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This paper presents a practical and objective procedure for a Bayesian inversion of geophysical data. We have
applied geostatistical techniques such as kriging and simulation algorithms to acquire a prior model information.
Then the Markov chain Monte Carlo (MCMC) method is adopted to infer the characteristics of the marginal dis-
tributions of model parameters. Geostatistics which is based upon a variogram model provides a means to analyze
and interpret the spatially distributed data. For Bayesian inversion of dipole-dipole resistivity data, we have used
the indicator kriging and simulation techniques to generate cumulative density functions from Schlumberger and
well logging data for obtaining a prior information by cokriging and simulations from covariogram models. Indi-
cator approaches make it possible to incorporate non-parametric information into the probabilistic density function.
We have also adopted the Markov chain Monte Carlo approach, based on Gibbs sampling, to examine the char-
acteristics of a posterior probability density function and marginal distributions of each parameter. The MCMC
technique provides a robust result from which information given by the indicator method, that is fundamentally
non-parametric, is fully extracted. We have used the a prior information proposed by the geostatistical method as
the full conditional distribution for Gibbs sampling. And to implement Gibbs sampler, we have applied the modi-
fied Simulated Annealing (SA) algorithm which effectively searched for global model space. This scheme provides
a more effective and robust global sampling algorithm as compared to the previous study.

1. Introduction
In the past decade, Bayesian analysis (Bayes, 1763;

Tarantola, 1987) for geophysical inverse problem has been
tried sometimes as test problems (Duijndam, 1988a, b) or
sometimes as alternatives (Mosegaard and Tarantola, 1995;
Gouveia, 1996; Moraes, 1996) to the traditional determinis-
tic process (Lines and Treital, 1984). Although the robust-
ness of the Bayesian analyses is well confirmed by these
studies, their approaches were rather arbitrary and subjec-
tive. Therefore, within these kinds of the Bayesian frame,
it is difficult to solve the geophysical inverse problems in a
systematic way.
The most perplexing and significant aspect of the

Bayesian frame is the preparation of a prior information.
Duijndam (1988a, b) arbitrarily assumed the 1st and 2nd
statistical moments of model parameters. Moraes (1996) de-
fined the probabilistic structure of the model parameters in
advance and then used the maximum entropy technique in-
versely. Gouveia (1996) incorporated various experimental
noises into the model and data covariance with subjectivity.
Scales and Tarantola (1994) thought of the smooth compo-
nents of the P-wave sonic log as representing the geological
structure and others erratic random fluctuations, but, in gen-
eral, it is often difficult to distinguish between signal and
noise.
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A recent study given by Grandis et al. (1999) makes a
prior PDF (probability density function) by digitizing the
parameters over a set of values, called possible resistivity
values, with no constraints. They also composed a prior dis-
tribution with a Markovian matrix which depends on the set
of possible resistivities. This process is considerably more
objective and shows good results. But the quantity of dig-
itizing affects the a posterior PDF, and there is no device
to include various independent data in the Bayesian analy-
sis frame, so prompt applications of this approach to more
practical and complex problems may be rather difficult.
The representation of a prior information may be divided

into three alternative stems (Scales and Tenorio, 1998). The
first strategy is a subjective Bayesian one: prior probabilities
are designed to represent states of mind, prejudices or prior
experiences. However, depending on the amount and type of
prior information, the proper choice of probabilities may or
may not be clear. Most of the previously mentioned studies
of Duijndam (1988a, b), Moraes (1996) and Gouveia (1996)
may be classified in this category.
The second approach attempts to make a more objective

choice of priors by relying on theoretical considerations
such as maximum entropy, transformation invariance, or by
somehow using a large number of observations to estimate a
prior. This approach is sometimes called empirical Bayes.
We took this approach with geophysical data and geostatis-
tical techniques as described in later sections. The empir-
ical Bayes analysis can be seen as an approximation of a
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full hierarchical Bayes analysis based on the joint probabil-
ity distribution of all parameters and available data. For an
introduction to empirical and hierarchical models see Carlin
and Louis (1996) and Gelman et al. (1995).
A third strategy is to abandon Bayes altogether and use

only deterministic prior information about models: wave-
speed is positive (a matter of definition); velocity is less than
the speed of light (a theoretical prediction). Statistical as-
pects of these problems are included in the look of random
data uncertainties. Tokhonov’s regularization is one way of
implementing this strategy.
As previously mentioned, we have adopted the second ap-

proach and proposed a more practical and objective mecha-
nism to construct two dimensional a prior information from
various geophysical data by means of geostatistical simula-
tions.
Actually, simple uncertainty analyses have been applied

to the inversion process by many researchers. For example,
Wijk et al. (1997) proposed some simple algorithms to apply
to data domain variances in order to weigh their contribu-
tions to the inversion process, but the process was somewhat
deterministic and gave no more uncertainty analysis. We
import a mechanism for guessing the subspace structure to
understand the noisy information and extract to a maximum
extent signals that represent the feasible geologic structure.
If this is fully workable, constraints to avoid instability, such
as smoothing terms, are not required. Bayesian frame does
all of the above.
Geostatistics is based on the variogram model to estimate

and simulate properties on unsampled points or blocks with
probabilistic informations. The estimation may come from
one variable or combine several variables. In our numeri-
cal study, we have used the indicator kriging and simulation
technique to generate cumulative probability density func-
tions from Schlumberger and well log data for a prior infor-
mation in interpreting geoelectrical data. Such a technique
can generate probability density function independent of any
statistical moments of data.
Inverted Schlumberger and well log data make a co-var-

iogram model and present the various spatial aspects of our
data. Since geostatistics concentrates on the configuration of
the data locations and values, we can get spatial uncertainty
as well as local uncertainty. Thus spatial consideration gives
very important compensations due to the lack of statistical
information of observed data and proposed model parame-
ters itself, because most of the earth science models have
very natural and reasonable spatial structure.
Bayesian approach to geophysical inversion is simply the

multiplicity of two kind of PDFs, a prior PDF and likelihood
PDF (Tarantola, 1987). But as we can see from the process
of parameterization of geophysical inversion, a highly mul-
tidimensional state of a posterior PDF makes interpreters
dizzy and doesn’t give any choice in inferring the substruc-
ture. Therefore, a marginalization process is required. This
process makes the Bayesian approach a hard problem to
solve, because it depends on high dimensional integrals as
much as the number of parameters. In addition, naturally,
the kernel of the integral is highly nonlinear. So we used the
Monte Carlo sampling integral technique, especially Gibbs
sampling, to achieve effectiveness, which more sampling

is achieved near the maximum a posterior values by us-
ing a prior information as the full conditional distribution.
This process was a general and non-parametric approach,
because any constraints are not imposed on a prior, like-
lihood, and a posterior PDF. Nonparametric and general
treatment of the PDF of the data is very powerful and no
information is lost in analyzing the substructure.

2. Geostatistical Approach to a prior Information
Geostatistics is concerned with “the study of phenomena

that fluctuate in space” and/or time (Olea, 1975). Geostatis-
tics offers a collection of deterministic and statistical tools
aimed at understanding and modeling spatial variability.
The basic paradigm of predictive statistics is characteriza-

tion of any unsampled (unknown) value z as a random vari-
able Z , the probability distribution of which models the un-
certainty of z. A random variable is a variable that can take
a variety of outcome values according to some probability
(frequency) distribution (Deutsch and Journel, 1992). The
random variable Z , and more specifically its probability dis-
tribution is usually location-dependent; hence the notation
Z (u), with u being the location where coordinates vector is
adequate. The random variable Z (u) is also information-
dependent in the sense that its probability distribution
changes as more data about the unsampled value z(u) be-
come available.
Geostatistics was originally devised to estimate properties

of unsampled points for delineating ore deposits. But these
days those tools are used not only for estimation of unsam-
pled points but also for inference of local and spatial uncer-
tainty estimation (Goovaerts, 1997; Isaaks and Srivastava,
1989). Geostatistics is largely based on the random func-
tion model, whereby the set of unknown values is regarded
as a set of spatially dependent random variables. Some peo-
ple may ask why, the observed value being already deter-
mined, we should use such a random function model. In
reply, a model is but a representation of the (unknown) re-
ality. Although that reality is unique, it has many possible
representations, depending on the information available and
the goal of the study. So instead of a single estimated value
for the unknown z(u), the probabilistic approach provides
a set of possible values with the corresponding probabili-
ties of occurrence. Such presentation reflects our imperfect
knowledge of the unsampled value z(u) and, more generally,
of the distribution of z within the area (Goovaerts, 1997).
Our ultimate goal is to infer the uncertainty structure of an
interpreted region from a prior informations such as well-
logging and Schlumberger sounding data. This is, after all,
the estimation of unsampled points or area spatially depen-
dent on random model or variables, so it coincides with the
geostatistical model.
2.1 Geostatistics: A statistical tools for spatial data
2.1.1 Kriging Kriging, the most frequently quoted

terminology in the following text, is a linear, unbiased, least-
squares spatial interpolation method; a weighted-average, or
weighted-mean, estimator whose weights are functions of
spatial covariance. The spatial covariance is derived from
a simple calculation, called semivariogram (or traditionally
variogram), given by the following equation:
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Fig. 1. The sequential stage to perform kriging for spatial data.

γ (h) = 1

2N (h)

N (h)∑
i=1

(Z(xi ) − Z(xi + h))2. (1)

Variogram γ (h) describes the variance distribution of the
data given by the relative location difference h. Z is the
random function attained at x . Figure 1 shows the sequential
stages to perform kriging irregularly and sparsely distributed
spatial data.
2.1.2 Simulation A geostatistical simulation algo-

rithm aims to draw realizations that reflect the statistics
modeled from the data. The question is how well these
statistics can be reproduced. The smoothing effect of krig-
ing, and more generally, of any low pass-type interpolation,
is due to missing error components (Deutsch and Journel,
1992). Consider the random function Z (u) as the sum of the
estimator Z∗(u) and the corresponding error R(u):

Z(u) = Z∗(u) + R(u).

Kriging, for example, would provide the smoothly varying
estimator Z∗(u). To restore the full variance of the random
function model, one may think of simulating a realization
of the random function error with zero mean and the correct
variance and covariance. The simulated z-value would be
the sum of the unique estimated value and a simulated error
value:

z(l)
c = z∗(u) + r (l)(u).

In this process, the error component R(u) must be indepen-
dent or at least orthogonal to the estimator Z∗(u), and the
random fuction R(u), modeling that the error must have the
same spatial distribution or, at least, the same covariance as
the actual error (Deutsch and Journel, 1992).
2.2 Assessment of local uncertainty
To estimate the uncertainty of a point, the most rigor-

ous way is first to assess the uncertainty, then to deduce
an estimate optimal in some appropriate sense (Goovaerts,
1997). This is significantly different from the traditional
approach of first deriving the estimate then attaching to it
a confidence interval. Let Z (u) be the random value mod-
eling the uncertainty about z(u). The distribution function
F(u; z | (n)) = Prob{Z(u) ≤ z | (n)} made conditional to
the information available (n) fully models that uncertainty
in the sense that probability intervals can be derived, such as

Prob{Z(u) ∈ (a, b] | (n)}
= F(u; b | (n)) − F(u; a | (n)) (2)

or

Prob{Z(u) > b | (n)} = 1 − F(u; b | (n)). (3)

Note that these probability intervals are independent of any
particular estimate z∗(u) of the unknown value z(u). In-
deed, uncertainty depends on the information available (n)

(so conditional), not on the particular optimality criterion
retained to define an estimate (Srivastava, 1987). Each con-
ditional probability distribution function F(u; z | (n)) pro-
vides a measure of local uncertainty in that it relates to a
specific location u. Now, if we have the minimal information
available about the z-value at any location u usually consists
of a physical constraint interval [zmin, zmax], indicator trans-
form for sampled point

i(uα; zk) =
{
1 if, z(uα) ≤ zk
0 otherwise

(4)

where, k = 1, . . . , K , zk ∈ [zmin, zmax]

divides the data to rank code by criterion zk , and kriging for
unsampled point u for respective threshold makes it possible
to get a cumulative density function. This is called the indi-
cator kriging, and it provides the local uncertainty informa-
tion as well as estimation of unsampled points (Goovaerts,
1997).
As we mentioned in previous sections, kriging depends

on the spatial relations of the data given by a variogram to
infer the covariance and autocovariance in space. So in ad-
dition to the primary property, secondary or more various
informations may be combined to generate a more informa-
tive variogram model. This is simply to add one or more
terms multiplied by each coefficients making the variance
minimal.
2.3 Assessment of spatial uncertainty
In the previous section, we described the way to imple-

ment the local uncertainty structure conditional to neigh-
bour sparse sample data. But this is based on the kriging
technique which makes the map smooth by the minimiza-
tion of the variance, so that earth science data about which
people want to get information about anomalous zone result
in non-informative and uninteresting interpretations and also
are confined to local information.
Geostatistical simulations used to overcome the above

troubles make it possible to measure the joint uncertainty
about attribute values at several locations taken together, and
generate a map or a realization of z-values, say, {z(l)(u), u ∈
A} with l denoting the lth realization, which reproduces
statistics deemed most consequential for the problem at
hand.
Typical requisites for such a simulated map are as follows
(Goovaerts, 1997):

1) Data values are honored at their locations:
Z (l)(u) = z(uα) ∀u = iα, α = 1, . . . , n.
The realization is then said to be conditional (to the
data values).
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Fig. 2. Flowchart for presentation of a prior information by geostatistical simulation from Schlumberger and well logging data.

2) The histogram of simulated values reproduce closely
the declustered sample histogram.

3) The set of indicator covariance models CI (h; zk) for
various threshold zk are reproduced.

Although there are various geostatistical techniques, only
the important characteristics are explained here. In this
study, we have applied the sequential indicator simulation
method (Deutsch and Journel, 1992) to describe the local
and spatial uncertainty structure of resistivity for a prior in-
formation on the studied region. The sequential process is
described in Fig. 2, and its individual implementations are
followed in the next sections.
2.4 Inference of uncertainties of blocks
The points, where the simulations estimate, are denser

than the number of the parameterized blocks for inversion.
This is caused by the fact that we could not infer the un-
certainty of the blocks parameterized for inversion. So by
assessing the values on denser points, we derive values by
following the indirect method.
We have considered the problem of evaluating the block

ccdf (conditional cumulative density function) FV (u;
z | (n)) that models the uncertainty about an average z-value
over the block V (u):

FV (u; z | (n)) = Prob{u ≤ z | (n)}.
Because of the non-linearity of the indicator transform, the
block ccdf cannot be derived simply as a linear combination
of point ccdfs:

[FV (u; z | (n))]∗ �= 1

J

J∑
j=1

[F(u′
j ; z | (n))]∗ (5)

with the point-ccdf F(u′
j ; z | (n)) being defined at J points

u′
j discretizing the block V (u). Here [FV (u; z | (n))]∗ is

the inference of ccdf for the block V conditional to n data
around the point u. In the absence of block data zV (uα) and
corresponding block statistics and block indicator data, the
block ccdf (Eq. (5)) can be numerically approximated by
the cumulative distribution of many simulated block values
z(l)
V (u) (Isaaks, 1990; Gomez-Hernandez, 1991; Deutsch and
Journel, 1992; Glacken, 1996):

[FV (u; z | (n))]∗ = 1

L

L∑
l=1

i (l)V (u; z) (6)

with the block indicator value defined as i (l)V (u; z) = 1 if
z(l)
V (u) ≤ z, and zero otherwise. Each simulated block value
z(l)
V is obtained by averaging a set of z-values simulated at J
points u′

j discretizing the block V (u):

z(l)
V (u) = 1

J

J∑
j=1

z(l)(u′
j ). (7)

3. MCMC Approach to Solutions
Tarantola (1987) showed that the complete solution of

geophysical inverse problem is a posterior information
given by the conjunction of the two states of information,
a prior and theoretical or likelihood information, and this is
an accordant form to the generalized Bayes’ theorem. That
is,

σ(m) = kρ(m)L(m) (8)

where, σ(m) is the a posterior PDF, ρ(m) is the a prior PDF,
and L(m) is a likelihood PDF. Thus the simple multiplicity
of a prior PDF and likelihood PDF is the solution to the geo-
physical inverse problem in the viewpoint of probabilistic
approach. But the high-multidimensional PDF itself gives
no choice, and when we are determining the most proba-
ble model for consulting or infering the characteristics of
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the neighbourhood of maximum a posterior PDF, solving a
high dimensional integral or an optimization problem called
marginalization process is required. Unfortunately, the ker-
nel of the integral is very highly nonlinear, so the analytic so-
lution is very rare and we should attack it by numerical anal-
ysis. Of the various optimization techniques, derivative-free
direct search methods such as Simulated Annealing (SA),
Genetic Algorithm (GA), etc. have been known to give a
global optimal parameter. Fully detailed tutorials on global
optimization techniques may be found in Rothman (1985,
1986) and Sen and Stoffa (1995). This paper approaches
the marginalization process by MCMC method based on the
Gibbs sampler which utilizes the modified SA algorithm.
The a prior information generated by geostatistical simu-
lation was used as full conditional distribution in the Gibbs
sampler. For MCMC, a rigorous and easy to understand ex-
planation for geophysical applications was given by Grandis
et al. (1999), so we will review briefly the mathematical pro-
cess and some pertinent characteristics here.
3.1 MCMC method
3.1.1 Monte Carlo integration In Bayesian inver-

sion, marginalization process by a posterior PDF π(.) re-
sult in as

E[ f (X)] =
∫

f (x)π(x)dx∫
π(x)dx

(9)

Monte Carlo integration evaluates E[ f (X)] by drawing
samples {Xt , t = 1, . . . , n} from PDF π(.) and then approx-
imating

E[ f (x)] ≈ 1

n

n∑
t=1

f (Xt ). (10)

So the population mean of f (X) is estimated by a sample
mean. When the samples {Xt } are independent, laws of
large numbers ensure that the approximation can be made
as accurate as desired by increasing the sample size n. In
general, drawing samples {Xt } independently from π(.) is
not feasible, since π(.) can be quite non-standard. How-
ever the {Xt } need not necessarily be independent. The {Xt }
can be generated by any process which, loosely speaking,
draws samples throughout the support of π(.) in the correct
proportions. One way of doing this is through a Markov
chain having π(.) as its stationary distributions. This is then
Markov chain Monte Carlo.
3.1.2 Markov chains Suppose we generate a se-

quence of random variables, {X0, X1, X2, . . . }, such that at
each time t ≥ 0 , the next state Xt+1 is sampled from a
distribution P(Xt+1 | Xt ) which depends only on the cur-
rent state of chain, Xt . That is, given Xt , the next state
Xt+1 does not depend further on the history of the chain
{X0, X1, X2, . . . , Xt−1}. This sequence is called a Markov
chain, and P(. | .) is called the transition kernel of the chain
(Gilks et al., 1996). We will assume that the chain is time
homogeneous: that is, P(. | .) does not depend on t .

How does the starting state X0 affect Xt? This is a very
solicitous subject to researchers in geophysical inverse prob-
lems. Because the initial guess is always artificial and sub-
jective, they want the final solution to have no relation with
the initial one. This question concerns the distribution of

Xt given X0, which we denote P (t)(Xt | X0). Here we are
not given the intervening variables {X1, X2, . . . , Xt−1}, so
Xt depends directly on X0. Subject to regularity conditions
(Roberts, 1995), the chain will gradually forget its initial
state and P (t)(. | X0) will eventually converge to a unique
stationary (or invariant) distribution, which does not depend
on t or X0. For the moment, we will denote the station-
ary distribution by φ(.). Thus as t increases, the sampled
points {Xt} will look increasingly like dependent samples
from φ(.). Thus, after a sufficiently long burn-in of say m
iterations, points {Xt ; t = m + 1, . . . , n} will be dependent
samples approximately from φ(.). We will discuss methods
for determining m, the burn-in number, in the Subsection
4.2.3. Here we should explain that for the Bayesian process,
the stationary distribution in a certain step is the best one
that converges, that is to say, where no more information is
available in the current step. When other information is in-
corporated, the stationary distribution is certainly different
from the old one.
We can now use the output from the Markov chain to es-

timate the expectation E[ f (X)], where X has distribution
φ(.). Burn-in samples are usually discarded for this calcula-
tion, giving an estimator

f̄ = 1

n − m

n∑
t=m+1

f (Xt ). (11)

This is called an ergodic average.
3.1.3 The Metropolis-Hastings algorithm Then

how could we construct a Markov chain such that its sta-
tionary distribution φ(.) is precisely our distribution of inter-
est π(.)? For the Metropolis-Hastings algorithm (Hastings,
1970), at each time t , the next state Xt+1 is chosen by first
sampling a candidate point Y from a disposal distribution
q(. | Xt ). Note that the proposal distribution may depend
on the current point Xt . For example, q(. | Xt ) might be
a multivariate normal distribution with mean X and a fixed
covariance matrix. The candidate point Y is then accepted
with probability α(XT , Y ), where,

α(X, Y ) = min
(
1,

π(Y )q(X | Y )

π(X)q(Y | X)

)
. (12)

If the candidate is rejected, the chain does not move, i.e.
Xt+1 = Xt . Remarkably, the proposal distribution q(. |
.) can have any form and the stationary distribution of the
chain will be π(.), and this can be shown from the detailed
balance equation (Roberts, 1995; Tierney, 1995).
3.1.4 Single-component Metropolis-Hastings In-

stead of updating the whole of X in a lump, it is often more
convenient and computationally efficient to divide X into
components {X .1, X .2, . . . , X .h} of possibly differing di-
mension, and then update these components one by one.
This was the framework for MCMC originally proposed by
Metropolis et al. (1953), and it is refered to as single-com-
ponent Metropolis-Hastings. Let X .−i = {X .1, . . . , X .i−1,

X .i+1, . . . , X .h}, so X .−i comprises all of X except X .i

(Gilks et al., 1996).
An iteration of the single-component Metropolis-

Hastings algorithm comprises h updating steps, as follows.
Let Xt.i denote the state of X .i at the end of iteration t .
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For the i th step of iteration t + 1, X .1 is updated using
Metropolis-Hastings. The candidate Y.i is generated from
a proposal distribution qi (Y.i | Xt.i , Xt.−i ), where Xt.−i de-
notes the value of X .−i after completing the step i − 1 of
iteration t + 1:

Xt.−i = {Xt+1.1, . . . , Xt+1.i−1, Xt.i+1, . . . , Xt.h},
where components 1, 2, . . . , i − 1 have already been up-
dated. Thus the i th proposal distribution qi (. | ., .) gener-
ates a candidate only for the i th component of X , and may
depend on the current values of any of the components of X .
The candidate is accepted with probability α(Xt.−i , Xt.i , Y.i )

where

α(X .−i , X .i , Y.i )

= min
(
1,

π(Y.i | X .−i )qi (X .i | Y.i , X .−i )

π(X .i | X .−i )qi (Y.i | X .i , X .−i )

)
. (13)

Here π(X .i , X .−i ) is the full conditional distribution for X .i

under π(.). If Y.i is accepted, we set Xt+1.i = Y.i ; otherwise,
we set Xt+1,i = Xt.i . The remaining components are not
changed at step i .
Thus each updating step produces a move in the direction

of a coordinate axis (if the candidate is accepted), as illus-
trated in Fig. 3. The proposal distribution (qi (. | ., .) can be
chosen in any of the ways discussed earlier.
The full conditional distribution π(X .i | X .−i ) is the dis-

tribution of the i th component of X conditioning on all the
remaining components, where X has distribution π(.):

π(X .i | X .−i ) = π(X)∫
π(X)dXi

. (14)

Full conditional distributions play a prominent role in
many of the applications. That the single-component
Metropolis-Hastings algorithm with acceptance probability
given by Eq. (13) does indeed generate samples from the
target distribution π(.) results from the fact that π(.) is
uniquely determined by the set of its full conditional dis-
tributions (Besag, 1974).

Fig. 3. Illustrating a single-component Metropolis-Hastings algorithm for
a bivariate target distribution π(.). Components 1 and 2 are updated al-
ternately, producing alternate moves in horizontal and vertical directions
(After Gilks et al., 1996).

3.2 The Gibbs sampler
A special case of single-component Metropolis-Hastings

is the Gibbs sampler. The Gibbs sampler was given its name
by Geman and Geman (1984), who used it for analysing
Gibbs distributions on lattices. The same method had been
used already in statistical physics as the heat bath algorithm.
Neverthless, the work of Geman and Geman (1984) led to
the introduction of MCMC into the mainstream statistics
via articles by Gelfand and Smith (1990) and Gelfand et al.
(1990). To date, most statistical applications of MCMC have
used Gibbs sampling.
For the Gibbs sampler, the proposal distribution for up-

dating the i th component of X is

qi (Y.i | X .i , X .−i ) = π(Y.i | X .−i ) (15)

where π(Y.i | X .−i ) is the full conditional distribution
Eq. (14). Substituting Eq. (15) into Eq. (13) gives an ac-
ceptance probability of 1; that is, Gibbs sampler candidates
are always accepted. Thus Gibbs sampling consists purely
of sampling from full conditional distributions.
In geophysical societies, Rothman (1986) used the Gibbs

sampler as a nonlinear static correction algorithm. He re-
calculated some decade of the discrete probability on each
selected parameter to be used as full conditional distribu-
tion in every stage, then picked one model to fit the accep-
tance criterion. However, that computational cost is high,
and because he sampled the test model parameters from the
unique probability density function, his method artificially
discretized the model parameter space and therefore is not
adaptive. Finally, his technique was totally dependent upon
the data-fit alone minima, so the global search of the model
space seemed to be difficult.
Recently, Grandis et al. (1999) clearly defined the transi-

tion distribution of the Markov chain with digitized a prior
samples and Markovian matrix, and it gave satisfied solu-
tions. However, our concerned problem is two dimensional,
so that such a digitizing method is difficult to apply. For the
purpose of including independent geophysical data, we have
devised another approach to the sampling.
3.3 Sampling algorithm
To overcome the problems of the previous section, we ap-

proached the sampler with the a prior information. Actu-
ally, the full conditioning distribution means to select the
most probable parameter conditional on remaining parame-
ters. Therefore when we have a marginalized a prior PDF,
we can apply it to the full conditional distribution. That is,
the a prior cumulative density function (CDF) is created by
the a prior PDF, then candidate sampling is conducted by
the inverse CDF. Then, a component which updates the
likelihood function is accepted and if not, the component
is accepted with the probability,

Paccept = exp
(

− (Eattempted − Ecurrent)

T

)
(16)

where, E is an objective function generally given by discrep-
ancy between calculated and observed data and T is a tuning
parameter referred to as temperature in Simulated Annealing
(Sen and Stoffa, 1995). The schedule of T followed the fast
simulated annealing algorithm (Szu and Heartley, 1987).
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Fig. 4. Flowchart for the MCMC method by Gibbs sampling applied to perform the analysis of a posterior information.

And if the component is rejected, sampling is again con-
ducted on the same CDF until the maximum number of al-
lowances is reached.
This approach effectively samples the neighbourhood of

the maximum a posterior PDFs which fit the a prior and
a posterior PDF after burn-in trials. Figure 4 shows the
flowchart for this algorithm.
Actually this approach was appropriate and adequate for

our a prior information. That is to say, for the 2-D struc-
ture, numerous geostatistical simulations provide a tool to
incorporate independent geophysical data and make objec-
tive a prior information. And a prior information is easily
marginalized, so that the inverse CDF sampling is amenable.
Also, random field models given by geostatistical methods
are similar, or even identical, to those studied in statistical
physics: this field was the original home ground for MCMC
methods (Metropolis et al., 1953) and physical analogies
are drawn strongly in some works in the statistical analysis
(Geman and Geman, 1984).
Unlike the Rothman’s heat bath algorithm (1986), ours

prepares the model perturbation in advance and updates the

component which fits the a prior and a posterior PDFs. This
makes the process remarkably effective especially when the
a prior information reflect the likelihood functions well,
though in the worst case searching the global model space
should be guaranteed.
Actually no direct comparison is possibile to test conver-

gence of the Rothman’s algorithm, because his traditional
heat bath alogorithm composes the transition rule after di-
viding the model parameter into arbitrary finite parameter
sets. This means that more parameter division and sampling
makes it easy to constitute the full conditional distribution,
and various other Gibbs sampling studies may be identified.
But the important distinction is the sampling process and
state of the final parameters. The most difficult aspect of
global optimization is the more the number of parameters,
the more disastrous the state of parameters. This has various
causes, but the main reason is insufficient model parameter
search in the condition of imperfect and deficient informa-
tion. Rothman’s algorithm using the data-fit alone match
and unique a prior information cannot but search restricted
parameters, so that it is not adequate to the highly multidi-
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Table 1. Comparison between the Rothman’s algorithm and the method proposed in this study.

Comparitive index Rothman’s algorithm The point at issue Algorithm of this study

A prior information unique distribution null information given by indepedent data

Sampling predefined model space non-adaptive and adaptive and effective
artificial sampling near a prior and

a posterior maximum

Computational recalculation in each stage high costs predefined a prior
effectiveness information

Model search observed data-alone model constrained observed and independent
search model space model space
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Fig. 5. Proposed model for this study generated by geostatistical simula-
tion. (a) Observed dipole-dipole resistivity data contaminated by 10%
Gaussian noise for the forward response of model (b). (c) Calculated re-
sponse from the inverted model (d) by observed data-fit alone. The depth
and distance are arbitrary model units.

mensional inversion problems and it results in an absurd so-
lution. On the other hand, we propose independent a prior
information sustained by other geophysical data, resulting
in a more effective and global model search. Moreover, our
frame can easily incorporate various information acquired
in the future, as we prepared a prior information in previous
sections. In Table 1 we summarize the differences between
and characteristics of the two approaches.

4. Application to Numerical Model
4.1 A model presented by geostatistical simulation
Figure 5(b) shows the resistivity model prepared to exam-

ine robustness of our algorithm. Here, we assumed that the
resistivity distribution of the underground is actually contin-
uous and has much smaller scale variation than the generally
used inversion blocks such as in Figs. 5(d) and 6. First, we
allocated simple blocks with some high and low resistivities,

Fig. 6. Block parameterization prepared for resistivity inversion. Block
numbers are displayed for following interpretations.

then applied geostatistical simulation to get a more plausi-
ble model reflecting the real geology and to have finer scale
block variation. Based on these kind of characteristics, we
may expect that the prosed model can be hardly recovered
by any inversion methods using blocks of Fig. 6. In this pa-
per, all of the resistivity model is displayed as linear scale,
and this is intended to show delicate variations of the prop-
erty, mainly ranged in 100 to 500 Ohm-m.
The dipole-dipole resistivity data of the above model were

obtained at 135 measured points by 21 current poles, 10 lay-
ers (n) with the electrode spacing of 1 unit, and 10% Gaus-
sian noise was added (Fig. 5(a)).
Figure 5(d) is the inversion result given by the traditional

data-fit alone least-square (Lines and Treitel, 1984) method.
Although the calculated resistivity pseudosection of the
Fig. 5(c) from this inverted model is quite similar to the ob-
served data of Fig. 5(a), the inversion result has almost noth-
ing in common with the true resistivity section of Fig. 5(b).
This unrealistic result might be due to the insufficient infor-
mation of the field data, quite different setting of inversion
blocks and the inherent non-uniqueness, and the misfit, in
general, tends to be proportional to the dimensions of the
data and model structure. However, this is a rather common
situation actually occurred in many conventional geophys-
ical explorations. In this study, we are going to deal with
such a more complicated but realistic model to accentuate
how well the uncertainties are diminished in the Bayesian
framework to improve the inversion result.
Figure 7 is the configuration map where Schlumberger

sounding and resistivity well logging data are modeled.
Sounding data were inverted to present true resistivities by
a hybrid of a global optimization technique SA and a local
least-square method (Chunduru et al., 1996) (Fig. 8). Re-



S.-H. OH AND B.-D. KWON: GEOSTATISTICAL BAYESIAN INVERSION 785

100

200

300

400

500
1 2 3 4 5w1 w2 

Fig. 7. Configuration map where the well logs and Schlumberger sounding
simulation is performed. The prefix wmeans the position of well logging
simulations and the others are Schlumberger sounding positions.

Fig. 8. Schlumberger sounding inversion simulated in Fig. 7. SA and local
least-square hybrid is applied.

sistivity well logs (Fig. 9) were simulated by the five layer
running average procedure, and 5% Gaussian noise, which
is exponentially correlated, was added.
4.2 Implementation
4.2.1 A prior information We have deduced the a

prior information from Schlumberger and well logging data
by geostatistical simulation of which schematic process is
shown in Fig. 10. Indicator covariogram modelings were
performed for each threshold with resistivity sounding and
well logging data, then on unsampled points, where the den-
sity of estimation is finer than the parameterized blocks, se-
quential indicator joint simulation was conducted. Many re-
alizations were provided for assessing the uncertainty of the
studied region. As described in Subsection 2.4, the simu-
lated estimations now are used in the block CDF making
process.
Because the resolution of each data is different, careful

variogram modeling is required, but indicator transforming
makes the steps more stable by data-classified level.
Figure 11 shows the a prior information given by the

PDFs of the upper blocks of the parameterized region. The
block numbers in Fig. 10 are defined in Fig. 6. As expected,
the blocks far from the sounding and logging data had a
wide-spread PDF structure that means spatially large uncer-
tainty, and vice versa. So we may conclude that this ap-
proach reflects well the spatial information given by partial
geologic and geophysical data.
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Fig. 9. Simulated resistivity well logging data at position w2 in Fig. 7. The
left stripe shows the true resistivity structure and the log in the middle is
generated by five-point averaging with the resistivity values read at every
0.125 unit. The well log on the right is simulated by adding correlated
Gaussian noise.

4.2.2 Sampling from a prior information To sample
a candidate from the a prior information for each parameter-
ized block, cumulative density functions for the a prior PDF
were generated and interpolated between the discrete points.
Here, the more sample points which decide the degree of
discretization are selected, the better the inverse sampling
from the CDF is performed. However, the maximum level
of discretization is constrained by the number of the con-
ditional data and in the indicator case, the order relaxation
(Isaaks and Srivastava, 1989) degrades the information for
excessive discretization. We performed 500 simulations and
dicretized the PDF by 20 thresholds, then random numbers
between 0 and 1 were used to get sampled values.
4.2.3 Decision of burn-in number Figure 12 shows

the variation of objective function given by the discrepancy
between calculated and observed data.
Error was calculated by

err =
√∑N

i=1(ρobs − ρcal)2

N

where N is the total number of observations. We decided
the burn-in trials, m, as the number making the error curve
converge, about 2500.
But as we can see from Fig. 12, the Monte Carlo ap-

proach takes a heavy computational cost, so we coded the
MPI (Message Passing Interface) parallelized DC forward
program. Two dimensional DC problems were naturally par-
allelized, i.e., potentials due to each source poles may be cal-
culated on each CPUs, so we adopted parallelized forward
modeling code by MPI (Pacheco, 1997; MPI Forum, 1995).
Parallel programming with MPI is very easy and portable to
other systems, and heterogeneous systems may be chained
via TCP/IP network, so that is very cheap.
4.2.4 Marginal distribution of a posterior informa-

tion Figures 13(a), (b) present comparisons of a prior and
a posterior PDFs produced by the above Gibbs sampling
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Fig. 10. Schematic process to generate a prior information. Schlumberger sounding and resistivity well logging data, which appear as larger picture
in Figs. 8, 9, are put in covariogram modeling for a specified threshold for indicator kriging or simulation. Variogram model equation appeared in
lower-right of the indicator model figure shows the data are rough from the high nugget value (Deutsch and Journel, 1992) but they have correlation and
sustain a tendency. The distance is model unit. Then denser estimations than the number of blocks contribute to the block CDF making, because it is
impossible to estimate the resistivity of each block directly. So indirect estimation for blocks are made by the method proposed in Subsection 2.4.
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Fig. 11. A prior information generated by geostatistical simulation from Schlumberger and well logs data. The block numbers are defined in Fig. 6. The
horizontal axes mean resistivity (� · m), and the vertical axes present the probability.

MCMC algorithm for the upper 15 blocks. The core of the
Bayesian inference is based on the point of how we can re-
duce the uncertainty in a posterior PDF as well as the error
of discrepancy, because it is important to reduce the uncer-

tainty in observed data by a prior information. The update
of the upper blocks shown in Fig. 13 is remarkable in terms
of reduction of uncertainty. But deeper blocks do not have
significant reduction of uncertainty. These results suggest
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Fig. 12. Evolution of data-fit error as the function of the number of accep-
tance for the proposed model in Fig. 5.

that blocks having low sensitivity from observed data tend
to converge to a prior information. But we can find that the
convergence is stable, so we need not have any constraints
for the stable convergence of inversion.
From these marginal distributions, various informations

may be available, such as the confidence interval, mean of
resistivity, etc., which were mentioned in numerous previous
studies without any explanations of how to get the distribu-
tion. And a posterior covariance and resolution matrix may
be also obtained by indirect sampling of a posterior PDF.
4.3 Marginal distribution analysis
Actually, the marginal distributions given in Figs. 13, 14

are the temporary solutions for the Bayesian inversion de-
pendent on current information. That is, if we get more in-
formation for this model or data than proposed in this study,
the result may be updated to include post geological or geo-
physical information. And the displays of only PDFs are
not very informative and hard to understand. Therefore, in
1-D case, a direct overlap of PDF for true values or data is
used (Grandis et al., 1999). Unfortunately, in 2-D case, such
displays for a posterior marginal PDF is impossible, so we
present two kinds of displays to figure out the simple char-
acteristics of a posterior marginal PDF. Two models are
given by maximum values and means of each marginal PDF
in Fig. 15.
Here, we should mention some reasons that the proposed

a posterior solutions were imperfectly matched with the true
section, although it conspicuously improved the data-alone
inversion result in Fig. 5(d). There are couple of reasons that
the recovered model is somewhat different from the true one.
First, as we showed in Fig. 6, the block parameterization
for inversion is much coarser than that of the true resistivity
model structure (Fig. 5(d)) for the various reasons appear-
ing in Subsection 4.1. Of course, when we chose a per-
fectly matched block parameterized model, a nearly com-
plete solution to the true model was obtained excepting the
parts of flanks where dipole-dipole DC data are incomplete.
Although many papers have dealt with such a case, this is
rather artificial and impractical in the real world. Therefore,
we prepared a more realistic resistivity earth model show-
ing more continuous and smaller scale variation than for the
inversion blocks of Fig. 6. As we can see in the Fig. 5(c),
the inverted resistivity section by the conventional process

hardly recovers the true model. Although our result also ap-
pears to be somewhat different to the true one, it may be eas-
ily recognized to be much improved and one can delineate
the general trend of resistivity variation in consideration of
the intrinsic characteristics of dipole-dipole resistivity data.
On the other hand, this kind of discrepancy leads to discus-
sions on uncertainty analysis which is important to under-
standing of the characteristics of the probabilistic method.
As we can imagine, if we present only the observed-data

supported in part by cutting off the lower parts of edges of
the inverted section, such as those identified with the pseu-
dosection (apparent section), the true section, once concern-
ing the coarseness of the inverted blocks, is reproduced rela-
tively well. The large discrepancy appearing on the left flank
in comparison to the right one is mainly due to the lack of
a prior information. Recognized from Fig. 7, the well data
obtained at the location (w1) do not provide sufficient infor-
mation on the low resistivity anomalies in the left flank. It
is noted that, although there are Schlumberger data nearby,
they are less reliable due to indirect characteristics as com-
pared to well data. This means that, as for the part where
well-behaved observed data is rare, a prior information is
dominant as with the Bayesian, and the uncertainty analysis
provides interpreters with such information.
Secondly, we think the Bayesian frame is an ongoing pro-

cess of past, present and future states for the concerned re-
gion. As in the saying, ‘Today’s posterior becomes tomor-
row’s prior’, the solution in the present state is one of so-
lution steps, if, of course, the current information is fully
extracted from a prior information and observed data. The
information for the mesh structure may also be included in
this category. In order to explain this aspect, we discussed
the uncertainty analysis in Subsection 4.4 especially for the
discrepant region of the lower left flank. Finally, as we ex-
plained in the previous section, presentation of probabilistic
results for the 2-D problem is not easy. Actually, PDFs pro-
vide the user with more rigorous and informative solutions
such as uncertainty analysis and flexible interpretation, but,
it is hard to propose a deterministic section. So we present
here a simple map with maximum and mean of PDF for
each parameter. We think, of course, more studies should
be made for the well-defined and reasonable presentation
of such probabilistic results. Therefore, Fig. 15 should be
thought of as the simple aspect result of this study, and a
temporary map for the current information status of the re-
gion being interpreted.
4.4 Uncertainty ananlysis
In Figs. 15(a), (b), we found that the left high-resistivity

zone of the inverted section is considerably different from
that of the true resistivity section of Fig. 15(c). We might
also recognize that the right high-anomalous zone has a sim-
ilar appearance to that of left zone, but it represents the true
resistivity aspect rather well. Then how can we discrimi-
nate and analyze this situation? We might easily deduce that
both zones of the section are short of data due to the intrinsic
characteristics of the dipole-dipole DC survey, resulting in
the uncertain solution. Therefore we should focus on these
zones for uncertainty analysis.
Figure 16 shows the resistivity section and the CDF maps

for anomalous regions which were matched to the bordered



788 S.-H. OH AND B.-D. KWON: GEOSTATISTICAL BAYESIAN INVERSION

0 500
0

0.1

0.2

0.3

0.4
1

0 500
0

0.1

0.2

0.3

0.4
2

0 500
0

0.1

0.2

0.3

0.4
3

0 500
0

0.1

0.2

0.3

0.4
4

0 500
0

0.1

0.2

0.3

0.4
5

0 500
0

0.1

0.2

0.3

0.4
6

0 500
0

0.1

0.2

0.3

0.4
7

0 500
0

0.1

0.2

0.3

0.4
8

0 500
0

0.1

0.2

0.3

0.4
9

0 500
0

0.1

0.2

0.3

0.4
10

0 500
0

0.1

0.2

0.3

0.4
11

0 500
0

0.1

0.2

0.3

0.4
12

0 500
0

0.1

0.2

0.3

0.4
13

0 500
0

0.1

0.2

0.3

0.4
14

0 500
0

0.1

0.2

0.3

0.4
15

(a)

0 500
0

0.5

1

0 500
0

0.5

1

0 500
0

0.5

1

0 500
0

0.5

1

0 500
0

0.5

1

0 500
0

0.5

1

0 500
0

0.5

1

0 500
0

0.5

1

0 500
0

0.5

1

0 500
0

0.5

1

0 500
0

0.5

1

0 500
0

0.5

1

0 500
0

0.5

1

0 500
0

0.5

1

0 500
0

0.5

1

(b)

1 2 3 4 5 

6 7 8 9 10

11 12 13 14 15

Fig. 13. (a) A posterior information given by probability density functions. The horizontal axes mean resistivity (� · m), and the vertical axes present
the probability. (b) Cumulative Density functions for a prior information (bold line) and a posterior information (thin line) for upper blocks. The a
posterior CDF is concentrated on specific region representing low uncertainties. A prior PDFs appear as the bold line and a posterior PDFs as the thin
line in each CDFs. The block numbers are defined in Fig. 6. The vertical axes present CDF.

blocks of the resistivity sections. The blocks showing re-
markably different resistivity values from the true ones rep-
resent highly uncertain CDFs; so we may deduce the con-
fidency of the anomalous blocks. In particular, the second
column of the CDFs shows a wide range of variation, mean-
ing large uncertainty, and reflects the unstable solution for
the region. On the other hand, as we can see from Fig. 17,
the right side of the section reflects relatively well the true
high resistivity, except the far right column of the bordered
blocks in which CDFs show high uncertainty.
Thus CDF maps tend to be well behaved in the matched

regions, but show a wide range of uncertainty otherwise.
These properties fully support the probabilistic merits for

the geophysical inversion problem. Not by simple determin-
istic results, but by informative and general PDF, we can ex-
amine the state of the interpreted region and make decisions
about more explorations or opinions.

5. Discussion and Conclusion
Many stable but plausible and resolute inversion tech-

niques have been proposed to solve various geophysical
problems. Among those, the probabilistic approach has been



S.-H. OH AND B.-D. KWON: GEOSTATISTICAL BAYESIAN INVERSION 789

0 500
0

0.1

0.2

0.3

0.4
61

0 500
0

0.1

0.2

0.3

0.4
62

0 500
0

0.1

0.2

0.3

0.4
63

0 500
0

0.1

0.2

0.3

0.4
64

0 500
0

0.1

0.2

0.3

0.4
65

0 500
0

0.1

0.2

0.3

0.4
66

0 500
0

0.1

0.2

0.3

0.4
67

0 500
0

0.1

0.2

0.3

0.4
68

0 500
0

0.1

0.2

0.3

0.4
69

0 500
0

0.1

0.2

0.3

0.4
70

0 500
0

0.1

0.2

0.3

0.4
71

0 500
0

0.1

0.2

0.3

0.4
72

0 500
0

0.1

0.2

0.3

0.4
73

0 500
0

0.1

0.2

0.3

0.4
74

0 500
0

0.1

0.2

0.3

0.4
75

(a)

0 500
0

0.5

1

61

0 500
0

0.5

1

62

0 500
0

0.5

1

63

0 500
0

0.5

1

64

0 500
0

0.5

1

65

0 500
0

0.5

1

66

0 500
0

0.5

1

67

0 500
0

0.5

1

68

0 500
0

0.5

1

69

0 500
0

0.5

1

70

0 500
0

0.5

1

71

0 500
0

0.5

1

72

0 500
0

0.5

1

73

0 500
0

0.5

1

74

0 500
0

0.5

1

75

(b)

Fig. 14. (a) A posterior information given by probability density functions. The horizontal axes mean resistivity (� · m), and the vertical axes present
the probability. (b) Cumulative Density functions for a prior information (bold line) and a posterior information (thin line) for lower blocks. The a
posterior CDF does not show drastic difference in uncertainties that means low information in dipole-dipole observed data at lower blocks. A prior
PDFs appear as the bold line and a posterior PDFs as the thin line in each CDFs. The block numbers are defined in Fig. 6. The vertical axes present
CDF.

considered to have a more generalized robust information
operation frame. Especially in terms of incorporation of a
prior information, the Bayesian inversion has been proved
to give more informative and robust results (Duijndam,
1988a, b; Mosegaard and Tarantola, 1995; Loredo, 1990).
But as Laplace was troubled to realize the preliminary prob-
ability distribution (Moraes, 1996), continuing disputes have
been generated between Bayesians and frequentists (Scales,
1998). Finally, in the 50’s, Jaynes (1994) proposed the
epoch-making system to produce a prior information with
the maximum entropy method which was based on the com-

munication theory. But implementation of this system is
very difficult, so various modified trials were proposed
(Gelman et al., 1995).
Thus objective and practical implementation of a prior in-

formation is a very important element in reaching a success-
ful result by the Bayesian frame, and finally for geophysical
inversion. So we, first, have presented a mechanism to pro-
duce a prior information by geostatistical simulations and
kriging. It enables us to achieve various uncertainty analy-
sis and give full information by a non-parametric approach.
Also, its great ability to incorporate many informations from



790 S.-H. OH AND B.-D. KWON: GEOSTATISTICAL BAYESIAN INVERSION

100

200

300

400

2 4 6 8 10 12 14 16 18 20

0

1

2

3

4

5

(a)

100

200

300

2 4 6 8 10 12 14 16 18 20

0

1

2

3

4

5

(b)

100

200

300

400

500

2 4 6 8 10 12 14 16 18 20

0

1

2

3

4

5

(c)
Ohm.m

Fig. 15. Some representation from marginal PDF of a posterior PDF.
(a) Maximum PDF resistivity section. (b) Mean resistivity section of
marginal a posterior PDF. (c) True resistivity section plotted to be com-
pared.

Fig. 16. CDFs for some inverted blocks. (a) True resistivity section pro-
posed for model test. (b) Mean resistivity section of marginal a posterior
PDF. (c) Highlighted resistivity region is matched to CDF maps to give
uncertainty analysis. A prior PDFs are appeared as the bold line and
a posterior PDFs are by the thin line in each CDFs. Remarkably de-
viated blocks (57, 68) from the true values show very uncertain aspect
compared with other blocks which converge to plausible values.

Fig. 17. CDFs for some inverted blocks. (a) True resistivity section pro-
posed for model test. (b) Mean resistivity section of marginal a posterior
PDF. (c) Highlighted resistivity region is matched to CDF maps to give
uncertainty analysis. A prior PDFs appear as the bold line and a pos-
terior PDFs as by the thin line in each CDFs. This region is similar to
those of Fig. 16, but it delineates well the true resistivity zone excepting
some blocks in the right region. CDFs show some different aspects than
those of Fig. 16.

various sources provides for manifold potential applications
to geophysical data processing.
Next, we have adopted MCMC approach to examine the

a posterior PDF. MCMC was accomplished by the Gibbs
sampler which was proceeded by the modified SA algo-
rithm. The newly devised Gibbs sampler in this study is
quite effective and well reflects the merit of the Bayesian
frame. This global sampling technique takes advantage of
the robustness and generality of the a prior information
given by non-parametric distribution. This results in the
marginal distribution of a posterior PDF and enables us to
make various interpretations for the inversion result such as
those displayed by Sambridge (1999). In this study, for sim-
plicity, we have shown only marginal disributions.
According to our experiences in the traditional inversion

scheme, the data-fit alone criteria produces an unplausible
model with sudden fluctuation of parameters although the
model validates the observed data, for we intended it to ex-
tract more information than was contained in the data.
Therefore we have approached the geophysical inverse prob-
lem through the Bayesian paradigm. This method provides
the methodology to incorporate various information to the
inverse problem and is stable enough to estimate feasible
solutions. And we have solved the geophysical inverse prob-
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lem in terms of non-parametric conditions, so we were free
from the implementation of covariance matrices, and we
have presented various practical tools to implement this
frame.
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