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Abstract 

Nowadays a unit quaternion is widely employed to represent the three-dimensional (3D) rotation matrix and then 
applied to the 3D similarity coordinate transformation. A unit dual quaternion can describe not only the 3D rotation 
matrix but also the translation vector meanwhile. Thus it is of great potentiality to the 3D coordinate transforma-
tion. The paper constructs the 3D similarity coordinate transformation model based on the unit dual quaternion 
in the sense of errors-in-variables (EIV). By means of linearization by Taylor’s formula, Lagrangian extremum prin-
ciple with constraints, and iterative numerical technique, the Dual Quaternion Algorithm (DQA) of 3D coordinate 
transformation in weighted total least squares (WTLS) is proposed. The algorithm is capable to not only compute 
the transformation parameters but also estimate the full precision information of computed parameters. Two numeri-
cal experiments involving an actual geodetic datum transformation case and a simulated case from surface fitting are 
demonstrated. The results indicate that DQA is not sensitive to the initial values of parameters, and obtains the con-
sistent values of transformation parameters with the quaternion algorithm (QA), regardless of the size of the rotation 
angles and no matter whether the relative errors of coordinates (pseudo-observations) are small or large. Moreover, 
the DQA is advantageous to the QA. The key advantage is the improvement of estimated precisions of transforma-
tion parameters, i.e. the average decrease percent of standard deviations is 18.28%, and biggest decrease percent 
is 99.36% for the scaled quaternion and translations in the geodetic datum transformation case. Another advantage 
is the DQA implements the computation and precision estimation of traditional seven transformation parameters 
(which still are frequent used yet) from dual quaternion, and even could perform the computation and precision 
estimation of the scaled quaternion.
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Graphical Abstract

Introduction
Three dimensional (3D) coordinate transformation is a 
fundamental and common issue in geodesy, engineer-
ing surveying, photogrammetry, LIDAR, GIS, robot-
ics and computer vision, etc. (cf. Arun et  al. 1987; 
Besl and McKay 1992; Burša 1967; Chen et  al. 2004; 
Crosilla and Beinat 2002; Fan et  al. 2015; Gargula ans 
Gawronek 2023; Ge and Wunderlich 2016; Horn 1987; 
Ioannidou and Pantazis 2020; Krarup 1985; Leick and 
Van Gelder 1975; Li et al. 2012; Odziemczyk 2020; Soy-
can and Soycan 2008; Teunissen 1988). Although it has 
different names in different fields, e.g. geodetic datum 
transformation in geodesy, absolute orientation in pho-
togrammetry, point clouds registration in LIDAR, etc. 
its essence is to find the transformation parameters by 
a set of common points from one 3D rectangular coor-
dinate system to another 3D rectangular coordinate 
system. The 3D similarity coordinate transformation is 
frequently used 3D coordinate transformation model. It 
has seven transformation parameters namely one scale 
factor, three rotation angles and three translations. And 
it is a nonlinear mathematical model. Traditionally the 
solution of 3D similarity coordinate transformation is 
implemented by the least squares (LS) estimation under 
the Gauss-Markov model, i.e., only the errors of coor-
dinates in the target coordinate system are taken into 
account (Bektas 2022; Chen et al. 2004; Ioannidou and 
Pantazis 2020; Kurt 2018; Li et  al. 2022; Uygur et  al. 
2020; Závoti and Kalmár 2016; Zeng et al. 2016, 2019;) 
Obviously the Gauss-Markov model is not in accord 
with the fact that all the coordinates in both the origi-
nal coordinate system and the target coordinate system 
are contaminated by errors. Thus errors-in-variables 
(EIV) model, which considers all the errors in both the 
original and the target coordinate systems, is more rea-
sonable than the Gauss-Markov model. The adjustment 

method oriented towards the EIV model is total least 
squares (TLS) named by Golub and Van Loan (1980). 
There are a lot of literatures on TLS, e.g. Aydin et  al. 
(2018), Fang (2015), Lv and Sui (2020), Ma et al. (2020), 
Mahboub (2016), Mercan et  al. (2018), Mihajlović and 
Cvijetinović (2017), Qin et  al. (2020), Schaffrin et  al. 
(2012); Uygur et  al. (2020); Zeng et  al. (2020); Zeng 
et al. (2022a); Xu et al. (2012); Xu et al. (2023).

Besides the classical LS or TLS adjustment methods, a 
few analytical algorithms of 3D coordinate transforma-
tion in the LS or TLS sense have been put forward so far. 
The analytical algorithms include the Procrustes algo-
rithms (e.g. Arun et  al. 1987; Crosilla and Beinat 2002; 
Grafarend and Awange 2003; Felus and Burtch 2009; 
Chang 2015; Păun et  al. 2017) utilizing singular value 
decomposition (SVD), unit quaternion based algorithms 
(Horn 1987; Shen et al. 2006; Chang et al. 2017) utilizing 
eigenvalue–eigenvector decomposition, the orthonormal 
matrix based algorithm (Horn et al. 1988; Zeng 2015) uti-
lizing eigenvalue–eigenvector decomposition, dual qua-
ternion based algorithm (Walker et al. 1991; Wang et al. 
2014; Zeng et  al. 2022b) utilizing eigenvalue–eigenvec-
tor decomposition, Gibbs vector based algorithm (Zeng 
and Yi 2010) utilizing the property of Rodrigues matrix. 
The analytical algorithms are able to obtain the theoretic 
solutions and fast because they employ the theoretic for-
mulae to calculate the solutions without initial values of 
parameters, and iterations. The disadvantages of the ana-
lytical algorithms over numerical or iterative algorithms 
are the former does not offer the precision estimation 
of computed parameters, which should be as important 
as the computed parameters themselves. In addition, 
the analytical algorithms can only deal with point-wise 
or identity weight matrix of observations, thus are not 
available for general weight matrix of observations (Zeng 
et al. 2022a).
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As far as the iterative algorithms are concerned, good 
initial values of parameters are needed before iterative 
computations in the most situations. Otherwise the itera-
tive computation may fail. In some cases like registration 
of point clouds, good initial values are hard or impossible 
to obtain due to the any size of rotation angles (e.g. Zeng 
and Yi 2011). At times good initial values of parameters 
are not necessary or arbitrary initial values of param-
eters can be available if global optimization algorithms 
are employed (e.g. Xu 2003). On the one hand, the 3D 
similarity coordinate transformation is usually not imple-
mented real-time. On the other hand, because the num-
ber of common points is not large in the most cases, the 
computational time of iterations usually is short. So the 
iterative algorithms are tested majorly with the precision 
of transformation parameters rather than the efficiency.

Traditional rotation angle (Euler angle) based rota-
tion matrix representation has a lot of trigonometric 
functions (Bektas 2022; Zeng et  al. 2018); as a result, 
the iterative computation needs very good initial values 
of parameters. If bad initial values are provided, more 
time are consumed even iteration diverges (Zeng and Yi 
2011). Quaternion based rotation matrix representation 
involves no trigonometric functions but algebraic (poly-
nomial) functions, which has efficient computational 
performance (Zeng and Yi 2011). Compared to quater-
nion, dual quaternion represents not only the rotation 
matrix but also the translations by polynomials (Walker 
et al. 1991; Jitka 2011; Zeng et al. 2018, 2022b). In other 
words, the rigid transformation including rotation and 
translation could be represented by a dual quaternion. In 
addition, it is worthy of note that the established trans-
formation model based on a unit dual quaternion does 
not require centralization of coordinates to exclude the 
translations while traditional transformation models do 
(Grafarend and Awange 2003; Felus and Burtch 2009). 
Thus it is meaningful to explore the computational per-
formance of dual quaternion in 3D coordinate transfor-
mation, including the sensitivity of the initial values of 
parameters or suitability of large or small rotation angle 
case (bad initial values of parameters usually is caused by 
large rotation angle), the precision of computed param-
eters and effect of errors in coordinates, etc.

The remainder of the paper is organized as follows. In 
next section, the basic concept of quaternion and dual 
quaternion are introduced in brief. And the paper derives 
the representation of 3D rotation matrix by a quaternion 
and the formula of translation vector by a unit dual qua-
ternion from the viewpoint of geometry in detail. In the 
Sect.  “Dual quaternion algorithm (DQA) of 3D coordi-
nate transformation”, the 3D coordinate transformation 
in the errors-in-variables (EIV) model is established, and 
then the Dual Quaternion Algorithm (DQA) is presented 

after the derivation of linearization of the mathemati-
cal model and WTLS solution based on the Lagrangian 
extremum principle with constraints. Additionally, the 
computation and precision estimation of traditional 
seven transformation parameters are fulfilled from dual 
quaternion considering that the seven transformation 
parameters are used widely in applications. Two numeri-
cal experiments including a geodetic datum transfor-
mation case and a simulated case oriented form surface 
fitting are demonstrated in the Sect.  “Experiments and 
discussion”. Lastly conclusions are drawn in the last sec-
tion, i.e. Sect. “Conclusions”.

Concepts of quaternion and dual quaternion
This section firstly introduces the definition and basic 
properties of quaternion, and emphasizes on interpret-
ing the meaning of 3D rotation of a point around an axis, 
and representing the 3D rotation by means of quaternion. 
Next the dual quaternion is introduced and the rigid 
motion involving 3D rotation about an axis and transla-
tion along the axis is expressed by a unit dual quaternion. 
Especially the relationship between the translation and 
the dual quaternion is derived in detail.

Quaternion and 3D rotation matrix
Quaternion is a four-element vector invented by Hamil-
ton in 1843, whose general form is

where q1 , q2 , q3 , q4 are all real numbers, i , j and k are 
imaginary units also named quaternion units with the fol-
lowing properties: ① i2 = j2 = k2 = −1 , ② ij = −ji = k , 
③ jk = −kj = i , ④ ki = −ik = j . For i , j and k are imagi-
nary, q1 , q2 , q3 are called imaginary parts, and q4 is called 
the real part. Quaternion q is usually represented in the 
form of vector to separate the real and imaginary parts as

where q is a vector used to express the imaginary parts, 
named vector part, q4 is also called the scalar part. Qua-
ternion is called pure imaginary one when its scalar part 
is zero and vector part is not zero vector. Analogous to 
the definition of conjugate complex number, the defini-
tion of conjugate quaternion corresponding to q is

And the norm of quaternion q is given as follows.

(1)q = iq1 + jq2 + kq3 + q4

(2)q =
�

q
q4

�

, q =





q1
q2
q3



,

(3)q∗ = −iq1 − jq2 − kq3 + q4
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If �q� = 1 , q is called unit quaternion.
It is easy to prove the following properties utilizing the 

foregoing definitions.

where p , q and r are any quaternions, q−1 denotes the 
inverse of q . The symbols · and × stand for dot and cross 
product of vectors respectively as follows.

where subscript T denotes transpose computation, and 
C(p) is called a skew symmetric matrix. From the above 
properties of quaternion, it is seen apparently that the 
multiplication of quaternion meets associativity and dis-
tributivity but non-commutativity. The product pq can 
also be fulfilled by the product of a matrix and quater-
nion in the form of vector:

where

Next the relationship of 3D rotation matrix and quater-
nion is investigated. See Fig. 1, assume any point P in the 

(4)�q� =
√

qq∗ =
√

q21 + q22 + q23 + q24

(5)p + q =
(

p+ q
p4 + q4

)

(6)pq =
(

p× q + p4q + q4p
p4q4 − p · q

)

(7)pqr = (pq)r = p(qr)

(8)p(q + r) = pq + pr

(9)(pq)∗ = q∗p∗

(10)q−1 =
q∗

�q�

(11)p · q = pTq

(12)p× q = C(p)q =





0 −p3 p2
p3 0 −p1
−p2 p1 0



q

(13)pq =Q(p)q = W (q)p

(14)Q(p) =
[

p4I+ C(p) p

−pT p4

]

(15)W(q) =
[

q4I− C(q) q

−qT q4

]

3D space rotates an angle of θ (be positive in the direction 
of counterclockwise for right-hand coordinate system) 
around the rotation axis represented by a unit vector n, and 
the corresponding point after rotation is P’. Or is the ori-
gin of 3D rectangular coordinate system, Oc is the foot of 
a perpendicular from pint P to the rotation axis, P⊥ is the 
point after 90° rotation of point P. P′⊥ is the foot of a per-
pendicular from pint P’ to the line of Oc to P. The vectors 
−−−→
OrOc , 

−−−→
OcP

′
⊥ , 
−−−→
P′

⊥P
′ are computed as follows.

So

where I3 is a 3-by-3 identity matrix and R is the 3D rota-
tion matrix. Thus the rotation matrix is expressed by the 
unit vector n and rotation angle θ. Introducing a unit 
quaternion

(16)−−−→
OrOc = n(n · p)

(17)−−−→
OcP

′
⊥ = (p− n(n · p)) cos θ

(18)−−−→
P′

⊥P
′ =

−−−→
OcP⊥ sin θ = (n × p) sin θ

(19)

p′ =
−−−→
OrOc +

−−−→
OcP

′
⊥ +

−−→
P′
⊥P

′

=n(n · p)+ (p− n(n · p)) cos θ + (n × p) sin θ

=p cos θ + (1− cos θ)n(n · p)+ (n × p) sin θ

=p cos θ + (1− cos θ)n
(

nTp
)

+ (n × p) sin θ

=p cos θ + (1− cos θ)

(

nnT
)

p+ (n × p) sin θ

=
(

I3 cos θ + (1− cos θ)

(

nnT
)

+ sin θC(n)
)

p

=Rp

Fig. 1  3D rotation of a point about an axis 
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The rotation matrix R by Eq. (19) is rewritten as

Therefore the rotation matrix is directly represented by 
the unit quaternion. If constructing pure quaternions p and 
p′ with the vectors p and p′ , the rotation transformation is 
expressed with quaternions as (Walker et  al. 1991; Zeng 
and Yi 2011)

and W(r)TQ(r) can be expanded as

Dual quaternion and rigid motion
Dual quaternion which was invented by William Kingdon 
Clifford in 1873 and originally named biquaternion (Clif-
ford 1873), is described as

where r and s are arbitrary quaternions, and ε is a basis 
element named dual unit. ε satisfies the following prop-
erties: ε2 = 0 and multiplication of ε and quaternion 
units meets commutativity, e.g. εi= iε . 

(

qd1 qd2 qd3
)T 

is the vector (dual number vector) part, qd4 is the sca-
lar (dual number) part. The product of dual quaternions 
p = u+ εv and q is easily deduced by the above proper-
ties of ε as

The conjugate of dual quaternion is defined utilizing the 
conjugate of quaternion:

(20)r =





n sin
θ
2

cos
θ
2





(21)

R = I3

�

�

cos
θ

2

�2

−
�

sin
θ

2

�2
�

+ 2

�

sin
θ

2

�2
�

nnT
�

+ 2 sin
θ

2
cos

θ

2
C(n)

= I3

�

r24 − rT r
�

+ 2

�

rrT + r4C(r)
�

=





r2
4
+ r2

1
− r2

2
− r2

3
2(r1r2 − r3r4) 2(r1r3 + r2r4)

2(r1r2 + r3r4) r2
4
− r2

1
+ r2

2
− r2

3
2(r2r3 − r1r4)

2(r1r3 − r2r4) 2(r2r3 + r1r4) r2
4
− r2

1
− r2

2
+ r2

3





(22)p′ = rpr∗ = Q(r)W (r∗)p = Q(r)W (r)Tp = W (r)TQ(r)p

(23)W(r)TQ(r) =
[

R 0

0T 1

]

.

(24)

q = r + εs

= (r1 + εs1)i + (r2 + εs2)j + (r3 + εs3)k + (r4 + εs4),

= qd1i + qd2j + qd3k + qd4

(25)pq = ur + ε(us + vr).

(26)q∗ = r∗ + εs∗.

And the norm of dual quaternion is a dual scalar (num-
ber) and is defined analogous to the definition of norm of 
quaternion as

If �q� = 1 , q is called a unit dual quaternion. Unit dual 
quaternion q satisfies the following two conditions (Jitka 
2011; Walker et al 1991).

In other words, for unit dual quaternion q , the non-
dual part i.e. r is a unit quaternion, and non-dual part is 
perpendicular to the dual part i.e. s.

The rigid motion involving rotation about an axis and 
translation along the axis can be expressed elegantly by 
a unit dual quaternion (Walker et  al 1991; Jitka 2011; 
Zeng et al. 2018). The rigid motion is depicted in Fig. 2. 
The O-XYZ is a rectangular coordinate system, and p is 
a vector starting from the origin O of coordinate system. 

(27)�q� =
√

q∗q =
√

q2d1 + q2d2 + q2d3 + q2d4.

(28)r
T
r = 1,

(29)r
T
s = 0.

Fig. 2  Rigrid motion
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The vector p is firstly translated by a distance d along 
the rotation axis denoted by the unit vector n, and then 
rotated by an angle θ about the rotation axis. The new 
rectangular coordinate system O’-X’Y’Z’, the new vector 
p’ after rotation, and the translation vector t from the 
original system to the new one are denoted in the fig-
ure. Rewriting the unit dual quaternion q in Eq.  (24) as 
(Walker et al 1991)

where n and θ  are dual vector and dual angle represented 
as

Inserting the above two equations into Eq.  (30) and 
expanding the equation and comparing with Eq.  (24), 
one obtains

(30)q =

[

n sin θ
2

cos θ
2

]

(31)n = n + εp× n

(32)θ = θ + εd

where Eq.  (33) is identical to Eq.  (20). Thus the non-
dual part of unit dual quaternion q i.e. r is employed to 
express the rotation transformation as described early 
[see Eq.  (21)], the left part of rigid body transformation 
i.e. translation transformation can be represented by r 
and s with derivation as follows.

From Fig. 2, the following equation is obtained.

Substituting the Rp in Eq. (19) into the above equation, 
and considering

One gets

By the properties of quaternions, one can compute a 
new quaternion t as

(33)r =
[

n sin θ
2

cos θ
2

]

,

(34)s =
[

d
2 cos

θ
2n + sin θ

2p× n

−d
2 sin

θ
2

]

(35)t = p+ dn − p′ = p+ dn − Rp.

(36)nnT = C(n)C(n)+ I3,

(37)

t =p+ dn − p′

=p− (I3 cos θ + (1− cos θ)(C(n)C(n)+ I3)+ sin θC(n))p+ dn

=p− (I3 + (1− cos θ)C(n)C(n)+ sin θC(n))p+ dn

= − (1− cos θ)C(n)C(n)p− sin θC(n)p+ dn

= (1− cos θ)n × (p× n)+ sin θ(p× n)+ dn.

(38)

t =sr−1

= sr∗

=





−
�

d
2
cos

θ
2
n + sin

θ
2
p× n

�

× n sin
θ
2
+ d

2
sin

θ
2
n sin

θ
2
+ cos

θ
2

�

d
2
cos

θ
2
n + sin

θ
2
p× n

�

−d
2
sin

θ
2
cos

θ
2
+

�

d
2
cos

θ
2
n + sin

θ
2
p× n

�

·
�

n sin
θ
2

�





=

�

�

sin
θ
2

�2
n × (p× n)+ d

2

�

sin
θ
2

�2
n + d

2

�

cos
θ
2

�2
n + sin

θ
2
cos

θ
2
p× n

−d
2
sin

θ
2
cos

θ
2
+

�

d
2
cos

θ
2
n
�

·
�

n sin
θ
2

�

�

=

�

�

sin
θ
2

�2
n × (p× n)+ d

2
n + sin

θ
2
cos

θ
2
p× n

−d
2
sin

θ
2
cos

θ
2
+ d

2
sin

θ
2
cos

θ
2
n · n

�

=
1

2

�

(1− cos θ)n × (p× n)+ dn + sin θp× n
0

�

=
1

2

�

t
0

�
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Therefore, actually t is a pure imaginary quaternion 
constructed by half of translation vector t , which can be 
represented by

Dual Quaternion Algorithm (DQA) of 3D coordinate 
transformation
Mathematical model and its linearization
The similarity 3D coordinate transformation model is 
usually expressed as follows.

Subject to

where pti =
[

xti yti zti
]T and poi =

[

xoi yoi zoi
]T are the 

3D coordinate vectors of control point, in which super-
script t or o denotes target coordinate or original coor-
dinate respectively, and subscript i = 1, 2, · · · , n ( n ≥ 3 ) 
denotes the number of control point. det represents 
determinant computation of matrix. det(R) = +1 is 
imposed necessarily to ensure R stands for a rotation 
matrix rather than a refection one when det(R) = −1 . 
t =

[

tx ty tz
]T is the translation vector. � is the scale 

factor which is tightly close to 1 for most situations. Tra-
ditionally R is repressed by three rotation angles θx , θy , θz 
about the X, Y, Z axes respectively as (Zeng et al. 2019)

Obviously the computation of R in Eq.  (42) involves 
lots of trigonometric functions thus the computation 
burden is larger than that of R in Eq. (20). If R is known 
or computed, the rotation angles and the quaternion can 
be computed as elaborated in Zeng et al. (2019).

Introducing two pure imaginary quaternions with 
coordinate vectors as

the similarity 3D coordinate transformation in the errors-
in-variables (EIV) model is re-expressed by dual quater-
nion as

subject to Eqs. (28, 29). In Eq. (44), eti and eoi  are the error 
quaternion corresponding to pti and poi  respectively.

(39)t = sr∗ = W (r∗)s =W (r)T s.

(40)pti = �Rpoi + t,

(41)RTR = I3, det(R) = +1,

(42)R =





cos θz cos θy sin θz cos θx + cos θz sin θy sin θx sin θz sin θx − cos θz sin θy cos θx

− sin θz cos θy cos θz cos θx − sin θz sin θy sin θx cos θz sin θx + sin θz sin θy cos θx

sin θy − cos θy sin θx cos θy cos θx





(43)poi =
[

poi
0

]

, pti =
[

pti
0

]

,

(44)pti − eti = �W(r)TQ(r)
(

poi − eoi
)

+ 2W (r)T s,

The computation of transformation parameters needs 
to utilize linearization and iterative procedure. Lineariz-
ing Eq. (44) by Taylor’s formula, one gets

where superscript j denotes the j-th iterative time, and
(45)

p
t
i − e

t
i = �

j
W(r j)TQ(r j)(poi − e

o,j
i )

+ 2W(r j)T sj − �
j
W(r j)TQ(r j)de

o,j
i

+W(r j)TQ(r j)(poi − e
o,j
i )d�+

∂f

∂r1
dr1

+
∂f

∂r2
dr2 +

∂f

∂r3
dr3 +

∂f

∂r4
dr4 + 2W(r j)Tds

(46)

∂f

∂ri
= �

j(
∂W(r)T

∂ri
Q(r j)+W(r j)T

∂Q(r)

∂ri
)

(poi − e
o,j
i )+ 2

∂W(r)T

∂ri
s
j
, i = 1, 2, 3, 4

(47)

∂W(r)T

∂r1
=







0 0 0 −1
0 0 −1 0
0 1 0 0
1 0 0 0






,
∂W(r)T

∂r2
=







0 0 1 0
0 0 0 −1
−1 0 0 0
0 1 0 0






,

(48)

∂W(r)T

∂r3
=







0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0






,
∂W(r)T

∂r4
=







1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1






,

Considering eoi = e
o,j
i + de

o,j
i  , Eq. (45) can be rewritten 

as

(49)

∂Q(r)

∂r1
=







0 0 0 1
0 0 −1 0
0 1 0 0
−1 0 0 0






,
∂Q(r)

∂r2
=







0 0 1 0
0 0 0 1
−1 0 0 0
0 −1 0 0






,

(50)

∂Q(r)

∂r3
=







0 −1 0 0
1 0 0 0
0 0 0 1
0 0 −1 0






,
∂Q(r)

∂r4
=







1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1






.

(51)

p
t
i − e

t
i = �

j
W(r j)TQ(r j)(poi − e

o
i )+ 2W(r j)T sj

+W(r j)TQ(r j)(poi − e
o,j
i )d�+

∂f

∂r1
dr1 +

∂f

∂r2
dr2 +

∂f

∂r3
dr3 +

∂f

∂r4
dr4 + 2W(r j)T ds

= B
j
ip

o
i + C

j
i + A

1,j
i dx1 + A

2,j
i dx2 − B

j
ie

o
i
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where

For n ( n ≥ 3 ) control points, one has

where

(52)dx1 =
[

d� dr1 dr2 dr3 dr4
]T

,

(53)dx2 = ds =
[

ds1 ds2 ds3 ds4
]T

,

(54)
A
1,j
i =

[

W(r j)TQ(r j)(poi − e
o,j
i )

∂f
∂r1

∂f
∂r2

∂f
∂r3

∂f
∂r4

]

,

(55)A
2,j
i = 2W(r j)T ,

(56)B
j
i = �

jW(r j)TQ(r j),

(57)C
j
i = 2W(r j)T sj .

(58)
pt − et = Bjpo + C j + A1,jdx1 + A2,jdx2 − Bjeo

(59)

pt =







pt1
...
ptn






, et =







et1
...
etn






,po =







po1
...
pon






, eo =







eo1
...
eon







(60)

A
1,j

=













A
1,j
1

A
1,j
2

.

.

.

A
1,j
n













,A
2,j

=













A
2,j
1

A
2,j
2

.

.

.

A
2,j
n













,

C
j
=













C
j
1

C
j
2

.

.

.

C
j
n













,B
j
=













B
j
1

B
j
2

. . .

B
j
n













.

Introducing

Equation (58) can be rewritten as

Linearizing the constraints of unit dual quaternion i.e. 
Equations (28) and (29), one obtains

where

Derivation of formulae based on the dual quaternion
The solution of 3D similarity transformation in EIV model 
is based on the principle of weighted total least squares 
(WTLS) i.e.

where W t and W o are the weight matrices of observations 
in the target system and in the original system respec-
tively. Considering the constraints in Eq. (63), a Lagran-
gian extremum problem with constraints is constructed 
as follows.

(61)E = pt − Bjpo − C j ,

(62)et = E − A1,jdx1 − A2,jdx2 + Bjeo

(63)Cx1dx1 + Cx2dx2 = W x

(64)Cx1 =
[

0 2r1 2r2 2r3 2r4
0 s1 s2 s3 s4

]

,

(65)Cx2 =
[

0 0 0 0
r1 r2 r3 r4

]

,

(66)W x =
[

1− r21 − r22 − r23 − r24
−r1s1 − r2s2 − r3s3 − r4s4

]

.

(67)etTW tet + eoTW oeo = min

(68)min
eo,et ,dx1,dx2,k1,k2

{

l = etTW tet + eoTW oeo + 2kT1 (e
t − E + A1,jdx1 + A2,jdx2 − Bjeo)

+2kT2 (Cx1dx1 + Cx2dx2 −W x)

}
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According to the Lagrangian extremum principle, the 
minimum exists if and only if the following conditions are 
met.

From Eq. (69), one gets

From Eq. (70), one gets

Substituting Eqs.  (75) and (76) into (73), and making 
arrangement, one gets

where

Substituting Eqs. (77) into (71) and introducing

one gets

Substituting Eqs. (81) into (72) and introducing

(69)
δl

δeo
= 2eoTW o − 2kT1 B

j = 0

(70)
δl

δet
= 2etTW t + 2kT1 = 0

(71)
δl

δdx1
= 2kT1 A

1,j + 2kT2 Cx1 = 0

(72)
δl

δdx2
= 2kT1 A

2,j + 2kT2 Cx2 = 0

(73)

δl

δk1
= 2(et − E + A1,jdx1 + A2,jdx2 − Bjeo) = 0

(74)
δl

δk2
= 2(Cx1dx1 + Cx2dx2 −W x) = 0

(75)eo=W o−1BjTk1

(76)et=W t−1k1

(77)k1 = W ot(−E + A1,jdx1 + A2,jdx2),

(78)W ot = (W t−1
+BjW o−1BjT )−1.

(79)N 11 = A1,jTW otA1,j ,

(80)N 12 = A1,jTW otA2,j .

(81)
dx1 = −N−1

11 N 12dx2 + N−1
11 A

1,jTW otE − N−1
11 C

T
x1k2.

(82)N 22= A2,jTW otA2,j ,

(83)N 21 = A2,jTW otA1,j ,

one gets

Substituting Eqs. (87) into (81) and introducing

one gets

Substituting Eqs.  (90) and (87) into (74), one obtains 
the solution of k2 as

Substituting Eqs. (91) into (90) and (87), one obtains

where

So far the derivations of formulae have been accom-
plished. Then one can employ the classic Gauss–Newton 
iterative method to seek the solution of transformation 
parameters. The stop condition of iteration is

where

Subscript j and j−1 denote the present iterative times 
and the previous iterative times. And τ is a threshold 
(1.0 × 10–14 is set in the paper).

(84)N 33= N 22 − N 21N
−1
11 N 12,

(85)D11 = N−1
33 (−CT

x2 + N 21N
−1
11 C

T
x1)

(86)D10 = N−1
33 (N 21N

−1
11 A

1,jT − A2,jT )

(87)dx2 = D11k2 −D10W
otE.

(88)D21 = −N−1
11 N 12D11 − N−1

11 C
T
x1

(89)D20 = −N−1
11 (N 12D10 + A1,jT )

(90)dx1 = D21k2 −D20W
otE.

(91)
k2 =(Cx1D21 + Cx2D11)

−1(Cx1D20 + Cx2D10)

W
ot
E + (Cx1D21 + Cx2D11)

−1
W x

(92)
dx1 = F1W

otE +D21(Cx1D21 + Cx2D11)
−1W x

(93)
dx2 = F2W

otE +D11(Cx1D21 + Cx2D11)
−1W x

(94)
F 1 = D21(Cx1D21 + Cx2D11)

−1(Cx1D20 + Cx2D10)−D20,

(95)
F 2= D11(Cx1D21 + Cx2D11)

−1(Cx1D20 + Cx2D10)−D10.

(96)abs(σ 2
j − σ 2

j−1) < τ

(97)σ 2=
etTW tet + eoTW oe

3n− 7
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After the iterative computation converges, the variance 
factor of unit weight is estimated as

By Eqs. (92) and (93), the estimated variance or covari-
ance matrices of transformation parameters x1 and x2 is 
derived as

Introducing the vector of all transformation parameters

Thus the variance matrix of x1,2 is

Computation and precision estimation of seven 
parameters from dual quaternion
Traditionally the similarity 3D coordinate transforma-
tion model i.e. Equation  (41) includes seven parameters 
i.e. one scale, three rotation angles and three transla-
tions. Thus it is necessary to compute the seven param-
eters and estimate their precisions. Firstly one needs to 
construct the function of the seven parameters with dual 
quaternion-based transformation parameter i.e. x1,2 . And 
then compute the variance or covariance matrices of the 
seven parameters according to the variance or covariance 
matrices propagation principle.

Utilizing Eqs. (42) and (21), the rotation angles θx , θy , θz 
are computed by

(98)σ = ±

√

etTW tet + eoTW oe

3n− 7

(99)Dx1 = σ 2F1W
otFT

1 ,

(100)Dx2 = σ 2F2W
otFT

2 .

(101)Dx1x2 = σ 2F 1W
otFT

2

(102)Dx2x1 = σ 2F 2W
otFT

1

(103)x1,2=
[

x1
x2

]

(104)Dx1,2 =
[

Dx1 Dx1x2
Dx2x1 Dx2

]

(105)θx=− tan−1

(

2(r2r3 + r1r4)

r24 − r21 − r22 + r23

)

(106)θy = sin−1(2(r1r3 − r2r4))

(107)θz=− tan−1

(

2(r1r2 + r3r4)

r24 + r21 − r22 − r23

)

Introducing

one obtains the partial derivatives of θx with respect to r1 
by Eq. (105)∙

where the dots · denote computation of multiplication. 
Similarly one obtains

Further one can get the following partial derivatives of 
θy , θz with respect to r1 , r2 , r3 , r4 by Eqs.  (106) and (107) 
respectively.

(108)
sx = sinθx, sy = sinθy, sz = sinθz , cx = cosθx, cy = cosθy, cz = cosθz

(109)

∂θx

∂r1
=−

1

1+
(

2(r2r3+r1r4)

r2
4
−r2

1
−r2

2
+r2

3

)2
·

2r4
(

r2
4
− r2

1
− r2

2
+ r2

3

)

+ 2r1 · 2(r2r3 + r1r4)
(

r2
4
− r2

1
− r2

2
+ r2

3

)2

=−
2r4

(

r2
4
− r2

1
− r2

2
+ r2

3

)

+ 2r1 · 2(r2r3 + r1r4)
(

r2
4
− r2

1
− r2

2
+ r2

3

)2 + (2(r2r3 + r1r4))
2

=−
2r4

(

cxcy
)

+ 2r1
(

−sxcy
)

(

cxcy
)2 +

(

−sxcy
)2

=−
2(r4cx − r1sx)

cy

(110)
∂θx

∂r2
= −

2(r3cx − r2sx)

cy

(111)
∂θx

∂r3
= −

2(r2cx + r3sx)

cy

(112)
∂θx

∂r4
= −

2(r1cx + r4sx)

cy

(113)
∂θy

∂r1
=

2r3

cy

(114)
∂θy

∂r2
=

−2r4

cy

(115)
∂θy

∂r3
=

2r1

cy

(116)
∂θy

∂r4
=

−2r2

cy

(117)
∂θz

∂r1
= −

2(r2cz + r1sz)

cy
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Next, the translations can be computed by Eqs. (38) and 
(39) as

(118)
∂θz

∂r2
= −

2(r1cz − r2sz)

cy

(119)
∂θz

∂r3
= −

2(r4cz − r3sz)

cy

(120)
∂θz

∂r4
= −

2(r3cz + r4sz)

cy

It is easy to deduce the following partial derivatives as

Introducing

one has

(121)







tx
ty
tz
0






= 2W (r)T s=







r4s1 − r3s2 − r2s3 − r1s4
r3s1 + r4s2 − r1s3 − r2s4
−r2s1 + r1s2 + r4s3 − r3s4
r1s1 + r2s2 + r3s3 + r4s4







(122)

∂tx

∂r1
= −s4,

∂tx

∂r2
= −s3,

∂tx

∂r3
= −s2,

∂tx

∂r4

= s1,
∂tx

∂s1
= r4,

∂tx

∂s2
= −r3,

∂tx

∂s3
= −r2,

∂tx

∂s4
= −r1

(123)

∂ty

∂r1
= −s3,

∂ty

∂r2
= −s4,

∂ty

∂r3
= s1,

∂ty

∂r4
= s2,

∂ty

∂s1

= r3,
∂ty

∂s2
= r4,

∂ty

∂s3
= −r1,

∂ty

∂s4
= −r2

(124)

∂tz

∂r1
= s2,

∂tz

∂r2
= −s1,

∂tz

∂r3
= −s4,

∂tz

∂r4
= s3,

∂tz

∂s1

= −r2,
∂tz

∂s2
= r1,

∂tz

∂s3
= r4,

∂tz

∂s4
= −r3

(125)y =
[

� θx θy θz tx ty tz
]T

(126)J =

























1 0 0 0 0 0 0 0 0

0 ∂θx
∂r1

∂θx
∂r2

∂θx
∂r3

∂θx
∂r4

0 0 0 0

0
∂θy

∂r1

∂θy

∂r2

∂θy

∂r3

∂θy

∂r4
0 0 0 0

0 ∂θz
∂r1

∂θz
∂r2

∂θz
∂r3

∂θz
∂r4

0 0 0 0

0 ∂tx
∂r1

∂tx
∂r2

∂tx
∂r3

∂tx
∂r4

∂tx
∂s1

∂tx
∂s2

∂tx
∂s3

∂tx
∂s4

0
∂ty
∂r1

∂ty
∂r2

∂ty
∂r3

∂ty
∂r4

∂ty
∂s1

∂ty
∂s2

∂ty
∂s3

∂ty
∂s4

0 ∂tz
∂r1

∂tz
∂r2

∂tz
∂r3

∂tz
∂r4

∂tz
∂s1

∂tz
∂s2

∂tz
∂s3

∂tz
∂s4

























Table 1  The dual quaternion algorithm of the WTLS 3D coordinate transformation

Input and initialization: input coordinates of control points, construct pure imaginary quaternions pti  , p
o
i  , and vectors pt , po . Input weight matrix W t 

and Wo , set the initial value of x1 as 
[

1 0 0 0 0
]T  , x2 as 

[

0 0 0 0
]T  , and the initial value of eo as  T

[

0 0 · · · 0
]

︸ ︷︷ ︸

4n

Iterative computation and precision estimation: Step 1. Calculate A1,j , A2,j , Bj , C j by Eqs. (55, 56, 57 and 60), E by Eq. (61), Cx1 Cx2 W x by Eqs. (64, 65, 66), Wot 
by Eq. (78), N11 , N12 by Eqs. (79, 80), N22 , N21 , N33 , D11 , D10 by Eqs. (82, 83, 84, 85, 86), D21 , D20 by Eqs. (88, 89)
Step 2. Compute k2 by Eq. (91), dx1 , dx2 by Eqs. (92, 93), k1 by Eq. (77) eo , et by Eqs. (75, 76). If the stop condition i.e. Equation (96) of iteration is satisfied ( τ 
is set 1.0 × 10–14 in the paper), turn to Step 3, otherwise turn to Step 1 with the new value x1=x1 + dx1 , x2=x2 + dx2
Step 3. Compute R by Eq. (21) and rotation angles θx , θy , θz by Eqs. (105, 106, 107). Compute t  and t by Eqs. (39) and (38)
Step 4. Estimate the variance factor of unit weight σ by Eq. (98), estimate the covariance matrix of x1,2 by Eq. (104) and the covariance matrix of y 
by Eq. (128)
Output: Output x1,2 , R (if needed), y , eo , et . Output the variance factor of unit weight σ and the covariance matrices of Dx1,2 and Dy

Table 2  3D coordinates in the original system

Station Name xo(m) yo(m) zo(m) σ
o2(m2)

Solitude 4,157,222.543 664,789.307 4,774,952.099 0.14330

Buoch Zeil 4,149,043.336 688,836.443 4,778,632.188 0.15510

Hohenneuffen 4,172,803.511 690,340.078 4,758,129.701 0.15030

Kuehlenberg 4,177,148.376 642,997.635 4,760,764.800 0.14000

Ex Mergelaec 4,137,012.190 671,808.029 4,791,128.215 0.14590

Ex Hof Asperg 4,146,292.729 666,952.887 4,783,859.856 0.14690

Ex Kaisersbach 4,138,759.902 702,670.738 4,785,552.196 0.12200

Table 3  3D coordinates in the target system

Station name xt(m) yt(m) zt(m) σ
t2(m2)

Solitude 4,157,870.237 664,818.678 4,775,416.524 0.01030

Buoch Zeil 4,149,691.049 688,865.785 4,779,096.588 0.00380

Hohenneuffen 4,173,451.354 690,369.375 4,758,594.075 0.00060

Kuehlenberg 4,177,796.064 643,026.700 4,761,228.899 0.01140

Ex Mergelaec 4,137,659.549 671,837.337 4,791,592.531 0.00680

Ex Hof Asperg 4,146,940.228 666,982.151 4,784,324.099 0.00002

Ex Kaisersbach 4,139,407.506 702,700.227 4,786,016.645 0.00410
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According to the variance or covariance matrices 
propagation principle, one gets

Dual quaternion algorithm
The proposed algorithm namely the Dual Quaternion 
Algorithm is summarized in Table 1.

(127)dy = Jdx1,2

(128)Dy = JDx1,2J
T

Fig. 3  Distribution of the stations

Table 4  Computed scale and dual quaternion and their precisions by DQA in the geodetic case

Scale Quaternion r Quaternion s

� 1.00000561108964 ± 0.00
000000690171

r1 0.00000241852729 ± 0.00000074327410 s1 320.92010787499300 ± 3.95932109025866

r2 − 0.00000217217855 ± 0.00000084931086 s2 34.23769229231280 ± 5.25258027604197

r3 − 0.00000238984738 ± 0.00000065898365 s3 208.10698182051300 ± 3.75202102184052

r4 0.99999999999186 ± 0.00000000000392 s4 − 0.00020443973190 ± 0.00021876004598

Table 5  Computed seven transformation parameters and their 
precisions by DQA in the geodetic case

Scale

 λ 1.00000561108964 ± 0.00000000690171

Rotation angles (″)

 θx − 0.99771626707544 ± 0.30662312364179

 θy 0.89608559290677 ± 0.35036577554091

 θz 0.98588498193093 ± 0.27185075393370

Translation (m)

 tx 641.83948 ± 7.91832

 ty 68.47284 ± 10.50456

 tz 416.21552 ± 7.50345



Page 13 of 19Zeng et al. Earth, Planets and Space           (2024) 76:20 	

Experiments and discussion
Two numerical cases including actual geodetic datum 
transformation and a simulated case are demonstrated 
to validate the presented algorithm. The former case 
involves small rotation angles while the latter one 
involves large rotation angles. The results and analyses 
are as follows.

Actual geodetic datum transformation case
Mostly geodetic datum transformation involves very 
small rotation angles (not bigger than 1°). This case 

Table 6  Computed scale, rotation matrix and variance component by DQA and QA in the geodetic case

` DQA QA

Scale

 λ 1.00000561108964 ± 0.00000000690171 1.00000561108951 (no precision provided)

Rotation matrix

 R 0.999999999979 0.000004779684 − 0.000004344369 0.999999999979 0.000004779684 − 0.000004344369

− 0.000004779705 0.999999999977 − 0.000004837044 − 0.000004779705 0.999999999977 − 0.000004837044

0.000004344346 0.000004837065 0.999999999979 0.000004344345 0.000004837065 0.999999999979

Variance component (m)

 σ2 0.039043823461 0.039043823416

Table 7  Computed scaled quaternion, translations by DQA and QA, and decrease percent of standard deviations from QA to DQA

DQA QA Decrease 
percent (%)

Scaled quaternion

 q0 1.00000280553274 ± 0.00000000345052 1.00000280553268 ± 0.00000054146075 99.36

 q1 0.00000241853408 ± 0.00000074327618 0.00000241853407 ± 0.00000074326600 0.00

 q2 − 0.00000217218465 ± 0.00000084931325 − 0.00000217218465 ± 0.00000084028102 − 1.07

 q3 − 0.00000238985409 ± 0.00000065898550 − 0.00000238985409 ± 0.00000065903067 0.01

Translation (m)

 tx 641.83948 ± 7.91832 641.83948 ± 9.03275 12.34

 ty 68.47284 ± 10.50456 68.47284 ± 10.53177 0.26

 tz 416.21552 ± 7.50345 416.21552 ± 9.04950 17.08

Table 8  Predicted errors of coordinates in the original and target systems by DQA and QA in the geodetic case

Station name Errors in target system (m) Errors in original system (m)

xt yt zt xo yo zo

Solitude 0.0064 0.0091 0.0094 − 0.0885 − 0.1261 − 0.1313

Buoch Zeil 0.0015 − 0.0012 0.0003 − 0.0593 0.0489 − 0.0140

Hohenneuffen − 0.0002 − 0.0004 0.0000 0.0386 0.0887 0.0071

Kuehlenberg 0.0015 − 0.0017 − 0.0065 − 0.0181 0.0203 0.0803

Ex Mergelaec − 0.0040 0.0006 − 0.0002 0.0860 − 0.0138 0.0049

Ex Hof Asperg 0.0000 0.0000 0.0000 0.0105 − 0.0069 0.0542

Ex Kaisersbach − 0.0009 0.0001 0.0001 0.0257 − 0.0035 − 0.0022

Table 9  Transformation residuals by DQA and QA in the 
geodetic case

Station name x(m) y(m) z(m)

Solitude 0.0948 0.1352 0.1407

Buoch Zeil 0.0608 − 0.0501 0.0143

Hohenneuffen − 0.0388 − 0.0891 − 0.0072

Kuehlenberg 0.0195 − 0.0219 − 0.0868

Ex Mergelaec − 0.09 0.0144 − 0.0052

Ex Hof Asperg − 0.0105 0.0069 − 0.0542

Ex Kaisersbach − 0.0266 0.0036 0.0022
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data is chosen from Grafarend and Awange (2003), 
which is discussed in Mercan et  al. (2018), Zeng et  al. 
(2022b), etc. The original (local) and target (global) 3D 
coordinates and their variances of seven control points 
are listed in Tables  2 and 3. The distribution of seven 
control points in the original coordinate system is illus-
trated in Fig. 3. They are almost located in a plane that 
is represented by the grids in the figure (the biggest 
distance from the control point to the plane is 68.29 m, 
corresponding to station Solitude, which is quite small 
compared to about 50 km × 50 km of the control point 
area. The biggest distance between the control points is 
75,159.625 m). And the fitted plane equation is 0.6456
x + 0.1012y + 0.7570z = 6.3655 × 106. Supposed that the 
components of poi  and pti are isotropic and not correla-
tive, the covariance matrices Do and Dt of po and pt are 
both diagonal as

(129)
Do = diag(σ o2

1 , σ o2
1 , σ o2

1 , σ o2
1 , · · · , σ o2

n , σ o2
n , σ o2

n , σ o2
n )

(130)
Dt = diag(σ t2

1 , σ t2
1 , σ t2

1 , σ t2
1 , · · · , σ t2

n , σ t2
n , σ t2

n , σ t2
n )

where n is the number of point, i.e. 7 inthis case. The 
weight matrices W o and W t are constructed as

The proposed algorithm namely DQA is employed 
to calculate the transformation parameters. The esti-
mated scale and unit dual quaternion by DQA are listed 
in Table  4. The computed traditional seven transforma-
tion parameters and their precisions by DQA are listed 
in Table 5. In order to compare with the quaternion algo-
rithm (QA) in Mercan et al. (2018), the paper computes 
the scaled quaternion and their precisions from the esti-
mated scale and dual quaternion by DQA as follows.

(131)W o =
(

Do
)−1

(132)W t =
(

Dt
)−1

(133)q =
[

q1 q2 q3 q0
]T =

√
�r

Fig. 4  Comparison of estimated standard deviations by DQA and QA

Table 10  Coordinates and point-wise weights of control points

Point no. Weight Original coordinates (m) Target coordinates (m)

xo yo zo xt yt zt

1 1 30 40 10 290 150 15

2 2 100 40 10 420 80 2

3 2.5 100 130 10 540 200 20

4 4 30 130 10 390 300 5
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where the definition of quaternion in the form of vector 
here is different from Mercan et al. (2018). Further, one 
obtains

(134)

dq =













r1
2
√
�

√
� 0 0 0

r2
2
√
�

0
√
� 0 0

r3
2
√
�

0 0
√
� 0

r4
2
√
�

0 0 0
√
�























d�
dr1
dr2
dr3
dr4











= J qdx1

According to the variance or covariance matrices prop-
agation principle, one gets

The computed results by QA and DQA are listed in 
Tables  6, 7, 8 and 9. And the result by QA is directly 
from Mercan et  al. (2018). From Table  6, it is seen that 
the computed scale, rotation matrix and variance com-
ponent are identical regardless of the rounding errors. 
However the QA does not provide the precision of scale 
while DQA does. Table 7 shows that the computed scaled 
quaternion and translations are consistent if the round-
ing errors are ignored, but the estimated precisions are 
different greatly. As far as q0 is concerned, the estimated 
standard deviation is improved from 10–7 by QA to 10–9 
by DQA. In other words, the decrease percent of stand-
ard deviations is 99.36%. For q1, q2, q3, the estimated 
precisions by two algorithms are slightly different. As far 
as the translations are concerned, the estimated stand-
ard deviations decrease 12.34%, 0.26%, 17.08% for tx, ty, 
tz respectively from QA to DQA. The average decrease 
percent is 18.28% for the scaled quaternion and transla-
tions (seven parameters). The comparison of estimated 

(135)Dq = J qDx1J
T
q

Fig. 5  Distribution of the control points in the original and target coordinate systems

Table 11  Computed scale and dual quaternion and their precisions by DQA in the simulated case

Scale Quaternion r Quaternion s

� 2.13618931887411 ± 0.15
248995183090

r1 0.01015942751985 ± 0.04893072388863 s1 75.09345366954858 ± 11.96977789113642

r2 − 0.02255774253599 ± 0.05308425209055 s2 80.96103957803537 ± 12.02106203728454

r3 − 0.29771767907456 ± 0.03411742353052 s3 − 14.21810455226187 ± 19.72177547831338

r4 0.95433333686433 ± 0.01071519188167 s4 − 3.32126017108111 ± 7.23696213343644

Table 12  Computed seven transformation parameters and their 
precisions by DQA in the simulated case

Scale

 λ 2.13618931887411 ± 0.15248995183090

Rotation angles (°)

 θx − 1.88222617859100 ± 5.88105385300878

 θy 2.12076778302949 ± 5.82194309812054

 θz 34.68692971526144 ± 4.09850995531577

Translation (m)

 tx 192.24438 ± 20.2709

 ty 109.95340 ± 20.1299

 tz − 24.08230 ± 29.0657



Page 16 of 19Zeng et al. Earth, Planets and Space           (2024) 76:20 

Table 13  Computed scale, rotation matrix and variance component by DQA and QA in the simulated case

` DQA QA

Scale

 λ 2.13618931887411 ± 0.15248995183090 2.13618931887411 (no precision provided)

Rotation matrix

 R 0.821710663636 0.567785464729 − 0.049104493777 0.821710663636 0.567785464729 − 0.049104493777

− 0.568702159730 0.822521939198 − 0.005959283225 − 0.568702159730 0.822521939198 − 0.005959283225

0.037005929049 0.032822638237 0.998775868568 0.037005929049 0.032822638237 0.998775868568

Variance component (m)

 σ2 116.012049766184 116.012049766184

Table 14  Computed scaled quaternion, translations by DQA and QA in the simulated case

DQA QA

Scaled quaternion

 q0 1.39482577632278 ± 0.05218939548330 1.39482577632278 ± 0.05218939548330

 q1 0.01484872300902 ± 0.07151768293004 0.01484872300902 ± 0.07151768293004

 q2 − 0.03296973869553 ± 0.07759531835570 − 0.03296973869553 ± 0.07759531835570

 q3 − 0.43513547813872 ± 0.05222766986151 − 0.43513547813872 ± 0.05222766986151

Translation (m)

 tx 192.24438 ± 20.2709 192.24437 ± 20.2709

 ty 109.95340 ± 20.1299 109.95340 ± 20.1299

 tz − 24.08230 ± 29.0657 − 24.08230 ± 29.0657

Table 15  Predicted errors of coordinates in the original and target systems by DQA in the simulated case

Point no. Errors in target system (m) Errors in original system (m)

xt yt zt xo yo zo

1 − 0.4262 1.1391 2.2595 1.9534 − 1.6429 − 4.8511

2 0.8548 3.8425 − 1.0719 3.2523 − 7.7132 2.4255

3 2.8032 − 3.0124 1.0293 − 8.6615 1.8208 − 1.9404

4 − 2.0729 − 0.3233 − 0.6723 3.2989 3.1293 1.2128

Table 16  Covariance matrix Dx1,2 obtained by DQA

0.0233 0.0000 0.0000 0.0000 0.0000 − 1.0498 − 0.9073 − 0.1395 − 0.0538

0.0000 0.0024 − 0.0003 0.0000 0.0000 0.0096 0.0270 − 0.6107 − 0.3483

0.0000 − 0.0003 0.0028 0.0000 0.0001 − 0.0376 − 0.0007 0.8637 0.0582

0.0000 0.0000 0.0000 0.0012 0.0004 0.3023 − 0.3265 − 0.0146 0.0018

0.0000 0.0000 0.0001 0.0004 0.0001 0.0933 − 0.1021 0.0224 0.0056

− 1.0498 0.0096 − 0.0376 0.3023 0.0933 143.2756 − 43.8112 − 6.7913 2.5779

− 0.9073 0.0270 − 0.0007 − 0.3265 − 0.1021 − 43.8112 144.5059 − 0.0372 − 3.4099

− 0.1395 − 0.6107 0.8637 − 0.0146 0.0224 − 6.7913 − 0.0372 388.9484 96.0516

− 0.0538 − 0.3483 0.0582 0.0018 0.0056 2.5779 − 3.4099 96.0516 52.3736
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standard deviations by DQA and QA is depicted in Fig. 4. 
In a word, the estimated precisions are improved signifi-
cantly comparing DQA to QA.

From Tables 8 and 9, it is seen that the predicted errors 
of coordinates in the original and target systems by DQA 
and QA are the same; the transformation residuals are 
identical too for DQA and QA. Thus the DQA and QA 
are correct.

Simulated case
The adopted data in this case is originally from Felus and 
Burtch (2009). The data is synthesized and rounded based 
on a surface fitting experiment. In the experiment, the 
surface is surveyed in two different coordinate systems. 
And four control points on the surface are identified and 
their coordinates in the original and target coordinate 
systems are listed in Table 10. The area of control points 
are 70  m × 90  m in the original coordinate system. It is 
assumed that all points are not dependent on each other 
and the coordinate components of each point are iso-
tropic and not correlated. And the point-wise weights are 
given in Table 10 too. The distribution of control points 
are depicted in Fig.  5. The superscript o or t denotes 
original coordinate system or target coordinate system 
respectively in the figure. The red circles represent the 
positions of control point regardless of the errors in the 
original system. And red solid lines are drawn between 
them. The blue asterisks represent the positions of con-
trol point regardless of the errors in the target system. 
And blue solid lines are drawn between them. It is easily 
seen that the rotation angle around the z axis is big, while 

rotation angles around the x and y axes are small and the 
scale is much greater than 1.

The DQA and QA are utilized to estimate the trans-
formation parameters. The calculated scale and unit 
dual quaternion by DQA are listed in Table  11. The 
estimated traditional seven transformation parameters 
and their precisions by DQA are listed in Table 12. The 
obtained results by QA and their counterparts by DQA 
are given in Tables 13, 14. Predicted errors of coordinates 
and estimated covariance matrix Dx1,2 , Dy by DQA are 
listed in Tables  15, 16, 17 respectively. The transforma-
tion residuals by DQA and QA are listed in Table 18. The 
adjusted coordinates of points are depicted in Fig. 5. The 
red crosses represent the positions of control point after 
adjustment in the original system. And red dash-dotted 
lines are drawn between them. The blue squares repre-
sent the positions of control point after adjustment in 
the target system. And blue dash-dotted lines are drawn 
between them.

Table  12 shows that the standard deviations of seven 
transformation parameters are relatively big, especially 
those of the rotation angle which are worthy of atten-
tion are around 5°. It is seen that from Table 13, the com-
puted scale, rotation matrix and variance component by 
DQA and QA are identical, however QA does not offer 
the standard deviation of scale while DQA does. Table 14 
shows that the computed scaled quaternion, translations 
by DQA and QA are consistent regardless of the round-
ing error. Table 15 or Fig. 5 shows the predicted errors of 
coordinates are nearly 10 m, which are relatively big. The 
reason is that the original and target coordinates errors 
of control points are relatively big from the viewpoint 
of variance component in Table 13. It is shown that the 
transformation residuals by DQA and QA are same from 
Table 18.

To sum up, DQA and QA obtain the consistent results. 
However it is worthy of notice that the precisions of 
adjusted parameters are not high for this case with rela-
tively big errors in the coordinates.

Table 17  Covariance matrix Dy obtained by DQA

0.0233 0.0000 0.0000 0.0000 − 2.5365 − 1.1062 − 0.3641

0.0000 0.0105 − 0.0016 − 0.0002 − 0.2630 − 0.2182 2.4952

0.0000 − 0.0016 0.0103 0.0003 0.2950 − 0.1054 − 1.7349

0.0000 − 0.0002 0.0003 0.0051 − 0.5107 1.1934 − 0.0682

− 2.5365 − 0.2630 0.2950 − 0.5107 410.9082 0.8242 − 57.9322

− 1.1062 − 0.2182 − 0.1054 1.1934 0.8242 405.2118 − 12.6089

− 0.3641 2.4952 − 1.7349 − 0.0682 − 57.9322 − 12.6089 844.8156

Table 18  Transformation residuals by DQA and QA in the 
simulated case

Point no. x(m) y(m) z(m)

1 − 2.3712 6.3371 12.5704

2 4.7557 21.3770 − 5.9632

3 15.5950 − 16.7587 5.7264

4 − 11.5319 − 1.7986 − 3.7400
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Conclusions
A unit quaternion is widely used to represent the 3D 
rotation matrix, and the paper presents its own deriva-
tion from the geometric meaning of 3D rotation of a 
point around an axis. Further, a unit dual quaternion is 
employed to represent not only the 3D rotation matrix 
but also the translation vector, and the paper gives the 
derivation of representation of the translation vector by 
the unit dual quaternion. Based on the unit dual quater-
nion, the 3D similarity coordinate transformation in the 
errors-in-variables (EIV) model is formulated. By means 
of linearization by Taylor’s formula and Lagrangian 
extremum principle with constraints, the Dual Quater-
nion Algorithm (DQA) is proposed. The algorithm is able 
to output not only the computed parameters but also the 
full precision information of computed parameters. In 
addition, the traditional seven parameters and their esti-
mated precisions are output.

The two numerical experiments including a real-world 
geodetic datum transformation case and a simulated case 
from surface fitting show that the presented algorithm 
i.e. DQA is not sensitive to the initial values of trans-
formation, in other words the arbitrary initial value set 
in this paper is feasible regardless of the size of rotation 
angles. DQA obtains the consistent results with the qua-
ternion algorithm i.e. QA from Mercan et al. (2018), no 
matter how big the rotation angles are, and whether the 
relative errors of coordinates (pseudo-observations) are 
large or small. On the other hand, the DQA has some 
advantages over the QA. The key one is the improvement 
of estimated precisions of transformation parameters, 
i.e. the average decrease percent of standard deviations 
is 18.28%, and biggest decrease percent is 99.36% for the 
scaled quaternion and translations in the geodetic datum 
transformation case. Another advantage is the DQA ful-
fills the computation and precision estimation of tradi-
tional seven transformation parameters (which still are 
widely applied yet) from dual quaternion, and even could 
perform the computation and precision estimation of the 
scaled quaternion.
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