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Effects of geometry on the convection with core-cooling
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We study the dynamical (three-dimensional box, axisymmetric and spherical shell geometry) and parameterized
models of the mantle convection with the core-cooling. The viscosity is constant in space and dependent on the
volume averaged mantle temperature. Core is treated as a hot bath. To understand the process of cooling, we
use the ‘local’ Rayleigh (Ral) and Nusselt (Nul) numbers, which are defined in each thermal boundary layer. In
the dynamical calculations, we check the various combinations of Ral and Nul , and find that the local Rayleigh
number either at the top or bottom surface may control both the top and bottom local Nusselt numbers. This result
suggests that the core-cooling in this case may be controlled by the flow either at top or bottom boundary layer. The
least-square-fitting of Nul-Ral relationship shows that its power-law index is around 0.3, despite of the different
geometry. Comparing the thermal history calculated by the dynamical and parameterized models, we find that the
parameterized convection theory based on the local Ra-Nu relationship obtained by the dynamical calculation is
useful for investigating the thermal history of the mantle and core. Applying the parameterized theory to the Earth,
we find that the plausible Urey ratio is smaller than that obtained by the previous works which ignored the bottom
thermal boundary layer.

1. Introduction
Mantle and core of the Earth and other terrestrial planets

have been cooled by the convection of the mantle after the
early differentiation of the core from the mantle. Studies
of the convection of the mantle with core-cooling are im-
portant to understand the thermal evolution of the planets.
Recently, because of the progress of the computer technolo-
gies, we can solve the dynamic equations of the convection
directly by various numerical methods (see review of Schu-
bert, 1992). Such studies show the important phenomena
which may affect the thermal history of the Earth. For exam-
ple, the studies of the thermal history of the Earth-like planets
including the thermal coupling of the core and mantle show
that the thermal boundary layer near the core-mantle bound-
ary becomes weak as the cooling proceeds (Nakakuki, 1993;
Arkani-Hamed, 1994; Honda and Iwase, 1996). The exis-
tence of the endothermic phase transition may induce a gigan-
tic ‘flushing’ events in the Earth’s history (Steinbach et al.,
1993; Honda and Yuen, 1994; Yuen et al., 1995). However,
since the properties of the mantle material and the ‘initial’
conditions of the early stages of the planets are highly un-
known, the parameterized study (e.g., McKenzie and Weiss,
1975; Schubert et al., 1979; Davies, 1980; Stevenson et al.,
1983; Christensen, 1985; Davies, 1993; Honda, 1995) of the
thermal evolution of the mantle of the terrestrial planets is
still useful. In the parameterized studies of thermal history
of the mantle, the dynamics of the mantle flow is ignored and
only mean thermal status of the mantle is calculated from the
thermal input and output using the relationship among several
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parameters, such as Rayleigh number and Nusselt number.
The parameterized studies are economical and easy to check
many possible scenarios. Also, we may be able to infer the
past status of the mantle from the present information on the
mantle (Davies, 1980).

The parameterized convection theory is usually based on
the power-law relationship between Rayleigh (Ra) and Nus-
selt (Nu) numbers (i.e., Nu ∝ Raβ), which is obtained by
the studies of the steady state convection. In the steady state
convection, Nu-Ra relationship is the same at the top and
bottom boundary layers and Stevenson et al. (1983) calcu-
lated the thermal evolution of the Mercury, Venus, Earth and
Mars assuming β = 0.3 at both top and bottom boundary
layers. Christensen (1985) showed the relationship between
Archaean thermal status of the Earth and β-value without
considering the heat from the core (i.e., ignoring the bottom
thermal boundary layer). However, in the cooling mantle,
the mechanisms of the cooling may be different from that of
the steady state convection (Davies, 1993). Davies (1993)
considered four types of the heat removal mechanisms for
the thermal boundary layer at the core-mantle boundary; (1)
non-plume upwellings, in which the convection is driven by
the local instabilities of both top and bottom boundary layers,
(2) forced advection, or ‘mantle wind’, in which the convec-
tion is driven by the plate scale flow generated at the top
boundary layer, (3) plume tails, in which the heat is carried
through the established plume conduit or tail, and (4) new
plume heads. Considering them, it may be better to treat
each boundary layer separately in the study of the thermal
evolution of the mantle convection. In our previous paper
(Honda and Iwase, 1996), we showed that such a separate
treatment is useful for a simple cooling model, although its
parameterization is conceptually incomplete.
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Table 1. Parameters used for dynamical calculations.

Geometry Grid Point(1) ((2)) K m β
(3)

T β
(4)

B

3D Box 128 × 128 × 64 (3:3:1) 2 30 0.279 0.230

3D Box 128 × 128 × 64 (3:3:1) 10 30 0.354 0.367

3D Box 128 × 128 × 64 (3:3:1) 20 30 0.363 none

Axisymmetric 128 × 128 (0.55) 2 30 0.288 0.192

Axisymmetric 128 × 128 (0.55) 2 60 0.300 0.293

Axisymmetric(5) 128 × 128 (0.55) 2.25 30 0.219 0.242

Axisymmetric 128 × 128 (0.325) 5 30 0.392 0.327

Axisymmetric 128 × 128 (0.55) 20 30 0.196 0.265

3D Spherical Shell 32 × 32 × 64 (0.55) 2 30 0.276 0.281

(1)x × y×z (box model) or r ×θ(×φ) (spherical shell model). (2)Aspect ratio (box model) or core size η (spherical
shell model). (3)βT for NuT -RaT for box model and for NuT -RaB for spherical shell model. (4)βB for Nu B -RaT

for box model and for Nu B -RaB for spherical shell model. (5)Start with the different initial condition from the other
axisymmetric case.

In this paper, we extend our previous studies into three-
dimensional box and the spherical shell geometry models.
In order to understand the core-cooling mode, we apply the
‘local’ Nusselt (Nul) and Rayleigh (Ral) numbers (Honda,
1996), which are more consistent parameters for local treat-
ment than those used by Honda and Iwase (1996). We shall
show the usefulness of Nul-Ral relationship for the study of
parameterized convection. We also reexamine the studies of
the previous parameterized thermal history of the Earth.

2. Numerical Method
The models we use here is essentially the same as those

described in Honda and Iwase (1996). We shall repeat here
some of the important points.
2.1 Fully dynamical calculation

We assume the mantle as the infinite Prandtl number vis-
cous fluid and adopt the Boussinesq approximation. Vis-
cosity is constant in space and dependent on the volume
averaged temperature of the mantle. Core is treated as a
hot bath of constant temperature TB (temperature at bottom
of the mantle). The equations to be solved are the equa-
tions of continuity, motion, and heat transfer of the mantle
and core. Length, time, and temperature are normalized by
thickness of the convection layer d (= rT − rB ; rT is the
radius of the top surface and rB is the radius of the core),
thermal diffusion time d2/κ (κ is the thermal diffusivity),
and temperature difference between the core and the surface
of the mantle �Tref (= TB − TT ; TT is the temperature at the
surface) at time t = 0, respectively. The non-dimensional
expressions of equations of mass conservation, motion, and
energy conservation for mantle and core, are respectively
given by

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∇ · v = 0,

−∇ P + ν∇2v + Raref T er = 0,

∂T

∂t
+ (v · ∇)T = ∇ · (∇T ),

dTB

dt
= −K qB

(1)

where er is the unit vector of the vertical direction (positive
upward). Raref is the reference Rayleigh number defined by

Raref = αgd3�Tref

κνre f
(2)

where α is the coefficient of the thermal expansion, νre f is the
kinematic viscosity at t = 0, κ is the thermal diffusivity and
g is the acceleration of the gravity. The normalized viscosity
of the mantle ν is assumed to depend only on the volume
averaged temperature of the mantle Tm , which is given by

ν = (Tm/Tref )
−m (3)

where Tref is the averaged temperature at t = 0. Power-law
index m is a constant and is around 30 for the mantle of the
Earth (Davies, 1980). Other material properties are assumed
to be constant. K is the non-dimensional number related to
the cooling of the core and is given by

K = 3ρmCmd

ρcCcrB
(4)

where ρm , Cm , ρc, and Cc is the density and the specific heat
of the mantle and core, respectively (Steinbach et al., 1993).
For the Earth, K is around 2. Boundary conditions are free-
slip and constant temperature on top and bottom boundaries.

The basic equations are solved by the finite (control) vol-
ume method (Patankar, 1980). The details of the methodol-
ogy are described in Tackley (1993) for box model and Iwase
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Fig. 1. Flow pattern (left) and horizontally averaged temperature pro-
file (right) for axisymmetric model (η = 0.55, K = 2 and m = 30)
at Ra = 5 × 106 (initial condition; first panel), ∼106 (second panel),
∼105 (third panel) and ∼104 (last panel). Temperature is normalized
by the initial core temperature. Contour interval is 0.1 non-dimensional
unit. Dashed lines in vertical temperature profile (right figures) show the
globally averaged temperature (Tm ).

(1996) for spherical shell models. Axisymmetric model is
calculated by setting the physical parameters, such as the
velocity, temperature, and pressure, to be independent of
longitudinal coordinate and the longitudinal velocity to be
zero.
2.2 Parameterized calculation

For the calculation of the parameterized convection, we
consider the simple energy balance of the core and the mantle.
Non-dimensional expressions of these equations are given by

⎧⎪⎨
⎪⎩

dTm

dt
= 3

1 + η + η2
(η2qB − qT ) + H,

dTB

dt
= −K qB

(5)

where η is the ratio of the radius of the core to that of the
surface of the mantle (i.e., η = rB/rT ) and H is the internal
heat generation. Note that η = 1 corresponds to the cartesian
cases and η = 0.55 corresponds to the Earth’s mantle. The
heat fluxes at the top qT and bottom qB are obtained from the
Nu-Ra relationship. This point is discussed in the later sec-
tion. The time integration of the above equations is executed
backward using the forth-order Runge-Kutta method.

Fig. 2. Temperature difference from the horizontally averaged tempera-
ture at the mid-depth plane (left; Hammer-Aitof plot) and horizontally
averaged temperature profile (right) for three-dimensional spherical shell
model (η = 0.55, K = 2 and m = 30). Figures are the snapshots for
Ra = 5 × 106 (initial condition; first panel), ∼106 (second panel), ∼105

(third panel) and ∼104 (last panel). Temperature is normalized by the
initial core temperature. Contour interval is 0.1 non-dimensional unit.
Dashed lines in the left figures are the negative value (downwelling) and
solid lines are the positive (upwelling). Dashed lines in vertical temper-
ature profile show the globally averaged temperature.

3. Local Parameterization
To treat the boundary layers separately, we introduce the

‘local’ Rayleigh (Ral) and Nusselt (Nul) numbers (Honda,
1996). Here, we shall repeat their arguments to clarify the
following discussions. They are defined separately at the top
and bottom thermal boundary layers as⎧⎪⎪⎨

⎪⎪⎩
Ral ≡ αg�Tld3

κν
,

Nul ≡ ql

k�Tl/d

(6)

where �Tl and ql are the temperature drop in the top or bot-
tom thermal boundary layer and the heat flux through the
corresponding boundary layers, respectively. The suffix l
implies the ‘local’ value (l is either T : top or B: bottom).
Honda (1996) showed that Ral and Nul are convenient pa-
rameters to interpret the results of the steady cartesian con-
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Fig. 3. Relationship between temporal local Nusselt (Nul ) and Rayleigh (Ral ) numbers (RaT vs. NuT ; solid line and RaB vs. Nu B ; dashed line).

vection with a variable viscosity.
If the thermal boundary layer thickness is controlled by its

own gravitational instability (Howard, 1966), we may write
such condition as

αg�Tlδ
3
l

κν
= Racl (7)

where δl is the thickness of the thermal boundary layer and
Racl is a constant. Since

ql ∼ k
�Tl

δl
, (8)

we may obtain

ql ∼
(

Ral

Racl

)1/3

k
�Tl

d
. (9)

This implies

Nul ∼
(

Ral

Racl

)1/3

. (10)

Generalizing this result, we may write the relationship be-
tween Nul and Ral as{

NuT = a Raβ

T

NuB = a Raβ

B

(11)

where β is a constant supposed to be close to 1/3. Implicit
assumption in Eq. (11) is that Racl is constant at bottom and
top boundary layers.

Davies (1993) showed that, if the core is cooled by the
flow induced by the plate scale flow (i.e., forced convection),

qB = γ
�TB

�TT
qT (12)

where γ is a constant (Eq. (9) of Davies, 1993). Since he
assumed that the thermal conductivity is constant throughout
the mantle, this relationship may be rewritten as

NuB = γ NuT . (13)

This may imply that both local Nusselt numbers may be
controlled by either RaT or RaB (i.e., single Ral).

4. Results and Discussions
4.1 Dynamical calculation

We carry out the fully dynamical calculations of three-
dimensional box and the spherical shell models. The condi-
tions and the parameters K and m are listed in Table 1. The
model with K = 2 and m = 30 roughly equivalent to the
real Earth. All the calculations start with the initial Rayleigh
number of Raref = 5 × 106. For the three-dimensional box



Y. IWASE AND S. HONDA: CONVECTION WITH CORE-COOLING 391

Fig. 4. Relationship between temporal local Nusselt (Nul ) and top Rayleigh number (RaT ) for box models (left) and bottom Rayleigh number (RaB ) for
spherical shell models (right).

model, the number of control volumes are 128×128 for hor-
izontal and 64 for vertical directions. For the axisymmetric
and full three-dimensional models, the number of the control
volumes are 128×128 (r × θ ) and 32×32×64 (r × θ ×φ),
respectively. At the high Rayleigh number (Ra > 106), this
mesh configuration may not be enough. However, as we will
show, the results are mainly controlled by the Rayleigh num-
ber below 106. Thus, the general conclusion obtained in this
study is considered to be valid, at least, up to Ra ∼ 106.

Figures 1 and 2 show the flow pattern and the horizon-
tally averaged temperature for the Earth-like model (K = 2
and m = 30) for the axisymmetric (Fig. 1) and full three-
dimensional spherical shell (Fig. 2) geometry. As the mantle
and core cool down, temperature drop in the bottom ther-
mal boundary layer gradually decreases. This is also found
in our previous two-dimensional box models (Honda and
Iwase, 1996).

To define Nul and Ral , we assume that the temperature
drops of each thermal boundary layers are �TT = Tm − TT

for top and �TB = TB − Tm for bottom thermal boundary
layer.

Figure 3 shows the temporal relationship of NuT -RaT

and NuB-RaB . As the core-cooling constant K becomes
large (i.e., the rate of cooling becomes large), the difference

between NuT -RaT and NuB-RaB becomes large. We note
that the gradient of NuT -RaT and Nu B-RaB relationships is
different from each other.

The decrease in the mean temperature by the cooling is
much smaller than that in the temperature of the core as
shown Figs. 1 and 2 (see, also Honda and Iwase, 1996).
Thus, since the temperature drop within the top boundary
layer is larger than that of the bottom (i.e., �TT > �TB)
for the cartesian geometry, the top local Rayleigh number
is larger than bottom local Rayleigh number (RaT > RaB ,
see Eq. (11)). However, for the spherical shell geometry, the
bottom Rayleigh number is still larger than the top Rayleigh
number (RaB > RaT ). It may be natural to think that the
flow is controlled by the instability at the boundary layer
which has larger local Rayleigh number (Iwase and Honda,
1997). Thus, we consider that Nul may be controlled by
RaT for the box models and by RaB for the spherical shell
models.

In Fig. 4, we show the temporal relationship between lo-
cal Nusselt numbers (both NuT and Nu B) and top Rayleigh
number (RaT ) for the box models and bottom Rayleigh num-
ber (RaB) for the spherical shell models. The difference
between the Nul-RaT (box models) or Nul-RaB (spherical
shell models) relationships for top and bottom boundary lay-
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Fig. 5. Summary of the relationship between local Nusselt (Nul ) and
Rayleigh (Ral ) numbers. Least square fitting lines of temporal Nul and
Ral are plotted. (a) Nul -RaT relationship for two- (Honda and Iwase,
1996) and three-dimensional box models. (b) Nul -RaB relationship for
spherical shell models. Nul -Ral relationship for the steady state constant
viscosity case of two-dimensional box case (Christensen, 1984) is plotted
by circles and that for spherical shell case (Iwase and Honda, 1997) is
plotted by squares.

ers in Fig. 4 becomes smaller than that of Nul-Ral in Fig. 3,
especially for the fast cooling case. This implies that Nul is
controlled by a single local Rayleigh number and suggests
that the core-cooling is controlled mainly by the flow either
at the top or bottom.

The relationships of Nul-RaT for the box and Nul-RaB for
the spherical shell models are summarized in Fig. 5. They
are obtained by the least-square-fitting of previous results.
Since results at Ra > 106 are strongly affected by the ini-
tial condition, we use the results only with Ra < 106 for
this discussion. The results of the two-dimensional box case
(Table 2 of Honda and Iwase, 1996) are also included in
Fig. 5(a). We show the Nul-Ral relationship for the steady
constant viscosity convection with two-dimensional box ge-
ometry calculated by the results of Christensen (1984) (white
circles) and the spherical shell (Iwase and Honda, 1997) ge-
ometry (white rectangles). The power-law index of Nul-RaT

or Nul-RaB relationship, β-values are around 0.3 (Table 1)
for all the calculations except for the cases with large K , in
which because of rapid cooling, the bottom boundary layer
almost disappear and it results in the breakdown of the Nul-
Ral relationship (Honda and Iwase, 1996). Although there
exits a difference in the Nul-Ral relationship for the steady
state convection of spherical shell (β ∼ 1/4) and box ge-
ometry (β ∼ 1/3) (Iwase, 1996; Ratcliff et al., 1996), our

Fig. 6. Comparison of flow pattern for core-cooling and no-cooling cases.
Axisymmetric model is used (η = 0.55). (a) Initial condition (t = 0),
(b) core-cooling case (K = 2.25 and m = 30), at t = 2.8 × 10−3 and (c)
non-cooling case at t = 2.8 × 10−3.

results suggest that there is no practical difference in β for
the convection with cooling.

In this study, the internal heating is ignored (H = 0).
However, we already found that the heat transport efficiency
for the internal heating case does not show much difference
from that of the cases with bottom heating only (see also
Honda and Iwase, 1996). If we include the internal heat-
ing, the lower thermal boundary layer would become weaker.
Thus, the cooling by the flow at the top boundary layer would
be promoted by the internal heating.

For the Earth model with the axisymmetric geometry, the
flow pattern of mantle rapidly changes at high Rayleigh num-
ber (Fig. 1). However, we find that in another case, the major
flow pattern is preserved as shown in Fig. 6(a) and (b), that
is, the upwelling near the equator and downwelling at the
pole. To check if this is affected by the cooling, we start
the calculation with the same initial condition (i.e., Fig. 6(a))
without cooling. The flow pattern changes completely within
the same time interval as the cooling continues (Fig. 6(c)).
Although this result is obtained for axisymmetric model with
low Rayleigh number (Ra < 5 × 106) and the change in the
flow pattern may be also affected by the initial condition, it
may suggest that the past mantle flow pattern of the Earth
may be ‘frozen’ in some situations.
4.2 Parameterized calculation

In this section, we discuss the usefulness of the Nul-
Ral relationship obtained by the dynamical calculations for
the parameterized convection theory. In the preceding sec-
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Fig. 7. Time evolution of the core temperature (TB ) and the mean mantle temperature (Tm ). Results of the dynamical calculation are plotted by solid lines
and those of the parameterized calculation are plotted by dashed lines.

tion, we show that the core-cooling may be controlled by
either top or bottom thermal boundary layer. Thus, the non-
dimensional heat fluxes at the top (qT ) and bottom (qB) may
be written by⎧⎨

⎩
qT = NuT �TT = aT RaβT

l �TT ,

qB = NuB�TB = aB RaβB
l �TB

(14)

(βT ≈ βB) where l is either T for the box and B for the
spherical shell models, i.e., larger local Rayleigh number is
used. The parameters al and βl are determined by the least-
square-fitting of the Nul-Ral relationship obtained by the
dynamical calculation (see Fig. 5 and Table 1). The initial
core and mean mantle temperatures of this calculation are
set to be the final temperatures of the dynamical calculation.
The internal heating is ignored (H = 0 in Eqs. (5)) to be
consistent with the dynamical calculations.

The changes of the mean mantle (Tm) and core (TB) tem-
peratures with time for both dynamical and parameterized
calculations are shown in Fig. 7. Both results show fairly
good agreements. The difference of the results between
dynamical and parameterized calculations in the spherical
shell models may be due to simple least-square-fitting to ob-
tain Nul-RaB relationship. The β-values in spherical shell
models are larger at high Rayleigh number region (Fig. 4).
In the steady state convection, β shows the smaller value
(∼0.25) at lower Rayleigh number region, since the flow
pattern is strongly affected by the spherical shell geometry
(Iwase and Honda, 1997). For the cooling case, β-value may
become smaller at lower Rayleigh number region. If we take

larger β-value (say, ∼0.05 larger), the difference in results
between dynamical and parameterized calculation becomes
much smaller. Thus, we conclude that the parameterized
model based on the relationship of Nul-Ral may be valid for
the study of the thermal history of the mantle and core.
4.3 Application to the thermal history of the Earth

In this section, we apply the parameterized convection the-
ory to the thermal history of the mantle and core of the Earth
based on our results. The equations to be solved are essen-
tially identical to Eqs. (5). They are integrated backward
in time. The thermal properties of the present status of the
mantle and core of the Earth are taken as the initial values of
our calculation (see below).

In order to compare the results with those of the previous
works (Christensen, 1985; Honda, 1995) as discussed below,
the Arrhenius type viscosity law is used, i.e.,

ν = νre f exp(Ta/Tm) (15)

where Ta is the activation temperature (Ta = 63000 K)
(Christensen, 1985). Note that plausible Urey ratio (see be-
low) using this viscosity law is found to be almost the same
with the case if we use the power-law viscosity, Eq. (3).

The heat generation by the radioactive isotopes, 238U, 235U,
232Th and 40K is taken into account. Their present amounts
and decay constants are taken from Turcotte and Schubert
(1982). We assume that the cooling of the core is controlled
by the instability at the bottom thermal boundary layer. We
also assume that the proportional constant between the top
and bottom local Nusselt number (γ ) is unity, by consider-
ing our results. These assumptions imply βT = βB = β and
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Fig. 8. (a) Mean mantle temperature and (b) core temperature with β = 0.3
and γ = 1.0 for various Urey ratio (numerals).

aT = aB in Eq. (14). If we take TT = 300 K, Tm = 1623 K
(Christensen, 1985) and TB = 3000 K (Stevenson et al.,
1983) for the present potential temperature of the mantle
and core, the bottom Rayleigh number is higher than the
top Rayleigh number, assuming that the gravity, the coeffi-
cient of the thermal expansion, the viscosity and the thermal
conductivity are constant. Since RaB is found to be always
larger than RaT , we use RaB as the controlling parameter.
We take the present values of the surface heat flow and the
effective specific heat of the whole Earth to be 3.7 × 1013 W
and 7 × 1027 J kg−1, respectively (Christensen, 1985). We
assume that the heat capacity of the core is one-fifth of that
of the mantle (Stacey, 1981).

The free parameters are only β and the Urey ratio, which
is the ratio of radiogenic heat production to the heat loss
at the surface. We show the temperature of the mantle and
core in Fig. 8 for β = 0.3. As has been shown by previous
workers (Davies, 1980; Christensen, 1985; Honda, 1995),
the thermal runaway of the mantle can be observed. The
Urey ratio around 0.5 gives a reasonable temperature of the
mantle and core at ∼4.5 Ga. Christensen (1985) (also see
Honda, 1995) studied the similar model, assuming that the
rate of cooling of the core is equal to that of the mantle.
This assumption implies that the heat capacity of the core
is so small that the thermal inertia of the core or the bottom
thermal boundary layer can be ignored. As a result, they
found that the higher Urey ratio (> 0.8) is preferable for
β = 0.3. However, as our calculation shows, this conclusion
should be revised by taking into account the effects of bottom

boundary layer.
We also investigate the thermal history of the Earth assum-

ing that the top local Nusselt number is controlled by the top
local Rayleigh number and the bottom local Nusselt number
is controlled by the bottom local Rayleigh number. The re-
sults are very similar to those assuming that the cooling is
controlled only by the bottom local Rayleigh number. As
discussed in the above, if the ratio of the core to the whole
planet is close to the Earth, the difference of the cooling by
these modes is not so obvious. However, the cooling by the
flow controlled by either top or bottom thermal boundary
layer may play a significant role in thermal evolution for the
planets and satellites whose core size is smaller than that of
the Earth (η < 0.55) or when their core has not grown to the
size comparable to the Earth.

5. Conclusions and Discussions
We conduct the numerical simulation of the mantle con-

vection with core-cooling using a simple model. The geom-
etry of the model is either three-dimensional box, or axisym-
metric and three-dimensional spherical shell. We assume
that the viscosity is constant in space and changes as a func-
tion of the mean mantle temperature. We find the better local
Nusselt and Rayleigh numbers relationship, when Ral is ei-
ther RaB or RaT . This suggests that the core may be cooled
forcibly by the instability of either top or bottom boundary
layer. The thermal history of the mantle and core calculated
using the parameterized convection theory based on the Ral-
Nul relationship shows a good agreement with that obtained
by the dynamical calculations. The thermal history of the
Earth is calculated using the parameterized theory assuming
that the bottom Rayleigh number controls both top and bot-
tom Nusselt numbers. The appropriate Urey ratio is found
to be smaller than that obtained by the model which neglects
the effects of bottom boundary layer.

The Rayleigh number of the present Earth is larger than
that used in this study and we neglect the effects of phase
transitions, spatial viscosity variation and time-dependent
internal heat generation. Although we have already stud-
ied the case including internal heating for two-dimensional
box model (Honda and Iwase, 1996), further consideration
is necessary for the spherical shell geometry. Heat transport
may be affected by the cooling rate, though the effect of the
cooling rate (K ) is not clearly shown in this study. The cool-
ing of the core may also be influenced by the plume heads
or tails (Davies, 1993), which are related to the temperature-
dependent viscosity. Van den Berg and Yuen (1995) pointed
out that the effects of the rheological transition on the dy-
namical evolution of the Earth’s mantle must be taken into
account in realistic dynamical models of a cooling Earth.
The inclusion of these factors for the convection with core-
cooling should be done in the future.
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