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Abstract 

Different from the Apollo flight mode, a safer trans-lunar flight mode for the crews is preferred. The previous-arrived 
lunar module rendezvouses with the crew exploration vehicle at a low lunar destination orbit, and then the crews ride 
the lunar module to descend the lunar surface sampling destination. The lunar module, which includes the descent 
and ascent stages, flies from a low Earth orbit to the low lunar destination orbit with two tangential impulses. The 
low lunar destination orbital reachable set of the practical trans-lunar orbit limits the feasible lunar surface sampling 
region. Therefore, this paper addresses the low lunar destination orbital reachable set of the practical trans-lunar orbit. 
A retrograde semi-analytic model is proposed for rapidly computing the practical two-impulse trans-lunar orbit firstly, 
which refers the ephemeris table twice for more precision perilune orbital elements. The reachable set is generated 
using the multiple-level traversal searching approach with this retrograde semi-analytic mode. Its envelope is re-
checked by the continuation theory with the high-precision orbital model. Besides, some factors that affect the reach‑
able set are also measured. The results show that neither the Earth–Moon distance nor the trans-lunar duration affects 
the reachable set. However, if the trans-lunar injection inclination is smaller than the inclination of the moon’s path, 
the reachable set becomes smaller or even reduces into an empty set. In brief, the proposed retrograde semi-analytic 
model for computing the reachable set provides a helpful and fast tool for selecting an applicable lunar surface sam‑
pling site for the manned lunar mission overall design.
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Graphical Abstract

Introduction
The moon as the nearest celestial body is also the com-
pulsory training camp for human’s interstellar travels. 
After the Apollo project, especially when the evidences 
of water in lunar south pole are discovered by many 
lunar polar orbiters (Colaprete et  al. 2010), new plans 
for the manned lunar mission by USA and other coun-
tries have become more diverse. The National Aeronaut-
ics and Space Administration (NASA) have published 
three important reports on the Constellation Program 
after 2005(Stanley et al. 2005; Condon 2007; Garn et al. 
2008). Although the Constellation Program was replaced 
later by the Lunar Orbital Platform-Gateway Program 
(Davis 2018), the aims of lunar Global Access and Any-
time Return remained unchanged. Different from the 
lunar low latitude area detection of the Apollo project, the 
lunar polar and high-latitude districts would be the next 
manned lunar mission destination for water and possible 
lunar life. In the Constellation Program, NASA proposed 
a new idea called crew and cargo separation that the lunar 
module (i.e., descend and ascend stages are merged) 
transferred to a low lunar orbit (LLO) by a practical 
trans-lunar duration about 4–5  day, to wait for a crew 
exploration vehicle for rendezvous and assembling. Com-
pared with the Apollo flight mode, this new flight mode 
is safer for crews (Stanley et al. 2005). When it comes to 
the mode of a 3-day trans-lunar orbit used in the Apollo 
Project, the new mode is also more fuel-saving for trans-
lunar injection (TLI) and low lunar orbit insertion (LOI) 
(He and Shen 2020). To save fuel, TLI and LOI are hoped 
to be tangential to the periapsis velocity vector. With the 
two constraints (i.e., the trans-lunar duration and tan-
gential velocity increments), the orbital elements reach-
able set of LLO for the lunar module rendezvous with the 

crew exploration vehicle becomes a significant factor to 
select a feasible lunar surface sampling site. Therefore, 
this paper studies the reachable set of the practical two-
impulse trans-lunar orbits.

In February 1959, the Luna-1 lunar impact probe 
launched by Soviet Union did not reach the goal of hit-
ting the lunar surface because of its inaccurate trans-
lunar orbital dynamics model and designed method. 
The Luna-2, launched in September 1959, successfully 
hit the lunar surface and became the first human lunar 
probe. After that, dozens of lunar probes including the 
unmanned and manned cases have had successfully 
missions to the Moon. However, the well-known trans-
lunar orbital dynamics models could be divided into 
only four items, namely, the circular restricted three-
body problem (CR3BP), the double two-body model, 
the pseudo-state model, and the high-precision model. 
Issac Newton described the CR3BP in his Philosophiae 
Naturalis Principia Mathematica, which shows the 
mathematical formulas of the orbits in a three-body 
system. CR3BP still need numerical integration (Lee 
et  al. 2014). The double two-body model was pro-
posed based on the principle of computing the celes-
tial body’s gravitational sphere in the Pierre Simon 
Laplace’s monumental work Celestial Mechanics 
(Egorov 1958). Wilson (1970) and Byrnes and Hooper 
(1970) proposed the pseudo-state model around 1970s. 
It is also named the multi-conic method. It calcu-
lates a trans-lunar orbit using both the Earth’s and the 
Moon’s gravitational forces acting on the spacecraft 
gradually. Such calculation consumes about 1% of the 
numerical integration time, and its model errors are 
no more than 5% compared with the double two-body 
model. The perilune attitude error for a trans-lunar 
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orbit is about 20  km (Zhou et  al. 2019). Apart from 
the above trans-lunar orbital dynamical models, the 
high-precision model considers all the known pertur-
bation forces acting on the spacecraft. Thus, it is the 
most accurate dynamic model that reflects the real 
scenario with a huge potential in the near future (Yan 
and Gong 2011). To design a trans-lunar orbit with a 
high-precision model, a simplified orbital model is 
applied usually to provide an initial value of the design 
variable (Mohammad and Roberto 2019). The double 
two-body model is selected usually to play the role of 
the simplified orbital model because of its semi-analyt-
ical feature. However, the selections of the parameters 
are different. Peng et  al. (2011) and Gao et  al. (2018) 
selected the entry point parameters on the lunar influ-
ence sphere to play the orbital patched conic param-
eters. Li et al. (2015) selected the exit point parameters 
to do this. The above orbital patched conic techniques 
that select the entry or exit point are difficult to com-
pute the precision orbital position and velocity at 
the epochs of the perilune and perigee. Because they 
referred the Jet Propulsion Laboratory (JPL) ephemeris 
table for the Moon’s position and velocity at the epochs 
of the entry or exit point, but ignore the Moon’s posi-
tion and velocity deviations when the spacecraft flies 
inside the Moon’s gravitational influence sphere. And 
the lambert iteration is needed to compute the orbital 
elements in the Earth-centric segment, so its calcula-
tion efficiency is low. A set of the perilune parameters 
selected in our previous works (He et  al. 2019) is an 
effective measure for avoiding the orbital perilune-
state deviation.

The reachable set of non-linear differential equations 
refers to the dynamic system as Eq.  (1). If the system is 
consecutive within t ∈ [t0, tf] , and there is an initial state 
set x(t0) ∈ �n ⊆ R

n at the moment t0 . There exists a 
control set u(t) ∈ U

m ⊆ R
n that causes the final state 

x(tf) ∈ �n ⊆ R
n at the moment tf , then the �n can be 

called the reachable set of the initial set �n(Grantham. 
1981).

Here, x(t) denotes the state variables of the consecu-
tive system; ẋ(t) is its differential variable. f [] denotes 
their dynamic model function. y(t) denotes the observa-
tion variables or the variables which are concerned. c[] 
denotes their function. In a physical dynamic system, all 
of the elements in the final reachable set are sometimes 
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ẋ(t) = f [t, x(t),u(t)]

y(t) = c[t, x(t)]

x(t0) ∈ �n,u(t) ∈ U
m, y(tf) ∈ Y

k

f [] : �n
×U

m
→ �n

c[] : �n
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not intuitive or concerned. However, its partial elements 
are concerned. Therefore, a relevant elements’ equation 
y(t) = c[t, x(t)] is built, which can be used for calculat-
ing the final concerned parameters’ set Yk ⊆ R

n . If there 
are some inequality or equality constraints in the control 
process as Eq. (2), then Yk will become small, dimension-
less, even an empty set Yk → �.

Here, g[] and ζ [] denote the inequality or equality con-
straints. To review the approaches of computing the 
orbital reachable set, the previous literatures mainly 
focused on the following aspects, such as the spacecraft 
formation flight (Lee and Hwang 2018), collision proba-
bility calculation (Bai et al. 2012), geostationary satellites 
collocation (Li 2014), engagement analysis of exo-atmos-
pheric interceptor (Chai et  al. 2014), Earth re-entry (Lu 
and Xue 2010), and Moon and Mars entry landing foot-
prints (Arslantas 2016; Benito and Mease 2012). Methods 
vary in different cases, but all of them could be catego-
rized essentially into two types.

Type I:
When a spacecraft is dominated by one force and the 

orbital state transition matrix can be derived by the lin-
earization hypothesis in some form as ẋ = Ax + Bu , and 
if there is no control force or uncertain process model 
error in the duration t ∈ [t0, tf] , a state transition matrix 
Φ(t0,tf) = eA(tf−t0) can be utilized to compute the final 
state xtf = Φ(t0,tf)xt0 . Therefore, the final state reach-
able set, affected by an initial state uncertainty or a small 
orbital maneuver (Zhang et  al. 2013; Wen et  al.2018; 
Yang et al. 2019), can be approximately calculated by the 
state transition matrix (i.e., δxtf = Φ(t0,tf)δxt0 ). If there 
are cases such as some perturbation forces action on the 
spacecraft (Li et  al.2011), large uncertainty range of the 
initial state, long initial–final duration (He et  al. 2013), 
or a complex flight process (Feng et al.2019), the calcula-
tion of the reachable set by the utilization of linearization 
hypothesis leads to an inaccuracy, or even a wrong result.

Type II:
When a spacecraft has some orbital control pow-

ers or there are some uncertain processes, such as 
the general entry or re-entry reachable set prob-
lems with uncertain atmospheric model param-
eters, the final state becomes more complex as 
xtf = Φ(t0,tf)xt0 +

∫ tf
t0
Bu · dt . Because of the unknow-

able controlling or uncertain perturbation forces 
∫ tf
t0
Bu · dt during the process, the reachable set cannot 

be computed by the state transition matrix approach. 
Komendera et  al. (2012) had suggested an intelligent 
feedback-adjust idea to search the initial parameters 

(2)
{

g[t, x(t),u(t)] ≤ 0

ζ [t, x(t)] = 0
.
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of a reachable set’s envelope, but it also needs more 
computations and is not practical for the complex 
engineering problems. The practical approach is the 
two-step method which avoids a huge amount of cal-
culations. Take the Earth re-entry for example (Lu 
and Xue 2010). The first step computes the maxi-
mum range, and the second step computes the maxi-
mum cross-ranges with some fixed-ranges which are 
between the minimum and maximum ranges. The 
high-precision dynamical model is adopted instead 
of a linearization assumption. By this way, the reach-
able set calculated by the high-precision method is 
undoubtedly more accurate than that calculated by the 
linearization hypothesis. This method is a calculation 
strategy operated at two levels. The outer layer gradu-
ally gives the virtual objective point, while the inner 
layer is a general single-objective non-linear con-
strained optimization problem. According to the spe-
cific conditions, the inner optimization problem can 
be solved by an indirect method or a direct optimiza-
tion algorithm. The basic model is shown in Eq. (3).

Here, n,m, l, p denote the number of the optimization 
variables, optimization objectives, inequality constraints, 
and equality constraints, respectively. f , gj , hk denote the 
objective function, inequality constraint function, and 
equality constraint function, respectively. The s.t. is the 
abbreviations for the subjected to some constraints. The 
optimization results of the inner layer calculation consti-
tute the envelope parameters of the reachable set. As for 

the shortcoming of this methodology, it is impossible to 
prove whether the reachable set is continuous or not.

The structure of the remainder of the article is as fol-
lows. After reviewing the above-mentioned trans-lunar 
orbital dynamical models and different approaches of 
the orbital reachable set generation, details of prob-
lem formulation including the generation strategy 
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s.t.

�

gj[x] ≤ 0, j = 1, · · · , l

hk [x] = 0, k = 1, · · · , p
�

f , gj , hk
�

∈ R
n

min J = f (x)

end

.

proposed in this paper are presented in “Problem 
statement and strategy” section. The retrograde semi-
analytical model and the multiple-layer traversal 
searching approach are described in “Reachable set 
rapid generation” section. In “Precision envelopes gen-
eration” section, the retrograde semi-analytical model 
and the envelope of the reachable set are re-checked 
by the high-precision dynamics model. The property 
of the reachable set changes due to some influence 
factors are exhibited in “reachable set property meas-
urement” section. Finally, conclusions are drawn in 
“Conclusion” section.

Problem statement and strategy
Problem statement
The practical two-impulse trans-lunar orbit has duration 
about 4 ~ 5 days, projected orbital altitudes at the epochs 
of TLI and LOI, and tangential incremental velocities of 
�vTLI and �vLOI as shown in Fig. 1.

Tangential impulses are reasonable for computing a 
trans-lunar orbit. It is uneconomical that the trans-lunar 
burn from a low earth orbit (LEO) with a non-tangential 
thruster vector. It is same uneconomical for lunar orbit 
insertion with a non-tangential thruster vector. The TLI 
burn duration of Apollo-11 is 320 s, it is an impulse com-
pared to the trans-lunar duration about 4–5 days (Berry 
1970). To describe the orbital reachable set of the prac-
tical two-impulse trans-lunar orbit via the mathemati-
cal formula in Eq.  (1), t0 and tf represent the epochs of 
TLI and LOI, respectively. The orbital initial state set is 
described as Eq. (4).

Here, κ represents the radius of periapsis; subscript ‘EJ2’ 
represents the J2000.0 earth-centric coordinate system; 
hLEO represents the altitude of LEO; RE represents the 
radius of Earth; e , i , and f  represent the eccentricity, 
inclination, and the true anomaly of the trans-lunar orbit, 
respectively. The superscript of ‘lb’ and ‘ub’ represent the 
low and upper boundaries. The expression of eEJ2 < 1 

(4)�n
t0
=

{

x(t0) ∈ R
n

s.t. κEJ2 = (hLEO + RE), fEJ2 = 0, ∀eEJ2 < 1, ∀iEJ2 ∈
[

ilbEJ2, i
ub
EJ2

]

}

.

Fig. 1  Illustration of the practical two-impulse trans-lunar orbit
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implies the trans-lunar orbit is an elliptical orbit, which 
orbital energy is lower than the parabolic and hyperbolic 
orbits. The interval of 

[

ilbEJ2, i
ub
EJ2

]

 depends on the launching 
angle A0 and the latitude of launch of launch site of B0 , 
i.e., cos iE = sinA0 cosB0 . The equation of fEJ2 = 0 is 
equivalent to that �vTLI is tangential.

The nominal orbit does not need any mid-course cor-
rections. The reachable set of the orbital elements at tf 
can be described as Eq. (5).

Here, the subscript of ‘MJ2’ represents the J2000.0 moon-
centric coordinate system; hLLO represents the altitude of 
LLO; and RM represents the radius of Moon. The expres-
sion of eMJ2 > 1 implies that the trans-lunar orbit is a 
hyperbolic orbit when it arrives at the perilune point. The 
equation of fMJ2 = 0 is equivalent to that �vLOI acts on 
the perilune point. The interval of 

[

�t lb,�tub
]

 implies 
that the acceptable trans-lunar duration is practical and 
useful in an engineering task.

Obviously, the reachable set as described in Eq. (5) is a 
multi-dimensional element set, which is difficult to pre-
sent clearly and simply understand. However, only the 
inclination and the longitude of ascending node (LAN) 
in the lunar centric-fixed coordinate system (i.e., the 

(5)�n
tf
=




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
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

x(tf) ∈ R
n

∃tf > t0

s.t. κMJ2 = (hLLO + RM), fMJ2 = 0, ∀eMJ2 > 1,∀�t = (tf − t0) ∈
�

�t lb,�tub
�















.

subscript of ‘LCF’) in Eq. (6) are the elements concerned, 
which affect the ground track of satellite (GTS) after 
lunar orbit insertion as shown in Fig. 2.

(6)Y
k
tf
=

{

(iLCF,�LCF) : ∀x(tf) ∈ �n
tf

}

.

Two‑step strategy
It implies that there are countless trans-lunar orbits 
with constraints as Eq.  (7) to be calculated for generat-
ing a valid Yk

tf
 . The difficulty lies in two aspects, one is 

the orbital dynamics model and another is the optimi-
zation algorithm. If the high-precision orbital mode is 
applied, its computing-time for a large number of the 
orbits is unaffordable. And if the evolutionary algorithm 
is applied, it leads to the same problem of the cost of 
computing.

Reference Type II. mentioned in the bottom of the 
Introduction, a strategy is suggested, which contains 
two steps as shown in Fig. 3. The simple explanation is as 
follows:

Fig. 2  Illustration of the reachable set and the GTS of the trans-lunar orbits
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Step 1:
A retrograde semi-analytical model is established based 
on the double two-body concept, wherein the orbital ele-
ments at the perilune point are selected to play the role of 
the traversal searching variables. After traversal search-
ing, the orbital elements, which satisfy the constraints, 
are recorded. Then, the topological structure and the 
influence relations of the elements in the reachable set 
are analyzed.
Step 2:
The orbital design variable, which affects the reachable 
set obviously, is selected to play the role of the numeri-
cal continuation element. Then, the precision envelops of 
the reachable set are re-checked with the high-precision 
orbital dynamical model under the continuation frame. 
Every point of the envelope implies a constrained optimal 
problem. Its solution is solved via the initial values from 
Step 1 via SQP optimization algorithm (Gill et al. 2005).

Step 1 not only provides the topological structure infor-
mation and the influence relation of the design variables 
in the reachable set but also provides the initial value of 
the orbit design variables for Step 2. Step 2 checks the 

(7)
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x = x(t0)

s.t.
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
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κEJ2 = (hLEO + RE), eEJ2 < 1, iEJ2 ∈
�

ilbEJ2, i
ub
EJ2

�

, fEJ2 = 0

κMJ2 = (hLLO + RM), eMJ2 > 1, fMJ2 = 0,�t = (tf − t0) ∈
�

�t lb,�tub
�







.

reachable set solved by Step 1 using the proven high-pre-
cision orbital dynamical model.

Reachable set rapid generation
A retrograde semi‑analytical model
The latitude and longitude on the Moon’s influence 
sphere, and flight duration from TLI to the moment 
when the lunar probe passes into the Moon’s influence 
sphere are selected as the trans-lunar orbital design 

Fig. 3  Flow chart of the frame suggested for generating the reachable set of the trans-lunar orbits

Fig. 4  Illustration of the orbital design variables at the moment of 
perilune



Page 7 of 18He et al. Earth, Planets and Space           (2023) 75:34 	

variables (Peng et al. 2011; Gao et al.2018). The Newton 
iteration is applied to calculate the Earth-centered true 
of anomaly of the entrance point on the Moon’s influ-
ence sphere, and then the trans-lunar orbit before the 
moment when the lunar probe passes into the Moon’s 
influence sphere can be designed. The orbital design 
variables in the traditional application of the double 
two-body model cannot obtain a constant orbital alti-
tude at the epoch of perilune point, and the design 
variables have no physical significance. Moreover, they 
are not easily translated into the reachable set ele-
ments in Eq. (6). In our previous work, a set of orbital 
elements at the epoch of the perilune suggested as the 
design variable show a well convergence performance 
to design the adaptive LEO-phase and the fixed-thrust 
circumlunar free-return orbits (He et  al. 2019). The 
latitude and longitude (�,ϕ) in the lunar-centric local 
vertical and local horizontal coordinate system (LVLH) 
at the epoch of perilune, the velocity vector azimuth 
angle iprl, and the value of the velocity vprl before LOI 
are selected as the trans-lunar orbital design variables 
as shown in Fig. 4.

The subscript of ‘prl’ represents the epoch of the peri-
lune. The trans-lunar orbital position and velocity vectors 
at this epoch before LOI can be described as Eq. (8).

Here, rprl is equals to κMJ2 ; My,Mz , and unused Mx are 
the basic rotation matrix of the coordinate systems. If tf 
(i.e., the epoch of LOI) and rprl (i.e., rprl = RM + hLLO ) are 
set to constants, the instantaneous lunar-centered LVLH 
coordinate system can be treated as an inertial system, 
the position, and velocity vectors of the trans-lunar orbit 
at this epoch before LOI in J2000.0 moon-centered coor-
dinate system can be computed by Eq. (9).

Here, MLVLH2MJ2 is the rotation matrix from the lunar-
centered LVLH coordinate system to the J2000.0 lunar-
centered coordinate system which is expressed of 
MLVLH2MJ2 = Mz(−�M)Mx(−iM)Mz(−uM) . The 
expressions of (uM, iM,�M) are the Moon’s argument of 
latitude, inclination, and right ascension of ascending 
node (RAAN), respectively, in the J2000.0 lunar-centered 
coordinate system. Therefore, the trans-lunar orbit can 
be only computed by 

(

�,ϕ, iprl, vprl
)

 . When 
[

r
MJ2
prl , v

MJ2
prl

]

 is 
translated into the modified classical orbital elements 

(8)







rLVLHprl = rprl
�

cosϕ cos � cosϕ sin � sin ϕ
�T

vLVLHprl = Mz(−�)My(ϕ) · vprl
�

0 cos iprl sin iprl
�T

.

(9)
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



r
MJ2
prl = MLVLH2MJ2 · r

LVLH
prl

v
MJ2
prl = MLVLH2MJ2 · v

LVLH
prl

.

(

κMJ2, eMJ2, iMJ2,�MJ2,ωMJ2, f
prl
MJ2

)

 , the radius of the 
Laplace influence sphere ρ is 66200 km. Hence, the true 
anomaly f MJ2

in  at the moment of tin can be computed by 
Eq. (10).

Here, the subscript of ‘in’ represents the epoch when the 
lunar module enters the Laplace influence sphere, and 
pprl = κprl

(

1+ eprl
)

 . Then, the position and velocity vec-
tors of the trans-lunar orbit 

[

r
MJ2
in , v

MJ2
in

]

 at this epoch in 
J2000.0 lunar-centered coordinate system can be com-
puted by the principle of the two-body orbital state trans-
fer matrix described as Eq. (11).

Here, µM represents the lunar gravitational constant, and 
σ
MJ2
prl =

(

r
MJ2
prl · v

MJ2
prl

)/

√
uM.

According to Gudermann Christoph’s transformation 
principle, the lunar-centered hyperbolic anomaly H  at 
this epoch can be computed by Eq. (13).

The flight duration from tin to tf can be computed by 
Eq. (14).

Therefore, tin = tprl −�tin2prl . The Moon’s position 
and velocity vectors 

[

r inM, vinM
]

 are obtained by the JPL 
ephemeris table. The position and velocity vectors of the 
trans-lunar orbit 

[

r
MJ2
in , v

MJ2
in

]

 at the epoch of tin in J2000.0 

(10)f
MJ2
in = − acos

[

pprl

eprl · ρ
−

1

eprl

]

.
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





















































F = 1−
ρ

pprl

�

1− cos
�

f
MJ2
in

��

G =
ρ · r

MJ2
prl

√
µMpprl

sin
�

f
MJ2
in

�

Ft =

√
µM

r
MJ2
prl · pprl

�

σ
MJ2
prl ·

�

1− cos
�

f
MJ2
in

��

−
�

pprl sin
�

f
MJ2
in

��

Gt = 1−
r
MJ2
prl

pprl

�

1− cos
�

f
MJ2
in

��

.

(13)



















coshH =

�

eprl + cos f
MJ2
in

���

1+ eprl cos f
MJ2
in

�

sinhH =

��

e2prl − 1 sin f
MJ2
in

���

1+ eprl cos f
MJ2
in

�

H = ln (coshH + sinhH)

.

(14)

�tin2prl =

√

−
1

µM

(

κprl

1− eprl

)3

·
(

eprl sinhH −H
)

.
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Earth-centered coordinate system can be computed by 
Eq. (15).

When 
[

r
EJ2
in , v

EJ2
in

]

 is translated into the modified classi-
cal orbital elements 

(

κEJ2, eEJ2, iEJ2,�EJ2,ωEJ2, f
in
EJ2

)

 , the 
eccentricity of eEJ2 is smaller than 1, and f inEJ2 is the true 
anomaly of the trans-lunar orbit at the epoch of tin . 
According to the Kepler’s transformation principle, the 
flight duration from the moment of TLI to the moment 
tin can be computed by Eq. (16).

Here, tan
Ein
EJ2

2 =

√

1−eEJ2
1+eEJ2

tan
f inEJ2
2  , and the epoch of TLI (i.e., 

t0 ) is t0 = tin −�tTLI2in . The total flight duration of the 
trans-lunar orbit is �t = (tf − t0) = �tTLI2in +�tin2prl . 

(15)

{

r
EJ2
in = r inM + r

MJ2
in

v
EJ2
in = vinM + v

MJ2
in

.

(16)

�tTLI2in =

√

1

uE

(

κEJ2

1− eEJ2

)3(

Ein
EJ2 − eEJ2 · sin E

in
EJ2

)

.

The expressions in Eqs.  (8 , 9, 10, 11, 12, 13, 14, 15, 16) 
are the so-called retrograde semi-analytical model, which 
is proposed to compute the trans-lunar orbit rapidly.

Multiple‑layer traversal search
Based on the retrograde semi-analytical model, a multi-
layer traversal search method is utilized to generate the 
reachable set of the trans-lunar orbits rapidly. The flow 
chart is shown in Fig. 5.
(

�,ϕ, iprl, vprl
)

 are selected as the traversal searching ele-
ments in a four-layer frame respectively. Then, κEJ2 , eEJ2 , 
iEJ2 , and, f inEJ2 are tested by the constraints. If any con-
straint is not satisfied, the next loop will be re-started. 
Considering the error of the double two-body model, 
an error of the radius of perigee �κEJ2 is allowable as 
Eq. (17).

(

�,ϕ, iprl, vprl
)

 refresh its values by add themselves on 
(

��,�ϕ,�vprl,�iprl
)

 in everyone’s layer, respectively. 

(17)

{

κmin
EJ2 = (hLEO + RE)−�κEJ2

κmax
EJ2 = (hLEO + RE)+�κEJ2

.

Fig. 5  Flow chart of the multiple-layer traversal search method
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Until the searching process of the four layers is accom-
plished, the set of the orbital elements at the epoch of 
perilune constitutes the reachable set.

The reachable set based on the retrograde semi‑analytical 
model
To verify the effectiveness of the proposed retrograde 
semi-analytical model and the multi-layer traversal 
search frame, an example is tested. The useful orbital ele-
ments and constraints are optioned as follows:

A)	The moment of perilune tf is set as 1 Jan 2025 
0:00:00.000 UTCG (UTC, in Gregorian Calendar for-
mat).

B)	Refer to Apollo-11 mission (Berry 1970), set 
hLLO = 111 km and hLEO = 185.2 km.

C)	Set [�min, �max] = [−1  80, 180] deg, 
[ϕmin,ϕmax] = [− 90, 90] deg, �� = �ϕ = 2 deg. vprl is 
set to ensure that the trans-lunar orbit is a lunar-cen-
tered hyperbolic orbit. Therefore, its minimum value 
is vmin

prl =

√

2µM

/

(hLLO + RM) . The allowable 
�vallowLOI  is smaller than 1  km/s [14]. Its maximum 
value vmax

prl =

√

µM

/

(hLLO + RM)+�vallowLOI  . There-
fore, 

[

vmin
prl , v

max
prl

]

 = [2302.7, 2628.3] m/s, and set 
�vprl = 1  m/s. A circumlunar free-return orbit or a 
hybrid orbit is used to being the trans-lunar orbit of 
the crew exploration vehicle. Both of them have a 
retrograde LLO after lunar orbit insertion by a tan-
gential maneuver at perilune. The LLO is destination 
orbit for the lunar module to rendezvous with the 
crew exploration vehicle, Therefore, set 
[

imin
prl , i

max
prl

]

 = [90, 270] deg, and set �iprl = 2 deg.
D)	According to the large position error of the semi-

analytical model, set �κEJ2 = 1000  km. And to ana-
lyze the influence of the flight duration on the reach-
able set, set [�tmin,�tmax] = [3, 6] day.

E)	The inclination of the moon’s path plane varies 
between 18 to 28 deg. Considering an orbital inclina-
tion error of 2 deg, set 

[

imin
EJ2 , i

max
EJ2

]

 = [16, 30] deg.

After a pure analytical searching process, a mass of the 
constrained trans-lunar orbits is obtained. The distribu-
tions of the design variables are shown in Fig. 6a, b, c.

The longitude of � is scattered in [−  100 to 0] W deg 
while ϕ symmetrically is scattered in [−  50 to 50] deg. 
The value of the velocity at vprl is scattered in [2410, 2540] 
m/s. It becomes larger with � and ϕ become larger to a 
certain extent. The inclination of iprl is scattered in [90–
180] deg ( ϕ < 0) and [180–270] deg ( ϕ > 0), and its value 
tends to 180 deg from 90 and 270 deg in both directions 
as � becomes larger.

The orbital elements concerned as shown in Fig. 6d are 
the inclination and the LAN in the lunar-centric LVLH 
and the lunar fixed coordinate systems. The inclination in 
the lunar-centric LVLH coordinate system is scattered in 
[90–180] deg. However, when the inclination is less than 
about 167 deg, the LAN only distributes between about 
[80–140] deg and [260–320] deg. The case in the lunar 
fixed coordinate system is similar, except for minor dif-
ferences caused by the Moon’s rotation and libration.

Precision envelopes generation
Optimize a precise trans‑lunar orbit
The position and velocity vectors of the trans-lunar orbit at 
the moment of perilune before LOI in J2000.0 lunar-cen-
tered coordinate system 

[

r
MJ2
prl , v

MJ2
prl

]

 can be computed by 
Eq. (8) and (9). Then, the Moon’s position and velocity vec-
tors 

[

r
prl
M , v

prl
M

]

 in the J2000.0 Earth-centered coordinate sys-
tem at this epoch are computed by JPL ephemeris table. The 
position and velocity vectors at this epoch in the J2000.0 
Earth-centered coordinate system are computed by Eq. (18).

The trans-lunar orbit is computed via a 6-day retro-
grade-time numerical integration with the initial states of 
[

r
EJ2
prl , v

EJ2
prl

]

 using the Runge Kutta 7–8 integrator. The 
epoch of the perigee is found via the interpolation. Then, 
the position and velocity are translated into the modified 
classical orbital elements 

(

κEJ2, eEJ2, iEJ2,�EJ2,ωEJ2, f
TLI
EJ2

)

 . 

Wherein, 
∣

∣

∣sin
(

f TLIEJ2

)∣

∣

∣ < ε , which is the determined by 
the interpolation accuracy. κEJ2 and iEJ2 are set as the 
equality and the inequality constraints due to the rocket. 
Therefore, the inclination and the RAAN at the epoch of 
LOI are the same with the target values. The model of 
searching a precise trans-lunar orbit via an optimal algo-
rithm is shown in Eq. (19).

Here, the superscript ‘tar’ represents the target values 
of the orbital elements. To verify the model above, the 
same constraints and the interval of the design vari-
ables are set as that in section (the reachable set based 
on the retrograde semi-analytical model). The difference 
is the consideration of the precision perturbation orbital 
model. It contains the Sun’s and the Moon’s perturbation, 

(18)







r
EJ2
prl = r

prl
M + r

MJ2
prl

v
EJ2
prl = v

prl
M + v

MJ2
prl

.

(19)



























x =
�

�,ϕ, vprl, iprl
�T

s.t.

�

κEJ2 − (hLEO + RE) = 0

imin
EJ2 ≤ iEJ2 ≤ imax

EJ2

min J =
�

�iMJ2 − itarMJ2

�

�+
�

��MJ2 −�tar
MJ2

�

�

.
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(a)

(b)

(c)

Fig. 6  a The distribution of the design variables: � vs. ϕ . b The distribution of the design variables: � and ϕ vs. vprl . c The distribution of the design 
variables: � and ϕ vs. iprl . d The inclination and LAN in LVLH frame and LCF frame
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and the Earth’s non-spherical perturbation of 6 × 6 order 
of in WGS84 table. The solar radiation pressure and 
the atmosphere perturbation are ignored. An LLO with 
i
tgt
MJ2 = 150 deg and �tgt

MJ2 = 50 deg is selected as the desti-
nation orbit in an optional manner.

A set of proximate design variables and the lunar-
centered modified classical orbital elements in different 
lunar-centered coordinate systems are listed in Table  1 
and Table 2. The Earth-centered modified classical orbital 
elements at the moment of TLI computed by the retro-
grade semi-analytical model are listed in Table 3.

The values in Table  1 are selected to play the role of 
the initial values of the design variables in Eq.  (19). The 
optimal values of the design variables, the lunar-centered 
modified classical orbital elements in different lunar-cen-
tered coordinate systems, and the Earth-centered modi-
fied classical orbital elements computed via Eq. (19) with 
the high-precision numerical integration are listed in 
Tables 4, 5, and 6, respectively.

The iterative process of the optimal objective function 
and the constraints’ fitness are shown in Fig. 7. The itera-
tion converges quickly within 10 steps. It has two major 

Fig. 6  continued

Table 1  The initial values of the design variables by the 
retrograde semi-analytical model

Design variables �/deg ϕ/deg vprl/m/s iprl/deg

Values − 64 − 24 2415 228

Table 2  The lunar-centered modified classical orbital elements by the retrograde semi-analytical model at LOI epoch

Coordinate systems κMJ2/m eMJ2 iMJ2/deg �/deg ωMJ2/deg fMJ2/deg

Lunar-centered LVLH 1,849,200 1.19976 127.6819 95.8856(LAN) 149.0733 0

LCF 1,849,200 1.20592 133.4608 273.8549(LAN) 153.3355 0

J2000 Lunar-centered 1,849,200 1.19976 150.0296 50.8816(RAAN) 176.8663 0

Table 3  The Earth-centered modified classical orbital elements computed by the retrograde semi-analytical model at TLI epoch

κEJ2/m eEJ2 iEJ2/deg �EJ2/deg ωEJ2/deg fEJ2/deg �t/day

7462500 0.96192 25.0860 22.5152 94.6927 0.00000 4.90386

Table 4  The optimal values of the design variables with the 
high-precision model

Design variables �/deg ϕ/deg vprl/m/s iprl/deg

Values − 64.3936 − 24.2613 2456.21 228.1633
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reasons: One is the utilization of the SQP_snopt optimi-
zation kit (Gill et al. 2005), which has good ability to solve 
non-linear programming problems (Song et  al. 2020). 
Another is the design variables obtained from the retro-
grade semi-analytical model, which provides an effective 
initial values.

Re‑check the envelope of the reachable set
The reachable set is generated rapidly and clearly based 
on the retrograde semi-analytical model, and the accu-
racy of its envelope still has errors. According to the 
methodology in Eq.  (3) and Fig.  6(c), iprl is selected to 
play the role of the continuation element. In the con-
tinuation frame, there are three design variables left. 
[

imin
EJ2 , i

max
EJ2

]

 is still set as an inequality constraint, and 
the trans-lunar orbit is numerical integrated via a time-
retrograde manner with a fixed �t . The error absolute 

value between the perigee radius and the radius of LEO 
is set as the optimal objective function. The frame is 
shown in Eq. (20).

The initial values x0 of the design variables are found 
from the reachable set in section (the reachable set 
based on the retrograde semi-analytical model). xoptn−1 
plays the role of the initial values for the iteration opti-
mization that n ≥ 2 as shown in Eq.  (21). The orbital 

(20)
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


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





























search
�

iprl = ilbprl : i
step
prl : iubprl

�

Inner















x =
�

�,ϕ, vprl
�T

s.t.
�

imin
EJ2 ≤ iEJ2 ≤ imax

EJ2

min J =
�

�κEJ2 − (hLEO + RE)
�

� → 0

end

.

Table 5  The lunar-centered modified classical orbital elements with the high-precision model at LOI epoch

Coordinate systems κMJ2/m eMJ2 iMJ2/deg �/deg ωMJ2/deg fMJ2/deg

Lunar-centered LVLH 1849200 1.27547 127.4522 95.4101(LAN) 148.8292 0

LCF 1849200 1.28171 133.2580 273.3152(LAN) 153.0107 0

J2000 Lunar-centered 1849200 1.27547 149.9998 49.9998(RAAN) 176.1479 0

Table 6  The Earth-centered modified classical orbital elements computed with the high-precision model at TLI epoch

κEJ2/m eEJ2 iEJ2/deg �EJ2/deg ωEJ2/deg fEJ2/deg �t/day

6564074 0.96691 28.5008 61.4684 60.2577 359.7095 5.0708

Fig. 7  The iterative process of the optimal objective function and the constraints fitness
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elements are solved quickly and easily using this con-
tinuation theory, the envelope of the reachable set are 
constituted with them.

Corresponding to the time-retrograde integrate fixed 
time �t ∈ [3, 6] day, respectively, the envelope of the 
reachable set in the lunar-centered LVLH and the lunar 
fixed coordinate systems is shown in Fig. 8.

It shows that the model error of the retrograde semi-
analytical model for the practical trans-lunar orbit 
with 6-day duration is larger than that with 3-day 
flight duration. When the flight duration is 3 days, the 

(21)
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









x
ini
1 = x

0

s.t.
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imin
EJ2 ≤ iEJ2 ≤ imax

EJ2

min J =
�

�κEJ2 − (hLEO + RE)
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� → 0

elseif n > 1 :















x
ini
n = x

opt
n - 1

s.t.
�

imin
EJ2 ≤ iEJ2 ≤ imax

EJ2

min J =
�

�κEJ2 − (hLEO + RE)
�

� → 0

end

end

envelope solution of the reachable set is more consist-
ent with the solution computed with the high-precision 
model. The inclinations in the lunar-centered LVLH 
and the lunar-centered fixed coordinate systems both 
approach to 180  deg. When the inclination is close to 
180 deg, the LAN has a large error than other cases due 
to its numerical singularity.

Reachable set property measurement
The property of the reachable set changes due to some 
influence factors. It is useful to understand the relation 
of them for designing a manned lunar task in the over-
all design phase. In consideration of the effectiveness of 
the retrograde semi-analytical model, the property of the 
reachable set is measured. The distance of the Earth–
Moon, the transfer duration, and the declination of the 
Moon are tested as follows, respectively.

The distance of the Earth–Moon
The eccentricity of the Moon’s path changes from 1/23 
to 1/5. It leads a result that the distance of the Earth–
Moon changes from about 3.6× 108 to 4.1× 108 m in a 
lunation. After 1 Jan 2025 0:000.000 UTCG, 8 Jan 2025 
0:000.000 UTCG, and 21 Jan 2025 5:000.000 UTCG in 
this lunation are selected as the epochs for testing, which 
correspond the nearest and the farthest Earth–Moon dis-
tances, respectively.

Fig. 8  The envelope of the inclination and LAN in LVLH frame and LCF frame with a 3-day and a 6-day trans-lunar durations
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The results are shown in Fig. 9a, b. It shows outwardly 
that the Earth–Moon distance leads non-obvious influ-
ence to the reachable set except for the orbital inclination 
is approaching to 180  deg in the lunar-centered LVLH 
frame. In practice, however, when the orbital inclination 
is approaching to 180  deg in the lunar-centered LVLH 
frame, the singularities of LAN emerge. Arbitrary value 
of LAN does not have significance. In a word, the Earth–
Moon distance leads non-obvious influence to the reach-
able set.

The transfer duration
The reachable sets with the trans-lunar duration of 
3  days, 4  days, 5  days, and 6  days are shown in Fig.  10, 
respectively. All of them arrive at the epoch of 1 Jan 2025 
0:00:00.000 UTCG as perilune.

It shows that the LANs in the lunar-centered LVLH and 
the lunar-centered fixed coordinate systems have distin-
guishing features. Both of them has two manners (i.e., 
ascent orbit and descent orbit) arriving their perilune. 
When the trans-lunar duration is longer than 4 days, the 

Fig. 9  a The inclination and LAN in LVLH frame and LCF frame with the nearest value of the Earth–Moon distance. b The inclination and LAN in 
LVLH frame and LCF frame with the farthest value of the Earth–Moon distance
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perilune point is on the front of the Moon (i.e., the side is 
directly visible from the Earth). This property is signifi-
cant for directly tracking and controlling from the Earth’s 
surface tracking stations.

The declination of the Moon
The Moon’s position in the J2000 Earth-centric coor-
dinate system is described via the right ascension and 
declination. The declination of the Moon describes the 
Moon’s position along the perpendicular direction of the 
J2000.0 mean equatorial plane. After 1 Jan 2025 0:000.000 
UTCG, 7 Jan 2025 00.00.00.000 UTCG and 12 Jan 2025 
00.00.00.000 UTCG in this lunation are selected as the 
epochs, which correspond the smallest and the biggest 
cases of the moon’s declinations. The values of the Moon’s 
declinations are 1.359  deg and 28.447  deg, respectively. 
The reachable sets are shown, respectively, in Fig. 11a, b. 
Refer to the discussion of the singularities of LAN when 
the orbital inclination is approaching to 180  deg, when 
we compare the difference between Fig. 9a, b. The reach-
able sets have non-obvious difference if just looking at 
these two pictures. However, the distributions of the LEO 
inclination as shown in Fig.  12 have a significant differ-
ence. It implies that if the inclination of LEO is less than 
the declination of the Moon, no trans-lunar orbit exists. 

In other words, the reachable set is an empty set. The 
long period of the declination of the Moon is the Metonic 
cycle (i.e., 18.6  years), which periodically changes from 
18.3 to 28.6 deg. The maximum declination of the Moon 
will be 28.6 deg in 2025 and the minimum is 18.3 deg in 
2034. As long as the inclination of LEO is greater than 
18.3  deg in 2034, the reachable set of the trans-lunar 
orbit will not be an empty set. Moreover, the reachable 
set of the trans-lunar orbit does not become a non-empty 
set at any time in 2025, and the inclination of the LEO 
must be greater than 28.6 deg.

Conclusion
A retrograde semi-analytical model is suggested to gen-
erate the reachable set of the practical two-impulse trans-
lunar orbit with two tangential maneuvers. Compared 
with the traditional two-body conic method in the litera-
tures, this model does not have internal iteration, and its 
perilune point altitude can be an accurate constant. The 
multi-layer traversal searching frame and the precision 
envelops re-check have exhibited its rapidity and effec-
tiveness. The classical influence factor test exhibits the 
changeable property of the reachable set. Some conclu-
sions can be drawn as follows:

Fig. 10  The inclination and LAN in LVLH frame and LCF frame with different trans-lunar durations
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A)	The distance of the Earth–Moon leads non-obvious 
influence to the reachable set.

B)	The trans-lunar duration leads to different perilune 
point on the Moon’s surface. If there are only track-
ing stations on the Earth’s surface, and a necessary 
support of the tracking and control for the lunar 

module’s LOI, the trans-lunar duration is suggested 
to be more than 4 days.

C)	It is a necessary condition that the inclination of LEO 
is greater than the declination of the Moon at the 
epoch of perilune. Otherwise, the reachable set of the 
trans-lunar orbits becomes an empty set.

Fig. 11  a The inclination and LAN in LVLH frame and LCF frame with the smallest declination of the Moon. b The inclination and LAN in LVLH frame 
and LCF frame when the Moon’s declination is the biggest
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