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Abstract 

Lithospheric deformation is a fundamental process in plate tectonics. It is, therefore, critical to determine how the 
lithosphere responds to geological loads to better understand tectonic processes. The lithosphere can be modelled 
as the flexure of a thin, elastic plate over long‑term (>  105 yr) geological timescales. The partial differential equation 
for the flexure of an orthotropic plate is used indirectly to calculate theoretical admittance and coherence, which 
are then compared against the observed admittance and coherence to invert for the non‑uniform flexural rigidity 
(or effective elastic thickness, Te) of the plate. However, the process for accurately recovering variable lithospheric 
flexure remains unresolved, as the classical lithospheric model may overestimate the deflection of the plate. Here we 
adopt the classic lithospheric model with applied external and internal loads at the surface and Moho, respectively, 
and assume that the compensation material is denser than the mantle material beneath the Moho. The lithospheric 
flexure errors are derived mainly from the Te and Moho recovery errors in this lithospheric model. Synthetic modelling 
is then performed to analyse the influence of the Te and Moho errors. The analysis of synthetic modelling shows that: 
(1) the Te error‑induced flexure errors exhibit a rippling pattern, and the rippling pattern is broader in high Te regions; 
(2) the Moho error‑induced flexure errors mainly occur in the low Te regions, and applying Airy isostasy theory in low 
Te regions may still greatly overestimate the lithospheric deformation amplitude; and (3) the lithospheric flexure errors 
are dominated by the Te and Moho errors in the high and low Te regions, respectively.
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Introduction
Our understanding of the mechanics of the Earth’s crust 
and lithosphere have been greatly advanced since the 
1970s, via numerous modelling, including experimental 
examinations of the behaviour of physical bodies (e.g., 
Dorman and Lewis 1970, 1972; Lewis and Dorman 1970a, 
b) and derivations of the mathematics that describe lith-
ospheric processes (e.g., McNutt 1980; Forsyth 1985; 
Burov and Diament 1992; Banks et al. 2001; Braitenberg 

et al. 2002; McKenzie 2003; Kirby and Swain 2009; Zhang 
et al. 2018a, b, c; Zhang et al. 2019a). These studies fol-
lowed the principle that the lithosphere can be idealised 
if the main structural features are considered, thereby 
allowing simplified models to capture the key structures 
and geodynamics of the lithosphere. However, no infor-
mation on the internal structure of the lithosphere has 
been used in these investigations, and its mechanical 
properties, such as the flexure of the tectonic plates, may 
be incorrectly estimated (Ribe 1982).

The lithospheric strength of tectonic plates reflects 
their resistance to vertical deformation in response to 
geological loads over long-term (>  105  yr) geological 
timescales (Watts and Burov 2003). This assumption 
allows the lithosphere to be modelled as the flexure of 
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a thin, elastic plate via the partial differential equation 
for the flexure of an orthotropic plate (Timoshenko and 
Woinowsky-Krieger 1959). This equation is usually used 
indirectly to calculate theoretical admittance and coher-
ence, which are then compared against observed ones to 
invert for the non-uniform flexural rigidity (or effective 
elastic thickness, Te) of the plate (Kirby 2014). Numer-
ous studies have used Te to analyse lithospheric rheology 
and deformation (Pérez-Gussinyé et al. 2009; Chen et al. 
2015; Ji et  al. 2017, 2020; Lu et  al. 2020). However, this 
idealised term does not refer to an existing thickness or 
physical layer within the Earth, but instead corresponds 
to the thickness of an ideal elastic plate that undergoes 
the same deformation as the lithosphere under the same 
loads (Watts 2001). As Te is a periphrastical parameter 
for understanding lithospheric rheology and deforma-
tion, directly modelling lithospheric flexure should pro-
vide key insights into the nature of tectonic evolution and 
dynamics.

Here we use the classic lithospheric model with applied 
external and internal loads at the surface and Moho, 
respectively, and assume that the compensation mate-
rial is denser than the mantle material beneath the Moho 
(Fig.  1). The density contrast between the compensa-
tion material and mantle material beneath the Moho is 
set to 200 kg/m3, based on the density contrast between 
the uppermost and basal lithospheric mantle (Kaban 
et  al. 2016). Notably, in some special areas, loads may 
be taken from specific geological attributes instead of 
topographies. In the subduction zones, for instance, slab 
pull may be considered as the main loads and usually 
be handled as boundary loading (e.g., Zhang et al. 2014, 
2021), applying the corresponding plate flexure models 
has made a great deal achievements (e.g., Zhang et  al. 

2018a, b, c; 2019a, b). Taking the topographies, however, 
as the loads has a widespread application in estimat-
ing plate flexure and should have a wider prospect. The 
model used in this study is still an idealised model that 
considers the vertical density variation in the lithosphere. 
Furthermore, we obtain Te variations via the fan wave-
let coherence method (Kirby and Swain 2004, 2008) and 
the Moho topography via a constrained gravity inversion 
method (Wu et  al. 2017). Based on the finite-difference 
(FD) method shown by Kirby and Swain (2008), we refor-
mat the equations to invert the lithospheric flexure of a 
two-layer lithospheric model. The errors associated with 
the lithospheric flexure estimation in such a lithospheric 
model are mainly derived from the Te and Moho errors. 
Synthetic modelling is then performed to analyse the 
influence of the Te and Moho errors on the lithospheric 
flexure estimation.

Methodology
The key to calculating lithospheric flexure via the FD 
method is to obtain accurate spatial distributions of the 
Moho and Te. The Moho depth is usually recovered via 
gravity inversion (Wu et  al. 2017). There are currently 
two main methods for mapping the spatial variations in 
Te based on the coherence between the Bouguer grav-
ity anomaly (BGA) and topography/bathymetry. One is 
the multitaper method (McKenzie and Fairhead 1997; 
Pérez-Gussinyé et al. 2004), and the other is fan wavelet 
coherence method (Kirby and Swain 2004, 2008). The 
characteristic flexural wavelength is correlated with the 
strength of the lithosphere, and the flexural amplitude 
varies with both Te and the magnitude of the load (Watts 
2001). These variations make it difficult to choose the 
multitaper window size to recover Te. Signals of features 
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Fig. 1 Conceptual mechanical model of the lithosphere and asthenosphere, the compensation depth is set to be at the Lithosphere–
asthenosphere interface (LAI). ρc , ρm and ρF are density values (Table 1), and �ρ1 = ρc − ρf  , �ρ2 = ρm − ρc , �ρ3 = ρF − ρm are interface density 
contrasts, ρf  represents either the air density on land or seawater density in the ocean (revised from Banks et al. 2001)
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on a stronger lithosphere can be truncated when the 
selected window size is too small, resulting in an artifi-
cially low Te. Conversely, Te can be blended across mul-
tiple features, with a potential bias toward the largest 
feature in the window, when the selected window size is 
too large (Pérez-Gussinyé et al. 2004, 2008; Kalnins and 
Watts 2009). The fan wavelet coherence method can alle-
viate these issues by allowing the Te features to be located 
at different wavelengths, and is employed to estimate Te 
in this study.

Gravity inversion for Moho topography
Joint inversions that involve gravity measurements and 
other geophysical constraints are generally employed to 
reduce the non-uniqueness of the best-fit models (Chap-
pell and Kusznir 2008; Bai et al. 2014; Ji et al. 2018). Here 
we perform a three-dimensional gravity inversion that is 
constrained by seismic observations (Wu et al. 2017) to 
recover an accurate Moho topography. The Moho topog-
raphy that corresponds to the complete Bouguer grav-
ity anomaly can be expressed as h(r) = he(r)+�h(r) , 
where he(r) is the initial interface. The difference between 
the Moho and initial interface can then be obtained by 
substituting this difference into the gravity inversion 
equation (Oldenburg 1974):

where F [] is the Fourier transform, �g is the complete 
Bouguer gravity anomaly, ς is Newton’s gravitational 
constant, ρ is the density contrast across the interface, k 
is the wave vector of the transformed function, r is the 
entire x–y plane and z0 is the reference depth of the den-
sity interface, n is the iterations, whose value depends on 
the convergence rate of Eq. (1) and the error threshold.

We largely follow the procedure outlined in Wu et  al. 
(2017), except for the implementation of Eq. (1) to deter-
mine the interface difference during each iteration of 
the inversion, to ensure that both the Moho depth and 
Bouguer gravity anomaly satisfy the inversion equation 

(1)F [�h(r)] = −

F [�g]

2πςρ
ekz0 −

∞∑

n=2

k
n−1

n!
F [{he(r)+�h(r)}n] − F [he(r)]

(Oldenburg 1974) after the Moho topography is recov-
ered. The detailed process is as follows: (1) linearly fit 
the Moho depth values and the corresponding Bouguer 
gravity anomalies with the constraint points; (2) then, use 
the fitting parameters to form the initial Moho grid he(r) 
with the observed Bouguer gravity anomaly grid; (3) per-
form the iterative algorithm of Eq. (1); (4) the final Moho 
topography is obtained iteratively until the interface dif-
ference between adjacent iteration steps meets the error 
threshold, which is set to be 0.001 km in this study.

Thin plate flexure
For quick reference, we provide the key equations for 
estimating thin plate flexure, which can be easily calcu-
lated via the approach of Kirby and Swain (2008). We 
consider an elastic slab model that involves only the ini-
tial external (at the surface) and internal (at the Moho) 
loads, which are represented as 

[(
ρc − ρf

)
ghi

]
 and 

[(ρm − ρc)gwi] , respectively. As the plate model is a linear 
system, the deflection can be divided into four compo-
nents. The deflection of amplitude wT at the Moho and hT 
at the surface caused by the initial external load, wB at the 
Moho and hB at the surface caused by the initial internal 
load. Then, the final Moho topography after flexure is

and the final surface topography after flexure is

The final deflection amplitude v can then be expressed 
as

The relations of initial loads and deflection amplitude 
in the partial differential equation for flexure of an ortho-
tropic plate are given by Timoshenko and Woinowsky-
Krieger (1959):

(2)w = wT + wB

(3)h = hT + hB.

(4)v = h− hi = w − wi.

(5)−

(
∂2Mx

∂x2
− 2

∂2Mxy

∂x∂y
+

∂2My

∂y2

)
+ (ρm − ρf )gv = −(ρc − ρf )ghi − (ρm − ρc)gwi,
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where the bending and twisting moments are

and where D is the flexural rigidity, σ is Poisson’s ratio. 
Furthermore, substituting the initial loads with Eq.  (4), 
and simplifying Eq.  (5) with the Laplace operator that 
gives (Timoshenko & Woinowsky-Krieger 1959; Stark 
et al. 2003):

where all variables are functions of the (x, y) position, 
� =

(
∂2/∂x2

)
+

(
∂2/∂y2

)
 is the Laplace operator. The 

minus sign on the right side of Eq. (6) demonstrates the 
plate acts as resistance to the topographic deformation. 
When D reaches zero, Eq.  (6) follows the Airy isostatic 
theory. The solution to Eq.  (6) via the FD method is 
shown in Appendix A.

A larger Winkler foundation
A foundation that acts with a force proportional to the 
deflection at every point is known as a Winkler founda-
tion (e.g., Huang and Thambiratnam 2001; Mofid and 
Noroozi 2009). An elastic foundation is usually expressed 
as ρmgv in linear elastic plate theory. However, the deflec-
tion predicted via linear theory is always too high; this 
non-linearity decreases with increasing plate thickness, 
such that plates with Te > 20  km are only slightly non-
linear (Ribe 1982). This overestimated deflection should 
be suppressed in ocean settings since Te is generally low 
in these settings. Here we use a two-layer model (Fig. 1), 
whereby the internal load is confined to the Moho, such 
that the entire lithosphere is modelled with a lithospheric 
elastic foundation with higher density ( ρF ) than that of 
the uppermost layer of the mantle ( ρm ). Equation  (6) is 
then changed to





Mx = −D(
∂2v

∂x2
+ σ

∂2v

∂y2
)

My = −D(σ
∂2v

∂x2
+

∂2v

∂y2
)

Mxy = −Mxy = −D(1− σ)
∂2v

∂x∂y

(6)D∇∇v + 2
∂D

∂x

∂

∂x
∇v + 2

∂D

∂y

∂

∂y
∇v +∇D∇v − (1− σ) ·

{
∂2D

∂x2
∂2v

∂y2
− 2

∂2D

∂x∂y

∂2v

∂x∂y
+

∂2D

∂y2
∂2v

∂x2

}

= −(ρc − ρf )gh− (ρm − ρc)gw,

(7)D∇∇v + 2
∂D

∂x

∂

∂x
∇v + 2

∂D

∂y

∂

∂y
∇v +∇D∇v − (1− σ) ·

{
∂2D

∂x2
∂2v

∂y2
− 2

∂2D

∂x∂y

∂2v

∂x∂y
+

∂2D

∂y2
∂2v

∂x2

}

+(ρF − ρm)gv = −(ρc − ρf )gh− (ρm − ρc)gw.

The main advantages of this model are:

1. The overestimated deflection of the lithosphere pre-
dicted via linear theory can be suppressed;

2. The density of the mantle usually increases with 
depth, so the model fits real data better in the frame-
work of lithospheric-scale deflection;

3. The main inversion function (Eq. (6)) in such a model 
can be converted to Eq. (7), which can be considered 
as a forward equation with a small Winkler founda-
tion, thereby ensuring that stable calculation results 
are always obtainable.

Fan wavelet coherency method
The wavelet method for calculating the coherence 
between the topography and gravity data was first pro-
posed by Stark et al. (2003), who employed a Gaussian 
window function as the transform kernel to estimate Te 
in southern Africa. The continuous wavelet transform 
offers the ability to obtain the local phase and ampli-
tude of the topography and gravity anomalies, whereas 
the Fourier transform requires wavenumber averaging 
of the spectral estimates. The Gaussian wavelet fails to 
reproduce the Fourier power spectrum exactly (Kirby 
2005). Two-dimensional Morlet wavelets, which are 
Gaussian-modulated complex exponential functions, 
can reproduce the Fourier spectrum (Kirby and Swain 
2004). The spatial resolution of Te can be improved 
by adjusting the central wavenumber of the Morlet 
wavelet (Kirby and Swain 2011). Only the square of 
the real component of the wavelet coherence needs 
to be employed to estimate Te (Kirby and Swain 2008, 
2009). The coherency, which is formed by obtaining 
auto- and cross-spectra at a series of azimuths over 
the 0°–180° range in a ‘fan’ and then averaging them 
(Kirby and Swain 2009), is computed as the real and 
positive coherence, which suffers from the problem of 
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information loss. The squared real coherency can be 
expressed as a function of scale s and position x:

where Bsxθ and Hsxθ represent the complex wavelet 
coefficients of the Bouguer gravity anomaly and topog-
raphy, respectively, the * indicates complex conjugation, 
and the angular brackets denote azimuthal averaging per-
formed over the entire 180° azimuthal range. The contin-
uous wavelet transform (CWT) is performed through the 
following equations:

Here, g̃(s, x, θ) are the resulting ‘wavelet coefficients’, 
F−1 is the inverse 2D Fourier transform, ĝ(k) is the 2D 
Fourier transform of a 2D spatially distributed signal 
g(x) , k = (u, v) is the 2D wavenumber, ψ̂(k) is the 2D 
Fourier transform of the 2D Morlet wavelet, scale s is 
also the dilation parameter, the “central wavenumber” ∣∣k0

∣∣
= π

√
2/ ln 2 ≈ 5.336 is used in this study. Note 

that v only represents the frequency domain coordinate 
parameter in Eq.  (9), but elsewhere in this article is the 
flexure.

(8)γ 2
obs(s, x) =

∣∣Re
〈
BsxθH

∗

sxθ

〉
180

∣∣2
〈
BsxθB

∗

sxθ

〉
180

〈
HsxθH

∗

sxθ

〉
180

,

(9)





�g(s, x, θ) = F−1
�
�g(k))�ψ∗

s,θ (k)

�

�ψs,θ (k) = s �ψ
�
s�−1(θ)k

�

�ψ(k) = e
−

�
(u−|k0| cos θ)

2
+(v−|k0| sin θ)

2
�
/2

.

Flexural components in Eqs. (2) and (3) can be replaced 
with equations including initial internal and external 
loads wi and hi . As these two equations are linear, they 
form the so-called “load-deconvolution equations” in the 
wavenumber domain with the assumption that Te is uni-
form (Forsyth 1985; Kirby and Swain 2008). Following 
the formulation in Kirby and Swain (2011) and making 
the equations available for a two-layer model that

The parameters are

(10)
(
G

H

)
=

(
µB µT

κB κT

)(
Wi

Hi

)
.

(11)





κB = −�ρ2/φ

κT = 1−�ρ1/φ

µB = 2πς�ρ2(1−�ρ2/φ)e
−|k|Zm

− 2πς�ρ3e
−|k|ZF�ρ2/φ

µT = 2πς�ρ2(1−�ρ1/φ)e
−|k|Zm

− 2πς�ρ3e
−|k|ZF�ρ1/φ

φ = D|k|4/g + (ρF − ρf )

�ρ1 = ρc − ρf

�ρ2 = ρm − ρc

�ρ3 = ρF − ρm

D =

ET 3
e

12(1− σ 2)

,

Table 1 Symbols and employed values for the model constants 
(revised from Kirby and Swain 2008)

Constant Symbol Value Units

Young’s modulus E 100 GPa

Newtonian
gravitational constant

ς 6.67259 ×  10–11 m3  kg–1  s–2

Poisson’s ratio σ 0.25

Acceleration due to
gravity

g 9.80 m  s–2

Mean Moho depth zm 40 km

Mean LAI depth zF 120 km

Crustal density ρc 2750 kg  m–3

Mantle density ρm 3200 kg  m–3

Compensation
Mantle density

ρF 3400 kg  m–3
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where G, H mean the observed Bouguer gravity anom-
aly and surface topography, |k| =

∣∣k0
∣∣/s is the equivalent 

Fourier wavenumber, Zm is the Moho depth, ZF is the LAI 
depth, ς , E and σ are constant values (Table 1).

After Eq. (10) is solved, initial loads and flexural com-
ponents can be obtained. Then, the predicted wavelet 
coherency is

where T is for surface load components, and B for sub-
surface load components. With the advantage of aver-
aging being performed over the wavelet azimuth in the 
wavelet method, Eq. (12) can be further expressed as

where 
〈∣∣∣ ˜hi(s, x)

∣∣∣
2
〉

180

 and 
〈∣∣w̃i(s, x)

∣∣2
〉
180

 mean the 

azimuthal averaged wavelet coefficients of initial surface 
and subsurface loads. By considering each local wavelet 
spectrum to be independent of adjacent spectra (the 
“decoupling” assumption), the wavelet coherency can be 
applied to approximately invert for local Te (Stark et  al. 
2003; Kirby and Swain 2004). Then the final Te distribu-
tions are obtained by finding the Te that provides the 
minimum misfit between the observed and predicted 
coherencies at each grid point, using Brent’s method of 
1-D minimization (e.g., Press et al. 1992).

Synthetic modelling
Synthetic modelling is commonly used to test the accu-
racy of the wavelet method (Stark et  al. 2003; Kirby 
and Swain 2004, 2008). Random fractal initial loads 
and Te models are used as inputs to the flexural equa-
tion, which outputs the final surface topography (h) and 
Moho topography (w). We follow the same approach in 
our synthetic modelling. We employ Eq. (6) in the inver-
sion since it is a thorough rearrangement of the flexural 
equation (Eq. (11)) in Kirby and Swain (2009) where the 
inputs are the final topography (h) and a random fractal 
initial internal load (wi).

The equivalent topography, Te and Moho topography, 
are required to estimate lithospheric flexure. The equiv-
alent topography can be specifically calculated using 
a global elevation model, sediment thickness model 
and sediment thickness–density conversion formula 

(12)

Ŵ(G)
p (|k|) =

〈
GTH

∗

T + GBH
∗

B

〉
|k|

〈
GTG

∗

T + GBG
∗

B

〉1/2
|k|

〈
HTH

∗

T +HBH
∗

B

〉1/2
|k|

,

(13)Ŵ(WT )
p (s, x) =

µTκT

〈∣∣∣ ˜hi
∣∣∣
2
〉

180

+ µBκB

〈∣∣w̃i

∣∣2
〉
180

[
µ2
T

〈∣∣∣ ˜hi
∣∣∣
2
〉

180

+ µ2
B

〈∣∣w̃i

∣∣2
〉
180

]1/2[
κ2T

〈∣∣∣ ˜hi
∣∣∣
2
〉

180

+ κ2B

〈∣∣w̃i

∣∣2
〉
180

]1/2 ,

(e.g., Sclater & Christie 1980; Ji et al. 2020), such that this 
random fractal initial load (hi) and flexure (v) derived 
topography (h) can be used in the synthetic model-
ling. The influences of both the recovered Te errors and 
inverted Moho errors on the FD-derived lithospheric 
flexure are investigated to determine how these inputs 
shape the model results.

Model generation
We follow the synthetic modelling procedure of Macario 
et al. (1995), and use the mid-point displacement method 
(Peitgen and Saupe 1988) to generate two-dimensional 
fractal Brownian surfaces that represent the initial exter-
nal (surface, hi) and internal (subsurface, wi) loads. In 
addition, the Te model is also obtained by applying the 

mid-point displacement method, as Kirby and Swain 
(2008) noted: "fractal Te distributions are likely to be 
closer to the real Earth’s Te structure." A fractal dimen-
sion of 2.5 is used for the surface (Fig.  2a) and subsur-
face loads (Fig. 2b), as well as the Te model (Fig. 2c). The 
grids consist of 255 × 255 points at a 20-km spacing and 
are scaled to possess a realistic amplitude. Furthermore, 
the Te grid is low-pass filtered with a cutoff wavelength 
of 150 km. We choose a central wavenumber of 5.336 in 
the subsequent fan wavelet coherence inversion since we 
place greater importance on the Te accuracy than its spa-
tial resolution. We do not set a constant F (loading ratio), 
as in Kirby and Swain (2008). Although this approach 
may go against Forsyth’s fourth assumption about the 
proportionality of the power spectral densities of the 
initial loads (Forsyth 1985; Simons and Olhede 2013), 
the feasibility of the Te inversion with multiple vary-
ing F interfaces via the fan wavelet coherence method 
has already been tested by Kirby and Swain (2009). The 
topography (Fig.  2d), Moho (Fig.  2e) and lithospheric 
flexure models (Fig. 2f ) are obtained by applying the FD 
method to Eq.  (7). Before applying the FD method, all 
the data sets were mirror extended to be 9 times of their 
original size to reduce the computation errors caused by 
boundary condition, and the extended boundaries were 
removed after all the calculation processes were com-
pleted. The Moho interface is then used to obtain the for-
ward Bouguer gravity anomaly (Fig. 3), with the relevant 
parameters listed in Table 1. The Moho inherits high-fre-
quency information from the initial subsurface. However, 
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the modelled Bouguer gravity anomaly may suffer from 
signal degradation due to upward continuation of the 
signal since the observation surface is much higher than 
the Moho interface, resulting in attenuation of this high-
frequency information.

Effect of Te errors
The fan wavelet coherence method is employed to invert 
for Te (Fig.  4a) using the generated surface topography, 
Moho topography and forward-modelled Bouguer anom-
aly grids, and to calculate its associated errors (Fig. 4b). 
Note that, all the grids of errors are calculated by sub-
tracting the forward-modelled grids from the inverted 

grids. This Te inversion recovers well the main Te features 
in the Te model. The errors are randomly distributed 
across the entire map, but the trend of the local errors is 
consistent with the Te gradient belts. This consistency is 
due mainly to the resolution of the transition wavelets, 
as well as two other adverse factors: (1) the decoupling 
assumption and (2) the assumption of uniform Te in the 
loading equations (Kirby and Swain 2008).

We then used the generated topography, Moho topog-
raphy and inverted Te grids to estimate (Eq.  (7)) the 
lithospheric flexure (Fig.  5a) and the associated errors 
(Fig.  5b). The long-wavelength component of the two 
flexure maps is basically the same (Figs. 2f and 5a), and 
the amplitudes of the flexure errors (Fig. 5b) are up to one 
order of magnitude smaller than the Te errors (Fig. 4b). 
The Te error-induced flexure errors exhibit a rippling pat-
tern due to the deflection of a higher Te plate possessing 
a lower amplitude and slower amplitude decay rate (see 
Fig. 6), although such a rippling pattern is truncated and/
or deformed by the attitudes of Te and total load. Fur-
thermore, the range of the rippling pattern is affected by 
the Te values and load amplitude, although it has a higher 
correlation with the Te values in this synthetic modelling 
study, as the rippling pattern is obviously broader in the 
high Te regions.

To further explore the relation between the flex-
ure errors and the Te errors, we simulated another 
data sets with a new Te model, who possesses an 
opposite numerical distribution pattern against the 
first Te model, and is notated as Te

r. More exactly, 
Te

r = maximum(Te) + minimum(Te)-Te (Fig.  7a). With 
the same procedure described above, we obtain the 
maps of lithospheric flexure with Te

r (Fig.  7b), inverted 
Te

r grid (Fig. 8a), Te
r errors due to the inversion (Fig. 8b), 
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lithospheric flexure using the inverted Te
r grid (Fig.  9a) 

and lithospheric flexure errors for the model inversion 
using the inverted Te

r grid (Fig. 9b).
The high Te region is concentrated in the central part 

of the Te
r grid (Fig.  7a), this enhances the resistance of 

the central area to the applied loads and make the lith-
ospheric flexure in the corresponding areas smoother 
(Fig. 8b). The inverted Te

r grid still reflects well the long 
wavelength part of the Te

r model, with the errors due to 
the inversion (Fig.  8b) much more concentrated at the 
central area. However, the consistency of the Te

r errors 
and the Te

r gradient belts is obvious as before. Figure 9 is 
dominated by the lithospheric flexure errors of rippling 

pattern, as significant errors are always surrounded by a 
series of errors in opposite sign. Though the difference 
between Te and Te

r grids is great, the response of lith-
ospheric flexure is quite similar.

Effect of Moho errors
Bouguer gravity anomaly reflects the long-wavelength 
Moho information. It follows that the short-wavelength 
component of the flexure-derived Moho will be the 
main source of error (Fig. 10b) when we use the Bouguer 
anomaly to invert for the Moho topography (Fig.  10a). 
Although the maximum Moho error is 6 km, the Moho 
inversion yields reliable results as the root-mean-square 
error is only 0.91 km. Furthermore, the even distribution 
of the Moho errors provides insights into how the Moho 
inversion errors impact the flexure errors.

We also used the generated topography, Te model 
and recovered (inverted) Moho topography to estimate 
(Eq.  (7)) the lithospheric flexure (Fig. 11a) and the asso-
ciated errors (Fig.  11b). A comparison of the Moho and 
flexure results yields the following findings. (1) The Moho 
inversion errors are distributed evenly across the entire 
region, whereas the main flexure errors occur in the low 
Te regions. (2) The Moho errors tend to induce flexure 
errors with similar magnitudes but opposite signs (see the 
white rectangles in Figs. 10b and 11b). (3) The plate still 
acts as a low-pass filter to the Moho disturbance, even in 
the low Te regions, with an increase in the intensity of fil-
tering, where there is an increase in the Te values.

Although the flexure error in the low Te regions, 
e.g., oceanic lithosphere, is sensitive to the Moho dis-
turbance, this method is still suitable for investiga-
tions of the oceanic lithosphere. The reference depth 
of the oceanic Moho is shallow, which may allow us to 
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retain more short-wavelength information, such that 
more accurate inversion results can be obtained. In 
addition, the FD method-derived flexure is suited for 
Airy isostasy theory in regions, where Te reaches zero. 
However, we have to mention that, directly apply Airy 
isostasy theory in some low Te regions may greatly 
overestimate the lithospheric deformation amplitude. 
For example, take the extreme point whose coordinate 
is (2.52, 2.54)*103  km in the lower white rectangle in 
Fig.  10b, the maximum Moho error reaches 4.258  km 

and we may expect a corresponding lithospheric flex-
ure error of −(ρm − ρc)/(ρF − ρm) ∗ 4.258 = −9.5805 
km with the Airy isostasy theory (the coefficient 
−(ρm − ρc)/(ρF − ρm) comes from Eq. (7) by setting D to 
be zero). However, this extreme point in Fig. 10b gets a 
value of − 2.520 km, the amplitude is only 26.3% to the 
expected value from the Airy isostasy theory. This huge 
overestimation clarifies the significance of applying the 
FD method even in low Te regions when researching the 
vertical lithospheric/crustal deformation.
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Integrated effects of the Te and Moho errors
Neither Te nor the Moho can be recovered with abso-
lute accuracy using real data sets. We therefore investi-
gated the integrated effects of the Te and Moho errors 
on the estimated lithospheric flexure errors to explicate 
the sources of the flexure errors. We used the generated 
topography, recovered Te and inverted Moho topography 
to invert (Eq.  (7)) for the lithospheric flexure (Fig.  12a) 
and calculate their associated errors (Fig. 12b). The long-
wavelength component of the lithospheric flexure is still 
well recovered, indicating that the FD method is sta-
ble when an integrated disturbance is applied. The lith-
ospheric flexure errors are dominated by the Te errors in 
the high Te regions (Figs. 5b, 11b and 12b). Correspond-
ingly, the flexure errors are dominated by the Moho 

errors in the low Te regions, although the amplitudes of 
the flexure errors have been somehow changed in the low 
Te regions (Figs. 11b and 12b).

Conclusions
Here, we employed the classic lithospheric model with 
an applied external load at the surface and internal load 
at the Moho, and assumed that the compensation mate-
rial was denser than the mantle material beneath the 
Moho, in an attempt to estimate lithospheric flexure. 
The resultant lithospheric model is closer to the actual 
lithospheric structure, with effective suppression of 
the overestimated lithospheric deflection predicted via 
linear theory, and conversion of the main lithospheric 
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flexure inversion function (Eq. (6)) into a forward equa-
tion with a small Winkler foundation (Eq.  (7)). This 
lithospheric model, which based on Te estimates from 
the fan wavelet coherence method and gravity-derived 
Moho topography, yields a finite-difference solution of 
the partial differential equation that recalibrates the lith-
ospheric flexure with high accuracy. Our main conclu-
sions are as follows:

1. The Te error-induced flexure errors exhibit a rippling 
pattern, and the rippling pattern is broader in high Te 
regions.

2. The Moho error-induced flexure errors mainly occur 
in the low Te regions, and applying Airy isostasy the-
ory in low Te regions may still greatly overestimate 
the lithospheric deformation amplitude.

3. The flexure errors in the low and high Te regions are 
dominated by the Moho and Te errors, respectively.

Appendix A: Finite‑difference method
The FD solution in Eq. (5) is mainly from Chen (2013), 
but we use the final loads instead of the initial loads on 
the right side of the equation. Equation (5) can be fur-
ther simplified to
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inverted Moho values, the contours are from Te model
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The differential operations in Eq. (A1) are approxi-
mated using central difference operators. A schematic 
diagram of the central difference grid (Ghali et al. 1989) 
is shown in Fig.  13, whereby a square grid is adopted, 
such that dx = dy . The corresponding central difference 
operators for the first-order, second-order and Laplace 
differential operations are shown in Fig. 14.

The approximation to the differential operations is 
then undertaken with the central difference operators, 
followed by formula expansion and combination. The 
following coefficients of the indicated vi,j terms for an iso-
tropic plate can then be obtained:

where A =
1−σ
8

(
Di+1,j+1 − Di−1,j+1 − Di+1,j−1 + Di−1,j−1

) , 
dx = dy = � , and all of the coefficients must be divided 
by �4 . For Eq. (7), only the first term in Eq. (A2) should be 
changed to

The data sets of the study area can be meshed into 
M × N grids, and M × N deflection values need to be 
calculated. Linear algebraic equations that incorporate 
the coefficients in Eq. (A3) can be used to calculate the 
deflection values as follows:

(A1)

∇(D∇v)− (1− σ) ·

{
∂2D

∂x2
∂2v

∂y2
− 2

∂2D

∂x∂y

∂2v

∂x∂y
+

∂2D

∂y2
∂2v

∂x2

}

= −(ρc − ρf )gh− (ρm − ρc)gw.

(A2)





vi,j : (3− 2σ)(Di−1,j + Di+1,j + Di,j−1 + Di,j+1)+ 8(1+ σ)Di,j

vi+1,j : −2(1+ σ)Di,j − 4Di+1,j − (1− σ)(Di,j−1 + Di,j+1)

vi−1,j : −2(1+ σ)Di,j − 4Di−1,j − (1− σ)(Di,j−1 + Di,j+1)

vi,j+1 : −2(1+ σ)Di,j − 4Di,j+1 − (1− σ)(Di−1,j + Di+1,j)

vi,j−1 : −2(1+ σ)Di,j − 4Di,j−1 − (1− σ)(Di−1,j + Di+1,j)

vi+1,j+1 : Di+1,j + Di,j+1 + A

vi+1,j−1 : Di+1,j + Di,j−1 − A

vi−1,j+1 : Di−1,j + Di,j+1 − A

vi−1,j−1 : Di−1,j + Di,j−1 + A

vi+2,j : Di+1,j

vi−2,j : Di−1,j

vi,j+2 : Di,j+1

vi,j−2 : Di,j−1

(A3)

vi,j : (3− 2σ)(Di−1,j + Di+1,j + Di,j−1 + Di,j+1)

+ 8(1+ σ)Di,j+(ρF − ρm)gv�
4
.

Fig. 13 Schematic diagram of the central difference grid

where −→v  is the deflection vector (a column vector 
with M × N rows), R is the difference coefficient matrix 
(a matrix with M × N columns and M × N rows), and 

−→

h  
and −→w  are the final surface and subsurface topography 
vectors (column vectors with M × N rows), respectively. 
We employed periodic boundary conditions during the 
calculations, and 24 kinds of boundary conditions that 
should be considered (Eq. A2 and Fig. 13). Furthermore, 
compression of the sparse matrix R is recommended, 
since it contains very few nonzero elements.

(A4)R
−→

v = −(ρc − ρf)g
−→

h − (ρm − ρc)g
−→

w ,
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