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A computing method for 3D magnetotelluric modelling directed by polynomials

Pierre-André Schnegg
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A computational method for automatic 3D MT modelling is described. Making use of a recent publicly available
forward algorithm, our method allows unattended search for a 3D conductivity model. The geometry of the
conductivity features is described by a set of mathematical functions of the horizontal coordinates x and y and of a
fixed number of parameters. Starting from a presumed conductivity distribution, our scheme automatically varies
the parameters in a steepest descent control loop, until the misfit between the model response and the measured data
reaches an allowable value. To illustrate the method, we apply it to MT and induction data gathered in the Swiss
Alps and determine the depth and lateral extension of a highly conductive, graphite-bearing layer.

1. Introduction
When an efficient new numerical algorithm to compute

two-dimensional (2D) magnetotelluric problems was pub-
lished (Wannamaker et al., 1985), it was immediately used
by many induction researchers to improve their modelling
results. They suddenly had the opportunity to add a new
dimension to earlier simplistic 1D models. However, with
the then available computing power, 2D modelling was a
very lengthy process. At each step of the modelling, after
a small variation of the conductivity distribution had been
introduced, it was necessary to carefully re-design the finite-
element mesh. In the last ten years, however, a wealth of 2D
automatic schemes has appeared, relieving the researchers of
the most tedious part of their work (Jones, 1993).
Similar situation occurred with the advent of 3D schemes.

So far researchers have carried out 3D modelling in very
lengthy ways, manually changing the parameters of their
conductivity models until they were finally satisfied with the
results. To make the search for the best model a smoother,
more unattended work, we had the idea of incorporating the
code of a forward 3D MT field computation scheme into
a main computer programme which would handle most of
the repetitive task. Once a model topology has been cho-
sen by the operator (number of layers and possibly, number
of isolated conductive or resistive features), the programme
automatically handles most of the tedious operations like
mesh design, calculation of misfit between measured data
and model response, and parameter fitting. At each itera-
tion our programme calls the forward calculation routine.
Because all five EM field components can be computed in
the forward code, it becomes possible to search conductivity
models with any subset of MT parameters (one or two MT
polarisations and/or vertical magnetic field) or with all of
them in the calculation of the objective function.
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2. Method Description
The forward calculation used in our 3D MT modelling

scheme was developed and made available in the last few
years (Mackie et al., 1993, 1994). This calculation is based
on the integral form of Maxwell’s equations where acceler-
ated conjugate gradient relaxation is used to solve for the
magnetic field Hx , Hy and Hz . Mackie’s new forward tech-
nique and the tremendous increase of available PCcomputing
throughput have given rise to numerous studies addressing
three-dimensional lithologies. Examples of such studies can
be found in (Pous et al., 1995; Livelybrooks et al., 1996;
Masero et al., 1997; Park and Mackie, 1997). However, it
seems that none of these modelling attempts used fully auto-
matic methods. Because they require much control from the
operator, their result may be unconsciously biased toward
more or less subjective final models. The scheme implied
in our method is probably less subjective since it requires
less intervention (initial parameterisation must still be done
by the operator, however). It differs little from an approach
used in a previous work on 2D MT modelling (Schnegg,
1993; Schnegg, 1996), where the shape and resistivity of a
conducting structure is bounded by a set of simple polyno-
mial functions of the profile distance.
There will be no further mention of the maths involved in

themethod ofMackie et al. (1993). The idea behind our tech-
nique is the control of the construction of a 3D model with a
finite set of smoothly varying functions of the space coordi-
nates. Useless to say, construction must respect some design
rules so that at the end, the model fits the format required by
the forward modelling scheme used (Mackie and Madden,
1994). The resistivity of the elementary 3D blocks of the
regularisation mesh is controlled by these smooth functions.
In this paper, simple polynomial functions of the coordinates
are chosen, but obviously other analytic, continuous func-
tions could do as well. Our method has certain similarities
to Occam’s 2D inversion (de Groot-Hedlin and Constable,
1990). Occam’s inversion seeks structures with minimum
roughness in both horizontal and vertical directions. In our
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method, the polynomials ensure smoothness within a given
layer, but the whole design enforces vertical layering. Keep-
ing the number of parameters close to the number of sites
avoids overinterpretation of the data, suggesting the real
resolving power of the magnetotelluric soundings. In the
present scheme, a conductivity distribution will be described
by a stack of N layers. Although we can easily imagine thick
lithologies without any stratification, most of the time the ge-
ology of a given area assumes strong layering. Such prior
geological knowledge, if it exists, can be used to constrain the
minimisation of an objective function based on data-misfit
(Ellis and Oldenburg, 1994). The logarithms of the layer
thicknesses assume a polynomial form described by a set of
N given functions of the horizontal coordinates ξ and ψ .

Fj (ξ, ψ, pi ), i = 1, n j , j = 1, N − 1. (1)

Within each layer in turn, the logarithm of the resistivity
can be set to a fixed value but more generally, will also be
varying as a polynomial function of the coordinates

Fj (ξ, ψ, pi ), i = 1, n j , j = N , 2N − 1. (2)

Note that the description of both thickness and resistivity
occurs in logarithmic space. The reason for this apparently
useless complexity is to avoid zero crossing of the parameters
during their variation by the minimising routine, which can
only progress stepwise. Working with logarithms has the
additional advantage of enabling more rapid (exponential)
variations of the parameters than direct values would do.
In the general case, variables ξ and ψ are curvilinear co-

ordinates, but they could also be chosen as simple Cartesian
coordinates x and y on the horizontal surface of the Earth (x
toward the N , y toward the E). Each function Fj depends on
n j parameters pi . In the simple case of polynomials, these
parameters are the multiplying coefficients of the terms x , y,
x2, xy, . . . . For instance, in the case of a representation with
3rd-degree polynomials the thickness of the first layer would
be written as

h1 = 10p1+p2x+p3 y+p4x2+p5xy+p6 y2+p7x3+p8x2 y+p9xy2+p10 y3 .

(3)
Let us now consider Mackie’s regularisation mesh. Its

central part contains a stack of small 3Dblocks of dimensions
�x ,�y,�z. There is provision for horizontal variationof the
cell dimensions. A given horizontal slice has a fixed vertical
thickness, but this parameter is allowed to vary vertically
from one slice to the next. Three-dimensionality is restricted
to the model core. The outer parts are 2D and 1D structures
extending the regional features.
Our conductivity model is discretized in the same way,

keeping this time �x and �y constant within a given slice.
The vertical cell dimension �z may be kept constant or al-
lowed to increase exponentially with depth. Two-D and 1D
edges are also included in the model. They insure correct
boundary conditions both laterally and vertically. Conse-
quently, the range of influence of the polynomials is restricted
to the inner 3D part of themodel. During the successive steps
of our directed forward modelling, the shape and dimensions
of the 3D regularisation mesh stays unchanged. The model
variation is entirely controlled by the resistivity variations of

the building blocks. Each elementary block belongs to one
of the N layers and thus can be given the resistivity of that
layer, which depends on the polynomials Fj .

Our scheme automatically varies the parameters pi and
checks the result improvement in terms of least squaresmisfit
between model response and measured data. Both phase φ

and logarithm of the apparent resistivity ρa are used in this
computation according to Eq. (4) (Fischer and Le Quang,
1981):

ε = 1√
2

√√√√ 1

4N
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{
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N
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wφi{φc(Ti) − φm(Ti)}2

(4)
where the indices m and c refer to measured and calculated
data, wρi and wφi represent the data weights and Ti are the
N periods for which measured data are available. Misfit
ε decreases because the search progresses in the direction
of steepest descent in the parameter space. After a certain
number of iterations we end up with the best model (in terms
of data fit) that can be represented with the selected set of
functions Fj . In fact, the calculation is stopped once a fixed
maximum allowable misfit threshold is reached. Unfortu-
nately there is no guarantee that the absolute minimummisfit
has been obtained. Sometimes it is more convenient to fix
a time limit to the modelling. Depending on the assumed
topology of the target geology, it is up to the modeller to
select the set of functions which he believes will best fit the
problem. These functions can extend from simple polyno-
mials of x and y (in the case of distorted dipping layered
structure), to any combination of orthogonal polynomials,
like spherical harmonics and Legendre polynomials (which
would be required for axi-symmetric geometries found in
geological features like salt domes, volcanoes with magma
chambers, astroblems, etc.). Obviously, once a set of func-
tions has been selected, the model will only assume limited
freedom of topological variation, since the search is done on
the parameters pi only, and not on the kind of function itself.

There is an important trade-off in the search for the best
model: On one hand, the conductivity distribution must be
described by as many parameters as required to fit the data.
On the other hand, this number must be kept within rea-
sonably small values (practically smaller than 20) to avoid
convergence problems caused by computing time limitations.
Moreover, toomanyparameterswould smoothout theparam-
eter space and turn a deep absolute minimum into numerous
shallower valleys.
The programmeflowchart is shown in Fig. 1. First thefield

data and initial values of themodel parameters are read in. At
this stage preliminary information delivered by other meth-
ods (1D and 2D magnetotellurics, seismic lines, gravimetry)
can be advantageously introduced to help design the starting
model. Using weights will allow individual adjustment of
parameter sensitivities. They can be set to zero to freeze the
variation of a given parameter, permitting the application of
deliberate constraints on the modelling process.
After this preliminary unique step has been completed

the main programme launches a minimisation routine which
takes control over the n j parameters pi . In Fig. 1 a wide
circle symbolises this routine. The next programme steps
are repeated at will in an endless loop or as long as the misfit
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Fig. 1. Programme flowchart.

criterion is not met. As usual, the misfit is the error between
the measured data and the model response, summed over all
measuring sites, periods, and MT parameters (2 MT polari-
sations and/or vertical magnetic field), including apparent re-
sistivities, induction coefficients and their respective phases.
Weights computed from the error bars can be attributed to
individual field data to take their quality into account.
At the end of each cycle, a new conductivity model is de-

signed by the programme. This step is carried out according
to Mackie’s recommendations for mesh design. Mackie’s
method divides space into cells of parallelepiped shape. To
design the new model, the value of the resistivity of the cells
at coordinates x and y are computed by the proper selected
set of functions Fj . These functions, in turn, can be com-
puted with the parameters proposed by the minimising rou-
tine. Then a forward calculation of the model response can
be performed. In terms of computing time, this last step is
effectively the most demanding part of the code. Once avail-
able, model responses are compared to measured data and a
misfit value is derived. Finally the minimising routine can
use the information on the misfit variation to modify the pa-
rameter set and determine the direction of steepest descent
toward convergence in parameter space. Since there is no
need for human control during the process, the computation
can run unattended for several hours or days.

3. Minimisation Routine
Our minimisation procedure MINDEF (Beiner, 1970) al-

lows to find a relative minimum of any real function F of as
many as 30 variables. The procedure is optimised in such
a way that the number of calls of the function F is kept to

a minimum. Moreover, the derivative of F is not required.
The search for a minimum is carried out in three steps: 1)
varying the parameters around the starting point until a di-
rection of descent is found. 2) progression in the descent
direction. 3) as soon as the progression fails, parameters are
varied into the space perpendicular to the progression, try-
ing thus to find a breakthrough. The same ternary strategy
is repeated automatically from the last point as long as an
acceptable minimum is not found. In our application we use
the RMS value computed between the measured data and the
model function as the objective function F to minimise.

4. Field Example
To illustrate themethod on realMT andGDS field data, we

use the results of a recent survey carried out in the Penninic
Alps of Valais, Switzerland (Schnegg, 1998). MT and ver-
tical magnetic field data were recorded at 24 sites scattered
over an area of 60 × 40 km. The Rhone valley represents
a natural separation between the external, “helvetic” and in-
ternal “penninic” zone of the Central Alps. The helvetic
domain corresponds to the South-eastern edge of the former
European continent. The penninic zone, on the other hand,
consists of a complex stack of basement scales and cover
nappes. Of particular interest to our study is the deepest,
northernmost nappe called “Zone Houillère”. The high car-
bon content of this nappe makes it a good candidate for a
conductivity anomaly. Moreover, this lithology crops out at
the surface along the Rhone river. Laboratory study of drill
cores from a nearby borehole confirmed the presence of low-
grade carbonated material. Sample measurements revealed
resistivities of as low as 0.6 �m. Conductivity increase with
hydrostatic pressure is likely to indicate reconnection of car-
bon films at the grain boundaries (Glover and Vine, 1992).
Using our 2D modelling method (Schnegg, 1993), a pre-

liminary search for a 2D model was carried out with a sub-
set of sites selected in the neighbourhood of a well-centred
profile line. This revealed the shape and extension of a con-

Fig. 2. Polynomial envelope of initial model (2nd layer shown only)
obtained by preliminary 2D modelling along a profile parallel to the
NNW-SSE axis, at km 0 of the WNW-ESE axis. This origin corresponds
to 42.8 km along the horizontal axis of Figs. 3 and 6.
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Fig. 3. 3D MT/GDS final model after 400 iterations. (a) Isolines of the depth to the 0.2 �m body (km). (b) Isolines of the lateral resistivity distribution in
the top layer (solid line) and third layer (broken line) in �m. Graphite-bearing Zone Houillère outcrop is represented in dark.

ducting dipping slab, embedded in a resistive rock matrix.
We used this 2D model to built the starting model of a 3D
modelling. Figure 2 represents the polynomial envelope of
the conductive slab. The region of study was subdivided
into 24 × 14 × 20 parallelepipedic cells of size 3 × 3 × 0.5
km. Three columns and three rows were appended on each
external face of the model, with increasing width of 6, 12
and 24 km, thus dividing the space into 30×20×20 blocks.
Each vertical slice of this model was embedded in a larger 2D
model which extended the regional features. A 1D structure
(a half-space in this case)was added at the bottom. Thismesh
geometry did not vary during the entire modelling process.
Only the cell resistivities were allowed to change.
According to the results of the 2Dmodelling, we restricted

the 3D topology to models which could be described by 3
layers: one very conductive layer embedded in a pair of
much less conductive ones (in fact there was no evidence in
the 2D model of the presence of a second conducting slab at
depth). The conductive slab resistivity and thickness were
given fixed values of 0.2 �m and 1 km. The high conduc-
tance of the slabwas necessary to explain the results of the 2D
modelling (this result is also in perfect agreement with our
laboratory measurements), whereas the slab thickness was
extrapolated from the observations at the outcrop and from
the available seismic lines which display remarkably paral-
lel dipping reflectors (Valasek et al., 1997). Obviously, the
seismic information was a very valuable one in this particu-
lar context to constrain the thickness of the second layer. It



P.-A. SCHNEGG: A COMPUTING METHOD FOR 3D MT 1009

would have been very difficult to resolve simultaneously the
thickness and the resistivity of such a high conducting layer.
This difficulty already appeared while carrying out the 2D
modelling. Hence, the parameters which were automatically
fitted by our programme are the pi , qi and ri which appear
in the decimal logarithms of

1) the slab depth (or the thickness of first layer),
f1(x, y, pi , i = 1, n1),

2) the resistivity of the rock matrix above the slab,
f2(x, y, qi , i = 1, n2),

3) the resistivity of the rock matrix beneath the slab,
f3(x, y, ri , i = 1, n3).

We used logarithmic values instead of the values themselves
to prevent the resistivity and the thickness from becoming
negative during the parameter control by the minimising rou-
tine. These model parameters have been chosen to be simple
polynomials of the coordinates x and y with degrees set as
high as possible with regard to the available computing re-
sources, to 3, 2 and 2 respectively. If computing time would
not be an issue, the upper limit of the polynomial order should
have been fitted to the measuring site density. No vertical
resistivity variation was allowed within a given layer. As ini-
tial values, f1 was set to the logarithm of the 2D slab depth,
whereas constant polynomials were chosen for f2 and f3.
Thus, the three polynomials

log
10
h1(x, y) = p1 + p2x + p3y + p4x

2 + p5xy + p6y
2

+p7x
3 + p8x

2y + p9xy
2 + p10y

3 (5)

log
10

ρ1(x, y) = q1 +q2x +q3y+q4x
2 +q5xy+q6y

2 (6)

log
10

ρ2(x, y) = r1 + r2x + r3y + r4x
2 + r5xy + r6y

2 (7)

have been selected to describe the conductivity distribution
of the 3D part of our model.
We carried out a joint modelling of the induction coeffi-

cients of the measured vertical magnetic field, and the appar-
ent resistivities and phases computed from the MT matrix
rotated into the directions of the axes of Fig. 2. Because
computing time is proportional to the number of periods at
which the misfit is computed, we had to restrict the dataset
to periods of 1 and 100 seconds. However, these periods
could be shown in the 2D modelling to be well suited and
representative of the studied conductivity environment. Iso-
lines of the depth of the conducting slab after 400 iterations
are shown in Fig. 3 and a 3D view in Fig. 4. Note that the
smooth surface displayed in Fig. 4 is not an image of the true
conductivity distribution of the model, but rather its poly-
nomial envelope. It should be reminded that the model is
a juxtaposition of small blocks. However, we have some
reason to believe that the real shape of the conductive slab
resembles more a smooth structure than a blocky one. The
final model response is compared with the field data in Fig. 5
(MT apparent resistivities and phases) and Fig. 6 (induction
arrows). Note that Fig. 5 displays data points at all mea-
sured periods, in spite of the limitation to only two of them
which were effectively used in the modelling. The full lines
denote the model response calculated at periods of 1, 3, 10,
30, 100 and 300 seconds and interpolated. On the contrary,

Fig. 4. Polynomial envelope of the high-conducting (0.2 �m) slab of
final model after 400 iterations. Logarithm of thickness of first layer is
described by a 3rd-degree polynomial of x and y:
p1+ p2x+ p3y+ p4x2+ p5xy+ p6y2+ p7x3+ p8x2y+ p9xy2+ p10y3.
Logarithmic scale is used to prevent the thickness from being negative.
Slab thickness was kept fixed at 1 km, according to the results of an
existing seismic line.

Fig. 6 shows only the results at one period (100 s), although
a second period (1 s) was also used in the search.
Obviously, the result of our 3D modelling must be re-

garded as semi-quantitative only, since many simplifications
were required to lighten the computing task (constant thick-
ness and constant resistivity of the slab). However the final
model clearly indicates that the shape of the conducting slab
strongly departs from the cylindrical geometry suggested
by the 2D model, closely matching the uppermost crustal
boundary as determined by seismic profiles (Valasek, 1997).
Moreover, a recent airborne gravimetric survey of the area
(Klingelè et al., 1996) shows a deep (30 mgal) local max-
imum with a lateral extension exactly matching the bowl-
shaped depression of our model. There is no doubt that the
real shape of the conducting body is more complicated than
can be described by our 3D model. In particular, a higher
polynomial degree would be required to fit data from the SW
edge. However, the general trend should not differ signif-
icantly from reality, since it displays the same curvature as
the Alpine arc, showing a marked depression. These match
the large scale geometry of tectonic units bordered by fea-
tures such as the external crystallinemassif domes, the Rawil
saddle to the NW, and the Insubric backfold to the SE.
As can be seen from Figs. 5 and 6, induction arrows gave

higher-quality results than apparent resistivities and phases.
We therefore attributed higher weights to the former in the
misfit computation. The misfit of the model response is no-
ticeably larger for 3D than for 2D modelling. The cause
is presumably the oversimplification of the 3D model and
the limited number of period values which were imposed by
computing time requirements. Moreover, static effects are
likely to occur in MT data recorded in such a mountainous
area. However, the rather large number of sites used in the
modelling somewhat mitigates these effects.
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Fig. 5. Measured apparent resistivity and phase (triangles) compared to final model response (lines) for two polarisations. Logarithm of period ranges
from 0 to 3 (abscissa). Logarithm of apparent resistivity varies between 0 and 5. Phase axis varies between 0 and 90. Filled symbols and dashed lines
denote the mode in which electric currents flow parallel to the Rhone valley. Site locations are shown on the map of Fig. 6a.

5. Programming Considerations
As was discussed already, continuous geological features

can be described by simple polynomials, which are smoothly
varying functions. Horizontal boundaries are easily repre-
sented by such functions. Lateral variations of the resistivity
can also be approximated by polynomials, provided there are
no sharp resistivity variations as would result from the occur-
rence of dikes, faults and similar tectonic features. Known
lithologies with such high resistivity gradients can neverthe-
less be modelled, at the expense of additional parameters.
However, the number of freely varying parameters must be
kept within reasonable limits for computing time considera-
tions. Geological features with a vertical axis of symmetry
(salt domes, volcanoes, astroblems, etc.) should be manage-
able targets in an approach based on the use of Legendre

polynomials. The final result of the present method is a set
of parameters which control continuous functions of the co-
ordinates, such as polynomials. The 3D forward modelling
scheme does not compute the response of the continuous
conductivity distribution specified by the polynomials, but
the response of the blocky model inscribed in them.

6. Conclusion
We have described a new scheme for automatic 3D mag-

netotelluric modelling based on an existing forward method
for computing MT response. Modelling 2D and 3DMT data
by hand can be a very wearisome task. Quite frequently,
automated methods like the one presented here can be used
successfully by feeding the computer programmewith a well
chosen initial model, and leaving the modelling work unat-
tended for several hours, days or weeks.
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Fig. 6. Real and imaginary induction arrows at 100 s for (a) measured data and (b) response of model shown in Figs. 3 and 4.

Every smooth geological situation without lateral discon-
tinuities of the resistivity can be approximated by simple
polynomial expressions. This is particularly the case for
structures produced in collisions (or extensions; suture zones,
crustal dècollements and shear zones). Discontinuities can
be dealtwith by combining several polynomials, or by adding
appropriate boundary conditions, at the expense of an en-
hanced computing task, however. Finally, problems with
axes of symmetry can also be treated. In each case, a proper
choice of primitive functions is mandatory to obtain success-
ful modelling results.
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31, 104 pp., Swiss Geophysical Commission, 1996.

Livelybrooks, D., M. Mareschal, E. Blais, and J. T. Smith, Magnetotelluric
delineation of the Trillabelle massive sulfide body in Sudbury, Ontario,
Geophysics, 61(4), 971–986, 1996.

Mackie, R. L. and T. R. Madden, Instructions for Running 3D MT Forward
Modeling Program, 5 pp., MIT Earth Resources Laboratory, Cambridge,
Massachusetts 02142, 1994.



1012 P.-A. SCHNEGG: A COMPUTING METHOD FOR 3D MT

Mackie, R. L., T. R. Madden, and P. E. Wannamaker, Three-dimensional
magnetotelluric modeling using difference equations—theory and com-
parison to integral equation solutions, Geophysics, 58, 215–226, 1993.

Mackie, R. L., J. T. Smith, and T. R. Madden, Three-dimensional electro-
magnetic modeling using finite difference equations: the magnetotelluric
example, Radio Sci., 923–935, 1994.

Masero, W., G. Fischer, and P.-A. Schnegg, Crustal deformation in the
region of the Araguainha impact, Brazil, Phys. Earth Planet. Inter., 101,
271–289, 1997.

Park, S. K. and R. J. Mackie, Crustal structure at Nanga Parbat, northern
Pakistan, from magnetotelluric soundings, Geophys. Res. Lett. (USA),
24(19), 2415–2418, 1997.

Pous, J., C. Ayala, J. Ledo, A. Marcuello, and F. Sabat, 3D modelling of
magnetotelluric and gravity data of Mallorca island (Western Mediter-
ranean), Geophys. Res. Lett. (USA), 22(6), 735–738, 1995.

Schnegg, P.-A., An Automatic Scheme for 2-D Magnetotelluric Modelling,
Based on Low-Order Polynomial Fitting, J. Geomag. Geoelectr., 45(9),
1039–1043, 1993.

Schnegg, P.-A., Comparison of 2D modelling methods: rapid inversion vs
polynomial fitting, in Elektromagnetische Tiefenforschung, edited by K.
Bahr and A. Junge, pp. 74–79, Deutsche Geophysikalische Gesellschaft,
Burg Ludwigstein, 1996.

Schnegg, P.-A., The Magnetotelluric Survey of the Penninic Alps of Valais,
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