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Abstract

A spherical source, one of the simplest seismic sources, has been represented in various ways in the literature. These
representations include a spherical source with outward radial expansion (S1), a spherical crack source with outward
and inward crack wall motions along the spherical surface (S2), an isotropic source represented by three mutually
perpendicular vector dipoles (S3) or three mutually perpendicular tensile cracks (S4), and a spherical source
undergoing a transformational expansion (S5). We systematically examined these sources and their static
displacement fields to clarify how these representations are mutually related. We also considered the sources in a
bimaterial medium, in which the source material is different from the surrounding medium, as a model of a magma or
hydrothermal reservoir. Our examinations show that the source volume change of a spherical source (S1) (actual
volume) can be uniquely determined from the seismic moment of an isotropic source (S3) regardless of our
assumption of the source medium and that the actual volume of S1 is related to the seismic moment of S3 through
the equivalence of the displacement fields due to these two sources. The seismic moment of S3 is also related
through another equation to the source volume change of three tensile cracks (S4), which is equal to the source
volume changes defined in S2 and S5. This relation has different forms, depending on the source medium and source
process. This study provides a unified view for quantifying a spherical source using the seismic moment of an isotropic
source determined from waveform inversion analysis.
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Background
Spherical and cylindrical volume changes have been
considered as sources of volcano seismic signals (e.g.,
Kanamori et al. 1980; Fukuyama and Takeo 1987; Uhira
and Takeo 1994; Dreger et al. 2000; Legrand et al. 2000;
Tameguri et al. 2002; Ohminato et al. 2006; Maeda and
Takeo 2011; Kumagai et al. 2011). Although a spherical
source is one of the simplest seismic sources, there are var-
ious ways to represent it. These representations include
a spherical source with outward radial expansion (e.g.,
Mogi 1958) (S1, Figure 1a), a spherical crack source of
Müller (2001) (S2, Figure 1b), an isotropic source repre-
sented by threemutually perpendicular vector dipoles (S3,
Figure 1c) or three mutually perpendicular tensile cracks
(S4, Figure 1d), and a spherical source undergoing a trans-
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formational expansion based on the concept of imagi-
nary cutting, straining, and welding operations of Eshelby
(1957) as introduced by Aki and richards (2002), which we
call an Eshelby spherical source (S5, Figure 2a).
Using these representations, the seismic moment of a

spherical source has been defined in two different ways
(Müller 2001; Richards and Kim 2005). The two defini-
tions are

M0 = (λ + 2μ)�Vs, (1)

M0 = (λ + 2μ/3)�Vf, (2)
where λ and μ are Lamé’s constants and �Vs and �Vf
are two different definitions of source volume changes
(see below). The recent volcano seismology literature has
used Equation 1 (e.g., Kawakatsu and Yamamoto 2007;
Kumagai 2009; Chouet 2013), whereas earlier studies gen-
erally used Equation 2 (e.g., Chouet 1996; Julian et al. 1998;
Dreger et al. 2000; Nishimura and Iguchi 2011).
According to Kawakatsu and Yamamoto (2007), the

volume change in Equation 2 (�Vf) corresponds to the
© 2014 Kumagai et al.; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction
in any medium, provided the original work is properly credited.

mailto:kumagai@eps.nagoya-u.ac.jp
http://creativecommons.org/licenses/by/2.0


Kumagai et al. Earth, Planets and Space 2014, 66:7 Page 2 of 10
http://www.earth-planets-space.com/content/66/1/7

ds

Δs

R R

Δs
(a) S1 (b) S2

(c) S3 (d) S4

Figure 1 Source representations. (a) A spherical source with purely outward radial expansion of�s (S1), (b) a spherical crack source with outward
and inward displacements (�s and ds, respectively) along the spherical surface (S2), (c) an isotropic source with three mutually perpendicular vector
dipoles (S3), and (d) a superposition of three mutually perpendicular tensile cracks (S4).

stress-free volume, introduced by Eshelby (1957), whereas
the actual volume in Equation 1 (�Vs) may be smaller
than the stress-free volume because of the confining
pressure of the surrounding medium. Kawakatsu and
Yamamoto (2007) also noted that the actual volume cor-
responds to the volume change used in the Mogi model
(e.g., Mogi 1958).
Müller (2001) noted that the discrepancy between

Equations 1 and 2 could not be resolved, and he inter-
preted these two forms to correspond to the limits of the
actual volume of the source. Wielandt (2003) discussed
the discrepancy and noted that the source volume change
depends on the source geometry. Richards and Kim (2005)
argued that each relationship is based on a different defi-
nition of volume changes at the source and that Equation 1
is preferred for characterizing underground explosions.
It is not clear why a spherical source has been repre-

sented in different ways and how these representations,
including the two seismic moment equations, are mutu-
ally related. In Eshelby’s operations and Müller’s spherical
crack, the source material is assumed to be the same
as the surrounding medium. In volcanic regions, sources

may be filled with magmatic or hydrothermal fluids. No
examinations have been made on a spherical source in
such bimaterial media, although the source representation
of fault slip on a bimaterial interface has been discussed in
various studies (e.g., Ampuero and Dahlen 2005).
In this paper, we first review the spherical source rep-

resentations mentioned above and then derive the static
displacement fields due to these sources in an infinite
medium and in a half-space. We compare the analytical
forms of these displacements to clarify the relation-
ships among these representations. We further exam-
ine a spherical source in a bimaterial medium, which is
of fundamental importance as a model of a magma or
hydrothermal reservoir.

Methods
Source representations
Müller (2001) proposed to define a spherical source in
terms of the outward crack wall motion of a spherical
crack. Let us first define a spherical crack source (S2). We
consider the moment density tensor of a tensile crack with
normal direction (θ ,φ) (Figure 3a):

m(θ ,φ) = Ds

⎛
⎜⎝

λ + 2μ sin2 θ cos2 φ 2μ sin2 θ sinφ cosφ 2μ sin θ cos θ cosφ

2μ sin2 θ sinφ cosφ λ + 2μ sin2 θ sin2 φ 2μ sin θ cos θ sinφ

2μ sin θ cos θ cosφ 2μ sin θ cos θ sinφ λ + 2μ cos2 θ

⎞
⎟⎠ , (3)
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Figure 2 Spherical source with stress-free strain and strain-free stress. (a) Schematic view of a spherical source undergoing a transformational
expansion (S5) based on imaginary cutting, straining, and welding operations of Eshelby (1957). (b) A spherical source in which a strain-free stress or
pressure (δP) is applied to the removed source volume (S6) (see text for details).

where Ds is the displacement discontinuity of a tensile
crack (e.g., Chouet 1996). We consider a spherical crack
surface with radiusRwhere a constant radial displacement
discontinuity Ds = (ds + �s) occurs (Figure 1b). Here,
the inner wall of the crack moves inward by ds, and the
outer wall moves outward by �s. The moment tensor of
the spherical crack source can be obtained by integrating
the moment density tensor of the tensile crack over the
surface with radius R (Figure 1b):

M =
∫ 2π

0

∫ π

0
m(θ ,φ)R2 sin θdθdφ,

= �VD

⎛
⎝ λ + 2μ/3 0 0

0 λ + 2μ/3 0
0 0 λ + 2μ/3

⎞
⎠ , (4)

where �VD is the volume given as

�VD = 4πR2Ds = 4πR2 (ds + �s) . (5)

By solving the elastostatic boundary-value problem (see
Subsection ‘Displacement fields’), we obtain

�Vs
�VD

= λ + 2μ/3
λ + 2μ

, (6)

where �Vs = 4πR2�s.
An isotropic source is defined as three mutually per-

pendicular vector dipoles (S3, Figure 1c), of which the
moment tensor is given as

M = MIso
0

⎛
⎜⎝
1 0 0
0 1 0
0 0 1

⎞
⎟⎠ , (7)

whereMIso
0 is the seismic moment for an isotropic source.

The three mutually perpendicular vector dipoles can be
represented as the superposition of three mutually per-
pendicular tensile cracks (S4, Figure 1d). In such a case,
MIso

0 can be defined as

MIso
0 = (λ + 2μ/3)�Vi. (8)
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Figure 3 Source coordinates for (a) a crack and (b) a spherical
source in a half-space.

Here, �Vi = 3�Vc, where �Vc is the incremental change
in the volume of each crack.
Finally, we consider an Eshelby spherical source follow-

ing Aki and richards (2002) (S5, Figure 2a). A spherical
volume with radius R removed from its surroundings
expands to R + �a with stress-free volumetric strain. We
apply the surface traction that will restore the volume
source to its original radius R, put the volume back in
its hole, and weld the material across the cut. We release
the applied traction, which results in the source volume
expanding to R + �s. The volume defined as �Vf =
4πR2�a is the stress-free volume, and the volume defined

as �Vs = 4πR2�s is the actual volume or Mogi vol-
ume. We define the seismic moment using the stress-free
volume as

M0 = (λ + 2μ/3)�Vf, (9)

and the seismic moment using the Mogi volume may be
given as

M0 = (λ + 2μ)�Vs. (10)

Displacement fields
Let us consider the static displacement fields due to each
of the described sources. For the spherical source (S1),
spherical crack source (S2), and Eshelby spherical source
(S5), the displacement fields in an infinite medium are
described by the following static equilibrium equation:

∂2ur
∂r2

+ 2
r

∂ur
∂r

− 2
r2
ur = 0, (11)

where ur is the radial displacement.We denote the regions
inside and outside the sphere with radius R as regions 1
and 2, respectively. Equation 11 has two solutions: ur = Ar
and ur = B/r2, where A and B are constants. The former
is the interior solution for region 1 (r ≤ R), and the latter
is the exterior solution for region 2 (r ≥ R).

Spherical source
We first consider the spherical source (S1). If the pres-
sure in the spherical source increases by �P, the spherical
source surface moves outward by �s at r = R. Then, the
boundary conditions at r = R are given as

uer = �s (12)
σ e
rr = −�P, (13)

where uer and σ e
rr are the radial displacement and radial

stress in region 2, respectively. Using these boundary con-
ditions and the exterior solution ur = B/r2, we find that

�P = 4μ
�s
R
, (14)

and

uer = �Vs
4πr2

, (15)

where �Vs = 4πR2�s.
Following Sezawa (1931), we consider the spherical

source in a half-space (Figure 3b). The radial displacement
on the free surface at distance r is given as

uer = (λ + 2μ)

2μ(λ + μ)

R3�P
r2

, (16)

= (λ + 2μ)

2π(λ + μ)

�Vs
r2

. (17)
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If we assume λ = μ, the vertical and radial components
for uer in cylindrical coordinates are given as

uer cos θ = 3R3�P
4μ

c(
d2 + c2

)3/2 , (18)

uer sin θ = 3R3�P
4μ

d(
d2 + c2

)3/2 , (19)

respectively, where c is the source depth and d is the
horizontal source distance (Figure 3b). Equations 18 and
19 represent the displacement field of the Mogi model
(Mogi 1958).
Comparing Equation 17 for a half-space with

Equation 15 for an infinite medium, we find that these two
equations differ by a factor of 2(λ+2μ)/(λ+μ) (Figure 4a).
For this consideration, we used �Vs = 4πR2�s, in which
neither the stress-free volume nor Eshelby’s operations
are introduced.

Spherical crack source
Next, we consider the spherical crack source (S2) of
Müller (2001) in an infinite medium. The boundary condi-
tions at r = R are

uer − uir = 1
R2B − RA = Ds, (20)

σ e
rr − σ i

rr = −4μ
R3 B − (3λ + 2μ)A = 0, (21)

where uir and σ i
rr are the radial displacement and radial

stress in region 1, respectively. Then, Müller (2001)
obtained

ds = 4μDs
3(λ + 2μ)

, (22)

�s = (λ + 2μ/3)Ds
(λ + 2μ)

. (23)

Using volume �Vs = 4πR2�s, the radial displacement is
written as

uer = �Vs
4πr2

, (24)

where

�Vs = (λ + 2μ/3)
(λ + 2μ)

�VD. (25)

Here, �VD = 4πR2Ds.

Isotropic source
We next consider the displacement field due to an
isotropic source represented by three vector dipoles (S3).
The static displacement field due to the moment tensor
Mpq is given as

ui = 1
8πμr2

[
λ + μ

λ + 2μ
(
3γiγpγq − (

γiδpq + γpδiq + γqδip
))

+ 2γqδip
]
Mpq, (26)

where γi is the directional cosine and δij is the Kronecker
delta (Aki and richards 2002). Using the moment tensor
for the isotropic source in Equation 7, we obtain the radial
displacement due to the isotropic source in spherical
coordinates as follows:

ur = MIso
0

4π(λ + 2μ)r2
. (27)

For an isotropic source represented by three tensile cracks
(S4), Equations 8 and 27 yield

ur = (λ + 2μ/3)
4π(λ + 2μ)

�Vi
r2

. (28)

24
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Figure 4 Static displacement fields. These fields are due to (a) a spherical source (S1) and (b) an isotropic source (S4) in an infinite medium and
in a half-space.
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Following Okada (1992), we find that the radial dis-
placement on the free surface at the distance r from the
isotropic source in a half-space is given as

ur = (λ + 2μ/3)
2π(λ + μ)

�Vi
r2

. (29)

Comparing Equation 28 with Equation 29, we find, as in
the spherical source orMogi model (Equations 15 and 17),
that they differ by a factor of 2(λ+2μ)/(λ+μ) (Figure 4b).

Eshelby spherical source
We finally consider the displacement field due to an
Eshelby spherical source (S5). Before the release of the
applied traction, the radial stress in region 1 is given as

σ i
rr = −(λ + 2μ/3)

3�a
R

. (30)

In the equilibrium state after the traction release, the
displacements and stresses at r = R are given as

uir = uer = �s, (31)
σ i
rr = σ e

rr = −�P. (32)

Using these boundary conditions, we find that

uer = �Vs
4πr2

, (33)

where

�Vs = (λ + 2μ/3)
(λ + 2μ)

�Vf. (34)

Here, �Vf = 4πR2�a. Comparing Equation 34 with
Equation 25, we see that Ds = �a.
Instead of applying the stress-free strain, we may apply

a stress or pressure (δP) to the removed source volume
without deforming it (strain-free stress) (S6, Figure 2b).
We put the stressed volume back in the hole, weld the
material across the cut, and release the stress, which
results in the volume source expanding to R + �s. Before
the release of the stress, the radial stress in region 1 is
given as

σ i
rr = −δP. (35)

The boundary conditions after the stress release are the
same as those for the stress-free strain (Equations 31 and
32), and so we find that the displacement field due to this
source is

uer = �Vs
4πr2

, (36)

where

�Vs = 4πR3

3(λ + 2μ)
δP. (37)

We note that δP is the applied pressure, which may corre-
spond to the stress glut (Backus and Mulcahy 1976), and
�P is the pressure after the equilibrium state.

Sources in a bimaterial medium
We consider a bimaterial medium, in which Lamé’s con-
stants are λ′ and μ′ in region 1 and λ and μ in region 2.
This medium may be viewed as a model of a magma or
hydrothermal reservoir, and its source representations are
critically important to understand volcanic processes.
For a spherical source (S1), no assumption is made on

region 1, and the boundary conditions at r = R in a
bimaterial medium are given as those in a homogeneous
medium (Equations 12 and 13). Therefore, the displace-
ment field is the same as in a homogeneous medium given
in Equation 15.
For an isotropic source, three vector dipoles (S3) can be

represented as three tensile cracks (S4). For the moment
tensor of each tensile crack, no assumption is made for
the material inside a tensile crack, and we may not able to
define an isotropic source in a bimaterial medium.
For a spherical crack source (S2), the boundary con-

ditions at r = R in a bimaterial medium may be given
as

uer − uir = 1
R2B − RA = D′

s, (38)

σ e
rr − σ i

rr = −4μ
R3 B − (3λ′ + 2μ′)A = 0, (39)

where D′
s = d′

s + �s. Here, d′
s is the inward crack wall

displacement in region 1. We then obtain

uer = �Vs
4πr2

, (40)

and

�Vs = (λ′ + 2μ′/3)
(λ′ + 2μ′/3 + 4μ/3)

�V ′
D, (41)

where V ′
D = 4πR2D′

s.
For an Eshelby spherical source with stress-free strain

(S5), the source volume of region 1 expands to R + �a′,
and the radial stress in region 1 before the release of the
applied traction may be given as

σ i
rr = −(λ′ + 2μ′/3)3�a′

R
. (42)

The boundary conditions at r = R are the same as those
in a homogeneous medium (Equations 31 and 32), and so
we have

uer = �Vs
4πr2

, (43)

and

�Vs = (λ′ + 2μ′/3)
(λ′ + 2μ′/3 + 4μ/3)

�V ′
f , (44)

where �V ′
f = 4πR2�a′.
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For an Eshelby spherical source with strain-free stress
δP′ (S6), we obtain

uer = �Vs
4πr2

, (45)

and

�Vs = 4πR3

3(λ′ + 2μ′/3 + 4μ/3)
δP′. (46)

Results and discussion
We summarize the radial displacement fields due to
the sources examined above in Figure 5. Except for an
isotropic source (Figure 5c,d), the displacement fields are
given as �Vs/(4πr2). Let us first consider the relation-
ship between a spherical source (S1, Figure 5a) and an
isotropic source represented by three vector dipoles (S3,
Figure 5c). The displacement fields of the spherical source
and isotropic source are given as

uer = �Vs
4πr2

, (47)

ur = MIso
0

4π(λ + 2μ)r2
, (48)

respectively. The equivalence of these displacements at
r > R provides the following relation:

�Vs = MIso
0

(λ + 2μ)
. (49)

For an isotropic source represented by three tensile
cracks (S4), we obtain Equation 8, i.e.,

MIso
0 = (λ + 2μ/3)�Vi. (50)

The relation of Equation 49 is also held between a
spherical crack source (S2) and an isotropic source (S3)
and between an Eshelby spherical source (S5 and S6)
and an isotropic source (S3) (see Figure 5). Then, using
Equations 25 and 34, we find that the following relation
is held for a spherical crack source (S2) and an Eshelby
spherical source with stress-free strain (S5):

MIso
0 = (λ + 2μ/3)�Vf, (51)

where�Vf = 4πR2�a = 4πR2Ds.We see from Equations
50 and 51 that �Vi = �Vf: the sum of three tensile crack
volumes is equal to a spherical crack volume or stress-free
volume. Therefore, the two seismic moment equations
(Equations 1 and 2) can be understood as follows: the first
equation from the equivalence of the displacement fields

Source
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Figure 5 Summary of displacement fields and source parameters in homogeneous and bimaterial media for various sources. (a) A
spherical source (S1), (b) a spherical crack source (S2), (c) an isotropic source (three mutually perpendicular vector dipoles) (S3), (d) an isotropic
source (three mutually perpendicular tensile cracks) (S4), (e) an Eshelby spherical source with stress-free strain (S5), and (f) an Eshelby spherical
source with strain-free stress (S6).



Kumagai et al. Earth, Planets and Space 2014, 66:7 Page 8 of 10
http://www.earth-planets-space.com/content/66/1/7

due to a spherical source (S1) and an isotropic source (S3)
(Equation 49) and the second equation from the equiva-
lence of three tensile crack volumes and a spherical crack
volume or stress-free volume (Equations 50 and 51). The
first equation can be used to estimate the actual volume
from the seismic moment of an isotropic source (S3).
As shown in Subsection ‘Sources in a bimaterial

medium’, no assumption is made on region 1 for a spher-
ical source (S1), and its source parameter is given as �Vs
in both homogeneous and bimaterial media (Figure 5a).
Thus, we may use Equation 49 with MIso

0 in a homoge-
neous medium to estimate �Vs, regardless of the assump-
tion on the medium.
It is interesting to note that we may be able to esti-

mate a spherical crack volume or stress-free volume
(Equation 51) that cannot be observed. This estimation,
however, is based on our interpretation of the source pro-
cess in region 1. For example, if we consider an Eshelby
spherical source with strain-free stress (S6, Figure 5f ), we
obtain

MIso
0 = 4πR3

3
δP, (52)

which gives an estimation of δP in region 1. If we assume
a bimaterial medium for a spherical crack source (S2)
and consider an Eshelby spherical source with stress-free
strain (S5), we have

MIso
0 = (λ + 2μ)(λ′ + 2μ′/3)

(λ′ + 2μ′/3 + 4μ/3)
�V ′

f , (53)

where �V ′
f = 4πR2D′

s = 4πR2�a′. For an Eshelby
spherical source with strain-free stress (S6) in a bimaterial
medium, we obtain

MIso
0 = 4π(λ + 2μ)R3

3(λ′ + 2μ′/3 + 4μ/3)
δP′. (54)

These results suggest that the source estimation in region
1 depends on our interpretation, whereas we can uniquely
estimate the source parameter of �Vs in region 2 from
MIso

0 .
In volcano seismological studies, waveform inversions

have been performed to determine moment tensor solu-
tions. If one interprets the isotropic source determined
by waveform inversion to be spherical, then Equation 49
can be used to estimate the actual volume �Vs. In vol-
cano geodetic studies, the Mogi model has been used to
interpret volcano deformations. Because the Mogi model
is based on a spherical source, �Vs is estimated directly.
On the other hand, Okada (1992) model uses an isotropic
source. Thus, if one estimates the seismic moment of
an isotropic source by using Okada’s model, the rela-
tion given in Equation 49 should be used to estimate the

volume change due to the corresponding spherical source
or Mogi model.
We see that the displacement fields due to the described

sources in an infinite medium are all expressed as a func-
tion of r−2 (Figure 5). The divergence of such a function
is zero, which means that a source volume change must
be conserved everywhere in an infinite medium. For all
the sources except for an isotropic source, we obtain the
following relation in an infinite medium:

4πr2ur = �Vs. (55)

The left-hand side represents the volume change of a
sphere with an arbitrary radius r centered at the source,
which is equal to �Vs. The source volume change in
this displacement field is, thus, conserved in an arbitrary
subspace enclosing the source. For an isotropic source
represented by three tensile cracks (S4), we obtain the
following relation:

4πr2ur = (λ + 2μ/3)
(λ + 2μ)

�Vi. (56)

This relation indicates that the source volume change
is not conserved. The non-conserved volume may be
attributed to compressed volumes in regions close to the
cracks (Figure 6). The non-conserved volume is equal to
the spherical crack volume or stress-free volume, although
the reason why these volumes are equal is not clear. We
note that the conservation of a source volume does not
hold for displacement fields in a half-space because of the
effect of the free surface.

Figure 6 Force systems for three mutually perpendicular tensile
cracks.



Kumagai et al. Earth, Planets and Space 2014, 66:7 Page 9 of 10
http://www.earth-planets-space.com/content/66/1/7

Let us further consider a spherical crack source in a
homogeneous medium with the following boundary con-
ditions at r = R:

uer = �s, (57)
σ e
rr = −�P, (58)
uir = −ds, (59)
σ i
rr = �P̄, (60)

uer − uir = 1
R2B − RA = �s + ds, (61)

σ e
rr − σ i

rr = −4μ
R3 B − (3λ + 2μ)A = −(�P + �P̄).

(62)

These boundary conditions represent the displacement
discontinuity �s + ds and the stress or traction discon-
tinuity −(�P + �P̄) along the spherical surface. Using
Equations 61 and 62, we obtain

uer =
[

R
3(λ + 2μ)

(�P + �P̄) + (λ + 2μ/3)
(λ + 2μ)

(�s + ds)
] (

R
r

)2
.

(63)

This equation represents the displacement field due to a
generalized spherical crack source having both displace-
ment and traction discontinuities. Using Equations 59 and
60, we obtain

�P̄ = −(3λ + 2μ)
ds
R
. (64)

Substituting Equation 64 into Equation 63, we obtain

uer =
[

R
3(λ + 2μ)

�P + (λ + 2μ/3)
(λ + 2μ)

�s

] (
R
r

)2
. (65)

From Equations 57 and 58, we see that Equation 65
becomes Equation 15 for the displacement field due to a
spherical source. Therefore, Equation 65 may be regarded
as the general form of the equation for the displacement
field due to a spherical source represented by �P and �s.

Conclusions
We systematically examined the following seismic sources
and their static displacement fields: a spherical source
(radius R) with outward radial expansion (R + �s) (S1), a
spherical crack source with outward and inward crack wall
motions along the spherical surface with displacement
discontinuity Ds (S2), an isotropic source represented by
three mutually perpendicular vector dipoles (S3) or three
tensile cracks (S4), and an Eshelby spherical source under-
going a transformational expansion (R+�a) (S5) or strain-
free stress (δP) (S6). Our examinations show that the static
radial displacement fields due to these sources except
for an isotropic source are given as �Vs/(4πr2), where

�Vs = 4πR2�s is the actual volume. The equivalence
of these fields and that due to an isotropic source (S3)
gives �Vs = MIso

0 /(λ + 2μ), where MIso
0 is the seis-

mic moment of an isotropic source. The actual volume
�Vs may be uniquely determined from MIso

0 in homo-
geneous and bimaterial media. We see that the source
volume change for an isotropic source defined by three
tensile cracks (S4) is equal to the spherical crack vol-
ume (4πR2Ds) and stress-free volume (4πR2�a). We then
obtain MIso

0 = (λ + 2μ/3)�Vf, where �Vf is the spheri-
cal crack or stress-free volume. This relation depends on
our interpretation of the source process. If we consider an
Eshelby spherical source with strain-free stress (S6), MIso

0
is related to δP. We obtain a different estimation of�Vf or
δP in a bimaterial medium. This study provides a unified
view for quantifying a spherical source using the seismic
moment of an isotropic source determined from wave-
form inversion analysis in volcano seismological studies.
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Dreger D, Tkalčić H, Johnston M (2000) Dilational processes accompanying
earthquakes in the Long Valley Caldera. Science 288: 122–125

Eshelby JD (1957) The determination of the elastic field of an ellipsoidal
inclusion, and related problems. Proc Roy Soc Ser A 241: 376–396

Fukuyama E, Takeo M (1987) Analysis of the near-field seismogram observed
during the eruption of Izu-Oshima Volcano on November 16. Bull Volcanol
Soc Jpn 35: 283–297

Julian BR, Miller AD, Foulger GR (1998) Non-double-couple earthquakes 1.
Theory. Rev Geophys 36: 525–549



Kumagai et al. Earth, Planets and Space 2014, 66:7 Page 10 of 10
http://www.earth-planets-space.com/content/66/1/7

Kanamori H, Given J, Lay T (1980) Analysis of seismic body waves excited by
the Mount St. Helens eruption of May 18, J Geophys Res 89: 1856–1866

Kawakatsu H, Yamamoto M (2007) Volcano seismology In: Kamanori H (ed)
Treatise on geophysics volume 4—earthquake seismology. Elsevier,
Amsterdam, pp 389–420

Kumagai H (2009) Source quantification of volcano seismic signals. In: Mayers
RA (ed) Encyclopedia of complexity and systems science. Springer, New
York

Kumagai H, Placios P, Ruiz M, Yepes H, Kozono T (2011) Ascending seismic
source during an explosive eruption at Tungurahua volcano. Ecuador
Geophys Res Lett 38. L01306 doi:10.1029/2010GL045944

Legrand D, Kaneshima S, Kawakatsu H (2000) Moment tensor analysis of
near-field broadband waveforms observed at Aso volcano, Japan. J
Volcanol Geotherm Res 101: 155–169

Maeda M, Takeo M (2011) Take very-long-period pulses at Asama volcano,
central Japan, inferred from dense seismic observations. Geophys J Int 185:
265–282

Mogi K (1958) Relation between the eruptions of various volcanoes and the
deformations of the ground surfaces around them. Bull Earthq Res Inst
Univ Tokyo 36: 99–134

Müller G (2001) Volume change of seismic. Bull Seism Soc Am 91: 880–884
Nishimura T, Iguchi M (2011) Volcanic earthquakes and tremor in Japan. Kyoto

University Press, Kyoto
Ohminato T, Takeo M, Kumagai H, Yamashina T, Oikawa J, Koyama E, Tsuji H,

Urabe T (2006) Vulcanian eruptions with dominant single force
components observed during the Asama 2004. volcanic activity in Japan
Earth Planets Space 58: 583–593

Okada Y (1992) Internal deformation due to shear and tensile faults in a
half-space. Bull Seism Soc Am 82: 1018–1040

Richards PG, Kim WY (2005) Equivalent volume sources for explosions at
depth: theory and observations 95: 401–407

Sezawa K (1931) The plastico-elastic deformation of a semi-infinite solid body
due to an internal force 9: 398–406

Tameguri T, Iguchi M, Ishihara K (2002) Mechanism of explosive eruptions from
moment tensor analyses of explosion earthquakes at Sakurajima volcano,
Japan. Bull Volcanol Soc Jpn 47: 197–216

Uhira K, Takeo M (1994) The source of explosive eruptions of Sakurajima
volcano, Japan. J Geophys Res 99: 17775–17789

Wielandt E (2003) On the relationship between seismic moment and source
volume. http://www.geophys.uni-stuttgart.de/~erhard/skripte/ew/
isomoment/ Accessed May 30 2003

doi:10.1186/1880-5981-66-7
Cite this article as: Kumagai et al.: Seismic moment and volume change of
a spherical source. Earth, Planets and Space 2014 66:7.

Submit your manuscript to a 
journal and benefi t from:

7 Convenient online submission

7 Rigorous peer review

7 Immediate publication on acceptance

7 Open access: articles freely available online

7 High visibility within the fi eld

7 Retaining the copyright to your article

    Submit your next manuscript at 7 springeropen.com

http://www.geophys.uni-stuttgart.de/~erhard/skripte/ew/isomoment/
http://www.geophys.uni-stuttgart.de/~erhard/skripte/ew/isomoment/

	Abstract
	Keywords

	Background
	Methods
	Source representations
	Displacement fields
	Spherical source
	Spherical crack source
	Isotropic source
	Eshelby spherical source

	Sources in a bimaterial medium

	Results and discussion
	Conclusions
	Competing interests
	Authors' contributions
	Acknowledgements
	Author details
	References

