noisy because 
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Fig. 2 Results of the charge–discharge-like noise processing. a Original noise-free MT signal; b synthetic noisy signal; c de-noised by pulse 
dictionary-based method (PSO-PD); d de-noised by ISISC. The left panels are time domain waveforms and the right panels are their spectra

Table 2 Quantitative evaluation of  the  charge–discharge‑
like noise processing

NCC E SNR (dB) T (s)

Before processing 0.0108 57.0588 − 35.1264 /

PSO-PD 0.8254 0.5660 4.9437 440.2

ISISC 0.9827 0.1849 14.6597 1.2
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it was contaminated by strong controlled-source 
signals.

As shown in Table 3, the transmitter sends 7 square-
wave signals of different frequencies in sequence. Due 
to the filters in the acquisition device and the low-pass 
filtering effect of the earth system, the received signals 
are not ideal square-wave signals, but are similar to 
charge–discharge-like waveforms. The frequencies of 
the controlled-source signals range from 0.125  Hz to 
1  Hz, however, both the square-wave and the charge–
discharge-like signals have a large number of odd 

harmonics. Therefore, the frequency actually affected 
by the CSEM source is not limited to 0.125 Hz–1 Hz.

Figure  3 shows the MT time-series segments in the 
 D2 data set, the sampling rate is 150  Hz. Similar to 
the segments shown in Fig.  3, the entire  D2 data set 
was contaminated by CSEM source. These signals are 
standard CSEM noises in morphology and do not have 
the characteristics of natural magnetotelluric signals at 
all. When subjected to such persistent noise pollution, 
traditional MT data-processing methods are difficult to 
obtain good results. Observing the time series, it can be 
seen that the noise (CSEM source) is formed by shifting 
and flipping the same or similar structures, and thus 
has a characteristic of shift-invariant. These structures 
are perfect for feature extraction using SISC.

Figure  4 shows the feature structures that ISISC 
learns autonomously from the  D2 data set. These fea-
ture structures are zero-padded and then become 
atoms in the redundant dictionary, which can be used 
to accurately represent a particular type of signal. Since 
they are learned autonomously based on the signal to 
be processed, they match the CSEM noises very well. 
As shown in Fig. 4, the learned feature structure is nei-
ther an ideal square-wave signal nor an ideal charge–
discharge signal, but a complex signal that is difficult to 

Table 3 Fundamental frequencies and  duration 
of the controlled‑source signal

Order Frequency (Hz) Duration (s)

1 0.125 640

2 0.175 220

3 0.25 320

4 0.35 390

5 0.5 220

6 0.7 150

7 1 260
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component; d Hy component
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describe. A regular zigzag waveform is produced on its 
rising and falling edges. As it is, the source of human 
noise in the measured MT signal is complex and has 
different forms. It is very difficult to design a predefined 
dictionary that exactly matches the complex and vari-
able noise. Therefore, the predefined dictionary-based 
method is inevitable to reduce the decomposition accu-
racy or increase the time consumption.

As shown in Fig.  5, the magnetic components (Hx 
and Hy) obtained by PSO-PD have obvious differences 
between the first half and the second half. The first half 
of Hx and Hy components may lose some useful signals 
because natural MT signals usually contain some useful 
spikes (refer to the noise-free signals shown in Figs. 1a, 
2a). The electric signals (Ex and Ey) and the second half 
of the magnetic signals indicate that some noise has 
not been removed by PSO-PD. The results obtained by 
ISISC are more reasonable since the noise is effectively 
removed and there is no obvious difference between the 
first and the second half.

As shown in Fig. 6, the apparent resistivity and phase 
curves calculated from the noise-free MT data set  D1 
are continuous, smooth and vary slowly with the fre-
quencies except for some little bias below 1  Hz. All 

values are in the normal range. Overall, it shows good 
data quality.

The apparent resistivity and phase curves obtained 
by raw  D1 and  D2 data sets are severely distorted below 
300 Hz since the  D2 data set is contaminated by CSEM 
noises. There are a large number of outliers in both 
resistivity and phase curves, and the phase values in 
the xy component are mostly distributed in an unrea-
sonable range. This result is significantly different 
from the apparent resistivity and phase curves calcu-
lated from the noise-free data set.

The processing of PSO-PD results in an obvious 
improvement over the previous. However, the MT 
response of xy components still reveals obvious distor-
tion around 100 Hz and below 1 Hz. Moreover, visible 
bias can be found at yx components below 1 Hz.

By de-noising the  D2 data set with our new method 
and calculating the MT responses using data sets of  D1 
and  D2, we get the curves shown as green triangles in 
Fig. 6. Obviously, most of the outliers disappear and the 
phase curves return to reasonable. The results obtained 
by our method are generally consistent with the results 
obtained from the  D1 data set except for some little bias 
below 1 Hz.
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Experimental data in Qaidam Basin, Qinghai Province
In June 2012, we conducted another experiment in 
Qaidam Basin, the northeastern part of the Qinghai-
Tibet Plateau. The acquisition device is an MTU (Phoe-
nix Geophysics Ltd). The transmitting equipment is a 
pseudo-random signal transmitter developed by Central 
South University. A 1.5-km-long, y-oriented electric-
dipole source was placed 2  km away from the receive 
dipole. The maximum transmitting current is about 80 
A and the frequencies of the controlled-source signals 
range from 0.0117 Hz to 48 Hz. The observation station 
is named as QH401504 and located in a very remote and 
sparsely populated area, so there is almost no human 
interference. The observation time is 20  h in total, and 
the data collected in the first 1.5 h are marked as  D1. The 
 D1 data set is severely polluted by the CSEM noises. The 
data collected in the next 18.5  h are high-quality data 
because the transmitter has stopped working during this 
time, where the data set is marked as  D2.

Figure  7 shows the learned atoms from data set  D1 
of the site QH401504. The features of pseudo-random 
square-wave signals can be easily found from these 
atoms. In fact, each atom represents a periodic time-
series segment. Each component contains three atoms, 
which means that there are three types of pseudo-ran-
dom sources. They are different in fundamental frequen-
cies. Figure 8 shows the results of signal–noise separation 

by ISISC. It is clear that the raw time series shown in 
Fig.  8 can be easily represented by a certain atom illus-
trated in Fig.  7. As shown in Fig.  8a, the raw data and 
de-noised data have the same trend (very low-frequency 
signal). It means that our new method has little risk of 
discarding the effective low-frequency signal. As shown 
in Fig. 8d, both the raw signal and de-noised signal have 
a spike around the sampling point of 220. This is the evi-
dence that our method can accurately identify the target 
noise and retain useful signals. Similar evidence can be 
found near the sampling point of 12,000 in Fig. 8b. The 
processing of the MT data set QH401504 fully illustrates 
that our method can accurately identify and remove rel-
evant and persistent noises.

As shown in Fig.  9, the MT responses obtained using 
high-quality data set  D2 vary slowly with frequencies, 
while the results achieved using the noisy  D1 and noisy-
free  D2 data sets are severely distorted between 2 Hz and 
0.002  Hz. The results obtained after applied our ISISC-
based method are greatly improved in the whole band 
and are highly consistent with the results obtained from 
high-quality data.

Real data in Lujiang‑Zongyang ore district, Anhui Province
Because of the well-developed economics in the Luji-
ang-Zongyang ore district, the MT data collected in this 
region are more or less contaminated by cultural noises. 
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Fig. 5 De-noised time-series segments by ISISC (left) and PSO-PD (right). a Ex component; b Ey component; c Hx component; d Hy component
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Fig. 6 Apparent resistivity and phase curves of the station ASY0002B. The upper panels are apparent resistivity curves and the bottom panels are 
phase curves. The red curves with inverted triangles represent the results obtained by all raw data sets  D1 and  D2; the black solid lines represent the 
results obtained using noise-free data set  D1; the green curves with triangles stand for the results achieved by data sets  D1 and  D2 but is de-noised 
by ISISC; the curves with blue circles stand for the results calculated from the data sets  D1 and  D2, but filtered by the pulse dictionary-based method
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Fig. 8 Raw (black) and de-noised (read) time-series segments from the data set  D1 of the station QH401504, a sampling rate of 15 Hz. a Ex 
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Fig. 9 Apparent resistivity and phase curves of the station QH401504. The upper panels are apparent resistivity curves and the bottom panels are 
phase curves. The red curves denote the results obtained by all the raw data sets  D1 and  D2; the solid lines represent the results obtained using 
noise-free data set  D2; the green curves stand for the results achieved by data sets  D1 and  D2, but is de-noised by our new method
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There are a lot of time series with abnormal large ampli-
tudes or regular structures. According to the origin and 
characteristics of natural magnetotelluric signals, such 
anomalous and periodic structures are not effective MT 
signals and need to be removed. Nevertheless, the noises 
are relevant and persistent and therefore difficult to be 
effectively eliminated by traditional methods.

Figure 10 shows the atoms learned from the real data 
set EL22192. These structures have regular morphology 
and strong instantaneous energy. Obviously these struc-
tures are generated by human activities.

As shown in Fig. 11, the raw time series is decomposed 
into 7 independent components and a residual (the de-
noised signal). The reconstructed components have 
different characteristics and may come from independ-
ent noise sources. After removing these reconstructed 
components, the residual has no regular components 
or abnormal large amplitude structures. Judging from 
results of the time series, the ISISC-based method effec-
tively removed strong cultural noises.

As shown in Fig.  12, there are numerous outliers in 
the curves calculated from the raw data. When the fre-
quency is lower than 40 Hz, the apparent resistivity vary-
ing linearly with frequencies and rising up with 45° on 
the logarithmic coordinates, phase at the corresponding 
frequency approaching 0 or ± 180°, which is similar to 
the CSAMT apparent resistivity and phase curves in the 
near-field. This is the so-called near-source effect (Wei 
and Pedersen 1991; Tang et al. 2013). It is clear that the 
data are contaminated by noises near the observation sta-
tion, and these raw curves cannot accurately reflect the 
electrical structures in the subsurface.

After processing by our method, the apparent resistivity 
and phase curves vary smoothly with the frequencies and 
the near-source effect has been eliminated completely. 
The values of the apparent resistivity and phase are dis-
tributed in a reasonable range. The results obtained by 
our method are consistent with those obtained by the 
remote-reference processing method, except for a few 
data in frequency bands below 3 Hz. Case studies of MT 
data sets recorded in Lujiang-Zongyang ore district have 
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shown that our new scheme can effectively remove the 
cultural noises and obtain comparable results to that 
from remote-reference processing.

Conclusions and discussion
To improve the quality of MT data, we propose a novel 
signal–noise separation method based on the improved 
shift-invariant sparse coding. The application of the pro-
posed method to synthetic data and real MT data shows:

1. The new scheme proposed in this paper can improve 
the signal–noise ratio of MT data significantly and 
the MT responses obtained by our method are con-
sistent with that from the remote reference method. 
This method can be used with or without a remote 
reference station and may provide superior results in 
two important cases: when there is no remote refer-
ence station and when the noise is coherent between 
the local and remote reference stations.

2. In our new scheme, the redundant dictionary is 
learned autonomously from the data to be processed, 
instead of predefined manually. Compared with the 
methods based on predefined redundant dictionary, 
the adaptability of the newly proposed method is 
greatly enhanced.

3. The number of atoms in the learned dictionary is 
greatly reduced since the dictionary is learned based 
on the characteristics of the data itself. This change 
greatly reduces the time consumption of subsequent 
decomposition. Noise removal using our new proce-
dure can be completed on a laptop or a desktop com-
puter. Nevertheless, it is worthwhile to improve the 
efficiency of our method since the amount of data in 
the magnetotelluric method is very large.

The method proposed in this paper is based on single 
site processing, and does not take into account the reg-
ularity of the cultural noise between different sites. In 
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fact, cultural noises at different stations are likely to be 
relevant. It is possible to improve the performance of 
the proposed method using dictionary learning or other 
machine learning algorithms for multi-station process-
ing. Besides, the new scheme proposed in this paper 
could be used together with remote-reference processing. 
The ISISC may take out the high amplitude and repeti-
tive cultural noises while RR processing of the cleaned 
time series may further remove faint incoherent noises.
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