
Earth Planets Space, 51, 73–79, 1999

An efficient approach of the pseudospectral method for modelling of
geometrically symmetric seismic wavefield

Hiroshi Takenaka1, Yanbin Wang1, and Takashi Furumura2

1Department of Earth and Planetary Sciences, Faculty of Science, Kyushu University, Hakozaki 6-10-1, Fukuoka 812-8581, Japan
2Faculty of Education, Hokkaido University of Education, Midorigaoka 2-34-1, Iwamizawa 068-0835, Japan

(Received July 7, 1998; Revised October 30, 1998; Accepted December 9, 1998)

The pseudospectral method is a high-accuracy numerical modelling technique that requires less computer mem-
ory and computation time than the traditional techniques such as the finite-difference method. These advantages
of the pseudospectral method have enabled us to practically apply this method to modelling realistic problems that
have complex structure and source models. However, a major drawback of such numerical schemes for discrete
grid models is that even for rather a simple structural model they require as much computational requirements (e.g.
computation time and memory) as for an entirely complex structural model with the same size of the simple one. We
actually need to employ idealised simple models, such as a model with geometrical symmetry, to investigate basic
phenomena of seismic waves, to develop new techniques, or to choose optimal values of some computational param-
eters for more complex modelling. In this paper we propose an efficient approach of an economical pseudospectral
method for calculation of wavefields in models symmetric with respect to a vertical plane or two orthogonal vertical
planes. Using this approach, the wavefields only need to be computed in a half or quarter domain of the models, so
that the computer memory and computation time can be reduced ideally by half or quarter, respectively, as compared
with the calculation of the entire models.

1. Introduction
The pseudospectral method (the Fourier method) (e.g.,

Kosloff et al., 1984; Reshef et al., 1988; Furumura et al.,
1998) is an attractive alternative to numerical modelling
schemes such as the finite difference or finite element
method. In the pseudospectral method, the field quantities
are expanded in the space in terms of Fourier interpolation
polynomials. Numerical differentiation in the equationswith
respect to the spatial coordinates is then implemented via
the discrete Fourier transform (the fast Fourier transform).
Since no approximation of the spatial derivatives is involved
in the differentiation scheme, fewer grid points are required
to achieve computational accuracy. The accurate spatial dif-
ferentiation can reduce computer memory and computation
time by several orders of magnitude as compared with other
numerical methods such as the finite difference or finite ele-
ment method (e.g., Fornberg, 1987; Daudt et al., 1989).
While efficient numericalmethods such as the pseudospec-

tral method can simulate the wave propagation in realistic
complex structures (e.g., Furumura and Koketsu, 1998), we
also often use rather idealised simplemodels, such as amodel
with geometrical symmetry, to investigate basic phenomena
of seismic waves, to develop new techniques (e.g., a new
non-reflecting boundary condition), to check a new method
or new code, or to find optimal values of some computational
parameters (e.g., grid size, parameters for absorbing bound-
ary condition) in preparation for more complex modelling.
When geometrical symmetry is present in the model, explicit
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use of this symmetry can reduce the computational size to
save several factors of magnitude in both computer memory
and computation time, because the wavefield need to be cal-
culated only in a subdomain of the model, determined by the
type of symmetry, instead of the entire model (e.g., Boore,
1972).
In this paper we propose an efficient approach of the pseu-

dospectral method for calculation of elastic wavefield in a
model where the configuration ofmedium and source is sym-
metric with respect to a vertical plane or two orthogonal
vertical planes. Throughout this paper we employ a right
handed Cartesian coordinate system [x, y, z] with z verti-
cally downwards. We will then consider a model symmetric
with respect to the y-z plane or the y-z and x-z planes. In this
paper we consider only an isotropic elastic medium, while
our approach is also applicable to anisotropic viscoelastic
cases.

2. Pseudospectral Modelling for Elastic Waves
Here we briefly explain the pseudospectral calculation of

3-D elastic waves. The equation of motion is represented as

ρü = ∂σxx

∂x
+ ∂σxy

∂y
+ ∂σzx

∂z
+ fx ,

ρv̈ = ∂σxy

∂x
+ ∂σyy

∂y
+ ∂σyz

∂z
+ fy, (1)

ρẅ = ∂σzx

∂x
+ ∂σyz

∂y
+ ∂σzz

∂z
+ fz,

where [u, v, w] = u are the displacements, [ü, v̈, ẅ] = ü
are the second partial time derivatives of the displacements
(i.e., particle accelerations), σpq , (p, q = x, y, z) are stress
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components, f p are body forces, and ρ is the density. In an
isotropic elastic medium, the stress components are given by

σpq = λ (exx + eyy + ezz)δpq + 2μ epq ,

(p, q = x, y, z) (2)

where λ and μ are the Lamé constants, epq are the strain
components, and δpq denotes Kronecker’s delta. The strain
components are defined as

exx = ∂u

∂x
, eyy = ∂v

∂y
, ezz = ∂w

∂z
,

eyz = 1

2

(
∂v

∂z
+ ∂w

∂y

)
, ezx = 1

2

(
∂w

∂x
+ ∂u

∂z

)
, (3)

exy = 1

2

(
∂u

∂y
+ ∂v

∂x

)
.

In the pseudospectralmethod the spatial derivatives in Eqs.
(1) and (3) are calculated analytically in the wavenumber
domain by use of the fast Fourier transform (FFT). The
FFT for the transform of complex-valued data (i.e., complex-
FFT) is often used in the pseudospectral modelling, but such
a transformation and the differentiation for originally real-
valued data can also be calculated efficiently by use of the
real-FFT (e.g., see Furumura et al., 1998) or the Hartley
transform (e.g., see Saatcilar and Ergintav, 1991).
For the time evaluation, an explicit scheme is used (the

wavefield at the next time step is calculated using the cur-
rent and previous wavefields). For example, the following
second-order finite difference time integration scheme is of-
ten used:

u̇n+1/2 = u̇n−1/2 + ün�t, (4)

and
un+1 = un−1 + u̇n+1/2�t, (5)

where �t is the time increment, and u̇n+1/2 are the particle
velocities at time t = (n + 1/2)�t .

3. Symmetry of Elastic Wavefield
Now we consider elastic wavefield in a model where the

configuration of medium and source is symmetric with re-
spect to a vertical plane. For simplicity, we here confine our
attention to 2-D P-SV modelling, where the y-coordinate
will be suppressed. The cases of 3-D modelling will be out-
lined in Section 6.
Consider a structure model whose medium parameters are

symmetric with respect to the plane x = 0 (y-z plane), i.e.

λ(−x, ·) = λ(x, ·), μ(−x, ·) = μ(x, ·),
ρ(−x, ·) = ρ(x, ·), (6)

λ,μ and ρ are even functions of x , and the vertical coordinate
z has been replaced by the dot ‘·’ to focus on the x-coordinate.
Then, the displacement field [u(x, z), w(x, z)] excited by

vertical incidence of a plane wave or source with force sys-
tem either symmetric or anti-symmetric in the x coordinate,
which is distributed symmetrically with respect to the plane
x = 0, has the following symmetric or anti-symmetric prop-
erty: for vertical incidence of a plane P wave, or source with
force system symmetric in the x coordinate, such as that for

the single force fz and moment tensor components Mxx and
Mzz with all other components being zero,

u(−x, ·) = −u(x, ·), (7)

w(−x, ·) = w(x, ·), (8)

∂u

∂x
(−x, ·) = ∂u

∂x
(x, ·), ∂u

∂z
(−x, ·) = −∂u

∂z
(x, ·), (9)

∂w

∂x
(−x, ·) = −∂w

∂x
(x, ·), ∂w

∂z
(−x, ·) = ∂w

∂z
(x, ·);

(10)

while for vertical incidence of a plane SV wave, or source
with force system anti-symmetric in x , such as that for the
single force fx andmoment tensor components Mxz and Mzx

with all other components being zero,

u(−x, ·) = u(x, ·), (11)

w(−x, ·) = −w(x, ·), (12)

∂u

∂x
(−x, ·) = −∂u

∂x
(x, ·), ∂u

∂z
(−x, ·) = ∂u

∂z
(x, ·),

(13)
∂w

∂x
(−x, ·) = ∂w

∂x
(x, ·), ∂w

∂z
(−x, ·) = −∂w

∂z
(x, ·),

(14)

where the time dependence of the field quantities has been
suppressed in these equations. Equations (7) to (14) show
each component of the displacement and its spatial deriva-
tives are even or odd functions of x . Note that differentiation
with respect to zmapps odd/even functions of x into odd/even
functions of x , while differentiation with respect to x mapps
odd/even functions of x into even/odd functions.
The stress components σi j (x, z) (i, j = x or z) then have

symmetric or anti-symmetric property with x , as follows:

σxx (−x, ·) = σxx (x, ·), (15)

σzz(−x, ·) = σzz(x, ·), (16)

σzx (−x, ·) = −σzx (x, ·), (17)

for vertical incidence of a plane P wave, or source with force
system symmetric in x ;

σxx (−x, ·) = −σxx (x, ·), (18)

σzz(−x, ·) = −σzz(x, ·), (19)

σzx (−x, ·) = σzx (x, ·), (20)

for vertical incidence of a plane SV wave, or source with
force system anti-symmetric in x . Equations (15) to (20) can
be derived from Eqs. (6), (9), (10), (13) and (14) and the
relation between the stress and displacement (i.e., Hooke’s
law).
Equations (7) to (20) suggest that the wavefield need to be

calculated only in the left half domain x < 0 or the right half
domain x > 0 of the model (half-domain modelling) instead
of the full domain of the model (full-domain modelling),
which reduces the computational size by half in the numerical
calculation. In the next section we will describe schemes
for calculating spatial derivatives only using the right half
domain of the model.
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4. Spatial Differentiation Using the FFT
In the pseudospectral method the spatial differentiation is

efficiently calculated at each time step by means of the FFT
as follows. For instance, consider the x-differentiation of the
x-component of the displacement at the spatially discretised
locations, u((n + 1/2)�x, (m + 1/2)�z) (n = −N , −N +
1, . . . , 0, . . . , N−1;m = 0, 1, . . . , M−1), where themodel
consists of 2N × M grid points, and the x-derivative to
be calculated is ∂u/∂x ((n + 1/2)�x, (m + 1/2)�z) (n =
−N , −N + 1, . . . , 0, . . . , N − 1;m = 0, 1, . . . , M − 1).
First, u((n + 1/2)�x, �z/2) (n = −N , −N + 1, . . . , 0,

. . . , N − 1), is copied into a 1-D work array (work vector)
f (n) (n = −N , −N + 1, . . . , 0, . . . , N − 1). Second, f (n)

(n = −N , −N + 1, . . . , 0, . . . , N − 1) is transformed to
the wavenumber domain by use of a 1-D FFT. The result is
then multiplied by the discrete spatial wavenumbers and the
imaginary unit to obtain the derivative in thewavenumber do-
main and transformed back to the physical domain using an
inverse 1-D FFT. The final result is copied into ∂u/∂x ((n +
1/2)�x, �z/2) (n = −N , −N + 1, . . . , 0, . . . , N − 1).
Next, u((n+1/2)�x, 3�z/2) is processed in the samewayas
u((n+1/2)�x, �z/2) to get ∂u/∂x ((n+1/2)�x, 3�z/2),
and the same process is carried out sequentially with increas-
ing z in the interval of �z up to z = (M − 1/2)�z.
This is a usual scheme for the x-differentiation of 2-D field

quantities by a 1-D FFT (see for detail, e.g. Furumura et al.,
1998). Hereafter we call this scheme the normal Fourier dif-
ferentiation scheme. The z-differentiation can be computed
in the similar way using this normal Fourier differentiation
scheme.
When u(x, z) is an odd function of x (i.e. Eq. (7)) or even

function of x (i.e. Eq. (11)), the values only for the right
half domain x > 0 of the model are necessary at each time
step of the pseudospectral calculation, because the other half
domain (x < 0) can naturally be given by the symmetric
and anti-symmetric relations in the wavefield with respect to
x = 0. The x-differentiation can then be performed by the
following scheme including a usual Fourier differentiation
process mentioned above, so that we need little modification
on our available pseudospectral codes.
First, u((n+1/2)�x, ·) (n = 0, . . . , N −1) is copied into

the latter half of a work vector of length 2N . The first half
of this vector is assigned the values for x < 0 using Eq. (7)
or Eq. (11). That is, when u(x, z) is odd in x , the first half of
the vector is given the values along Eq. (7) (hereafter called
anti-symmetric extension) as:

f (n) =

⎧⎪⎪⎨
⎪⎪⎩

−u(−(n + 1/2)�x, ·)
(n = −N , −N + 1, . . . , −1),

u((n + 1/2)�x, ·)
(n = 0, 1, . . . , N − 1);

(21)

when u(x, z) is even in x , the first half of the vector is given
the values along Eq. (11) (symmetric extension) as:

f (n) =

⎧⎪⎪⎨
⎪⎪⎩
u(−(n + 1/2)�x, ·)

(n = −N , N + 1, . . . , −1),
u((n + 1/2)�x, ·)

(n = 0, 1, . . . , N − 1).

(22)

And a usual Fourier differentiation is then done on this vec-
tor. The latter half of the resultant vector is copied into

∂u/∂x((n + 1/2)�x, ·) (n = 0, 1, . . . , N − 1) and the re-
maining half of the data (n = −N , N + 1, . . . , −1) is aban-
doned.
This Fourier differentiation scheme with symmetric

or anti-symmetric extension is applied to calculate the x-
derivatives appearing in Eqs. (1) and (3), while z-derivatives
are computed by use of the normal Fourier differentiation
scheme because of no symmetry in z.

5. Numerical Example
In order to demonstrate the feasibility of our approach

mentioned above, we calculate thewavefield for a simple 2-D
semi-cylindrical sedimentary basin in case of SV plane-wave
vertical incidence both by full- and half-domain modellings,
and then compare their results. The model is depicted in
Fig. 1 where a semi-cylindrical basin with radius a = 2.5
km is embedded in a homogeneous half-space. P-, S-wave
velocity and density of the basin are 4.0 km/s, 2.0 km/s and
2.0 g/cm3, and those of the half-space are 6.9 km/s, 4.0 km/s
and 2.6 g/cm3, respectively. Input signal is a Ricker wavelet
with the central frequency of 1.2Hz, which implies thewave-
length of input wave is equal to the diameter of the basin.
The computational domain for full-domain modelling is

51.2 km long and 12.8 km deep as shown in Fig. 2(a). Since
the geometry of the model and the input plane wave are sym-
metric about z axis, the wavefield of the right half domain
x > 0 (Fig. 2(b)) can be calculated by half-domain mod-
elling, which can then be extended by the symmetric and
anti-symmetric extensions to get the entire wavefield. In
this example the relation for the extension is given by Eqs.
(11) and (12). In half-domain modelling of this example the
x-derivatives are calculated by the above-mentioned Fourier
differentiation schemewith the symmetric or anti-symmetric
extension as given in Eqs. (11), (12) and (18) to (20), while
the z-derivatives are computed by the normal Fourier differ-
entiation scheme.
For both full- and half-domain modellings, we use the

grid intervals of 0.1 km in horizontal and vertical dimen-
sions. Figures 2(a) and (b) also show the grid layouts around
the basin for full- and half-domain modellings, respectively.
For the time evaluation, we employ the second-order finite
difference time integration scheme. The time increment of
0.0025 s, and the total number of time steps is 4000, so that
the calculated time window is 10 s. The absorbing boundary
(Cerjan et al., 1985) of 20 grid size is applied to the bottom of

Fig. 1. Model configuration. A semi-cylindrical basin is embedded in a
homogeneous half-space.
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Fig. 2. (a) Computational domain for full-domain modelling, which is symmetric with respect to x = 0 and 51.2 km long and 12.8 km deep (left), and the
grid layout around the basin (right). (b) Computational domain for half-domain modelling whose size is 25.6 km long and 12.8 km deep (left), and the
grid layout around the basin (right).

the computational domains to suppresswraparounddue to the
spatial periodicity implicitly involved in the FFT. The free-
surface condition is incorporated in the calculation by adding
a number of zeros to the stress components above the free
surface prior to their vertical (z) differentiations (Furumura
and Takenaka, 1992), so that the free surface (z = 0) is at
the level of a half grid size above the top of the discretised
domains of the model (Figs. 2(a), (b)).
Figure 3 shows the synthetic seismograms along the level

that is a half grid size below the free surface. Vertical axis
x/a is the relative distance of observation stations from the
center of the basin: the stations at x/a between −1 and 1 are
at the top of the basin and the other stations are at the top of the
half-space. Figure 3(a) is the horizontal (u) and vertical (w)
components calculated directly by full-domain modelling,
while the seismograms in Fig. 3(b) have been calculated for
the stationswith x/a > 0 by half-domainmodelling and then
extended by Eqs. (11) and (12) to get the other seismograms
(x/a < 0). The direct SV wave, refracted SV and P waves
from the basin boundary, reflected SV and P waves from
the basin surface, and Rayleigh waves generated at the basin
edge are observed to appear at exactly the same time with
the same amplitudes in Figs. 3(a) and 3(b).
Figure 4 shows the snapshots of wavefield inside and

around the basin at t = 0.5, 1.0 and 3.0 s. The snapshots are
represented by the P-wave and SV -wave contributions that
are shown in white and black, respectively. Contributions
from P and SV waves are calculated from the divergence
and curl of the wavefield:

P :

∣∣∣∣∂u∂x
+ ∂w

∂z

∣∣∣∣ , (23)

SV :

∣∣∣∣∂w

∂x
− ∂u

∂z

∣∣∣∣ . (24)

The extension of these P and SV wavefields obtained by
half-domain modelling to the entire domain has been made
by Eqs. (13) and (14). Figure 4(a) is the result directly cal-
culated by full-domain modelling, where the refracted SV
wave from the basin boundary, reflected SV and P waves
from the surface and the basin-edge generatedRayleighwave
(denoted by “R”) can be observed inside the basin. Figure
4(b) is the result of half-domain modelling, and Fig. 4(c) is
the entire wavefield derived by its extension based on Eqs.
(13) and (14). Comparing Figs. 4(a) and (c), the wavefields
calculated by full-domain modelling and by extension of the
solution of half-domain modelling are exactly the same.
In this example, the number of grid points for full- andhalf-

domain modellings is 512×128 and 256×128, respectively,
and the total number of time steps are 4000. The computer
memory required by full- and half-domainmodellings is then
5.72 Mbytes and 2.89 Mbytes, respectively, using single-
precision arithmetic. On a SUN Ultra-1 workstation (Model
140, 143MHz), theCPU time for half-domainmodellingwas
269.9 min, while for full-domain modelling was 415.9 min.
Half-domainmodelling could save the computermemory and
CPU time by 50% and 35%, respectively, as compared with
full-domainmodelling. Such efficiencywouldbe remarkable
for larger scale and more complex model which requires
much larger computer memory and longer CPU time.

6. 3-D Cases
We now sketch the approach for 3-D cases with symmetry

about a vertical plane or two orthogonal vertical planes (y-z
and z-x planes) (2-D cases can also be derived from the 3-D
cases by setting the derivatives with respect to y to be all
zero).
For any model symmetric with respect to a vertical plane,

the wavefield only need to be computed in a half domain of
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Fig. 3. Synthetic seismograms at the top of the discretised domains of the model, which is a half grid size below the free surface. (a) has been directly
calculated by full-domain modelling. In (b), for x/a > 0, the seismograms have been calculated by half-domain modelling, and the others have then
been got by the symmetric and anti-symmetric extensions.

the model bounded by the plane (half-domain modelling),
instead of the entire domain of the model (full-domain mod-
elling). Furthermore, for any model symmetric with respect
to two orthogonal vertical planes, the wavefield only need to
be calculated in a quarter domain of the model bounded by
the two planes (quarter-domain modelling).
We consider a model symmetric with respect to the plane

x = 0 (y-z plane) or the plane y = 0 (z-x plane), or the
two planes x = 0 and y = 0. For 3-D modelling, 18 spatial
derivatives in Eqs. (1) and (3) are calculated at each time step,
among which six z-derivatives, i.e. ∂u/∂z, ∂v/∂z, ∂w/∂z,
∂σzx/∂z, ∂σyz/∂z, ∂σzz/∂z, are computed by the normal
Fourier differentiation scheme, while 12 derivatives with re-
spect to the horizontal coordinates (horizontal derivatives) in
the equations can be calculated by the Fourier differentiation
scheme with symmetric or anti-symmetric extension or the
normal Fourier differentiation scheme, chosen by the type of
symmetry of the configuration. Table 1 shows the scheme to

be chosen for calculating each horizontal derivative of each of
the following eight cases of symmetric configurations speci-
fied by the types of medium symmetry and incident wave or
force system of source, where we have assumed the source is
distributed symmetrically with respect to the planes of sym-
metry:
Case 1-(a), where the medium parameters are symmetric
with respect to the plane x = 0, i.e.

λ(−x, y, z) = λ(x, y, z),

μ(−x, y, z) = μ(x, y, z),

ρ(−x, y, z) = ρ(x, y, z),

(25)

and the wavefield is excited by vertical incidence of a plane
P-wave, or a vertically incident plane S-wave oscillating in
the y-direction, or source with force system symmetric in the
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Fig. 4. Snapshots of the SV and P wavefield at three time steps. Black and white areas represent SV and P waves, respectively. (a) Entire wavefield
calculated directly by full-domain modelling. (b) Wavefield calculated directly by half-domain modelling. (c) Entire wavefield derived by extension of
(b). Arrows indicate propagation direction of major phases, and “R” denotes the Rayleigh wave.

x coordinate, such as⎡
⎣ 0

fy
fz

⎤
⎦ and/or

⎡
⎣ Mxx 0 0

0 Myy Myz

0 Mzy Mzz

⎤
⎦ ; (26)

Case 1-(b), where the medium parameters are symmetric
with respect to the plane x = 0, and the wavefield is excited
by vertical incidence of a plane S-wave oscillating in the x-
direction, or source with force system anti-symmetric in x ,
such as ⎡

⎣ fx
0
0

⎤
⎦ and/or

⎡
⎣ 0 Mxy Mxz

Myx 0 0
Mzx 0 0

⎤
⎦ ; (27)

Case 2-(a), where the medium parameters are symmetric
with respect to the plane y = 0, i.e.

λ(x, −y, z) = λ(x, y, z),

μ(x, −y, z) = μ(x, y, z),

ρ(x, −y, z) = ρ(x, y, z),

(28)

and the wavefield is excited by vertical incidence of a plane
P-wave, or a vertically incident plane S-wave oscillating in
the x-direction, or source with force system symmetric in the

y coordinate, such as⎡
⎣ fx

0
fz

⎤
⎦ and/or

⎡
⎣ Mxx 0 Mxz

0 Myy 0
Mzx 0 Mzz

⎤
⎦ ; (29)

Case 2-(b), where the medium parameters are symmetric
with respect to the plane y = 0, and the wavefield is excited
by vertical incidence of a plane S-wave oscillating in the y-
direction, or source with force system anti-symmetric in y,
such as ⎡

⎣ 0
fy
0

⎤
⎦ and/or

⎡
⎣ 0 Mxy 0
Myx 0 Myz

0 Mzy 0

⎤
⎦ ; (30)

Case 3-(a), where the medium parameters are symmetric
with respect to the two orthogonal planes x = 0 and y = 0,
i.e. both Eqs. (25) and (28), and the wavefield is excited by
vertical incidence of a plane P-wave, or source with force
system symmetric both in the x and y coordinates, such as⎡

⎣ 0
0
fz

⎤
⎦ and/or

⎡
⎣ Mxx 0 0

0 Myy 0
0 0 Mzz

⎤
⎦ ; (31)

Case 3-(b), where the medium parameters are symmetric
with respect to the two planes x = 0 and y = 0, and the
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Table 1. Schemes for horizontal differentiation of displacement and stress.

Case ∂u/∂x ∂u/∂y ∂v/∂x ∂v/∂y ∂w/∂x ∂w/∂y ∂σxx/∂x ∂σyy/∂y ∂σxy/∂x ∂σxy/∂y ∂σyz/∂y ∂σzx/∂x

1-(a) A N S N S N S N A N N A

1-(b) S N A N A N A N S N N S

2-(a) N S N A N S N S N A A N

2-(b) N A N S N A N A N S S N

3-(a) A S S A S S S S A A A A

3-(b) A A S S S A S A A S S A

3-(c) S S A A A S A S S A A S

3-(d) S A A S A A A A S S S S

S: Fourier differentiation with symmetric extension; A: Fourier differentiation with anti-symmetric extension; N: normal Fourier differentiation.

wavefield is excited by vertical incidence of a plane S-wave
oscillating in the y-direction, or source with force system
symmetric in x and anti-symmetric in y, such as⎡

⎣ 0
fy
0

⎤
⎦ and/or

⎡
⎣0 0 0
0 0 Myz

0 Mzy 0

⎤
⎦ ; (32)

Case 3-(c), where the medium parameters are symmetric
with respect to the two planes x = 0 and y = 0, and the
wavefield is excited by vertical incidence of a plane S-wave
oscillating in the x-direction, or source with force system
anti-symmetric in x and symmetric in y, such as⎡

⎣ fx
0
0

⎤
⎦ and/or

⎡
⎣ 0 0 Mxz

0 0 0
Mzx 0 0

⎤
⎦ ; (33)

Case 3-(d), where the medium parameters are symmetric
with respect to the twoplanes x = 0 and y = 0, and thewave-
field is excited by source with force system anti-symmetric
both in the x and y coordinates, such as⎡

⎣ 0 Mxy 0
Myx 0 0
0 0 0

⎤
⎦ . (34)

When the schemes along Table 1 can be used for a 3-D
modelling, for Cases 1-(a)(b) and Cases 2-(a)(b) we can do
a half-domain modelling (using the half domain x > 0 for
Cases 1-(a)(b), y > 0 for Cases 2-(a)(b)), which can reduce
the required computer memory and computation time ideally
by half as comparedwith the full-domainmodelling. Further,
for Cases 3-(a)(b)(c)(d) we can do a quarter-domain mod-
elling (using the quarter domain x > 0, y > 0), which can
reduce the memory and computation time ideally by quar-
ter as compared with the full-domain modelling. In case
of a general force system of single force and moment tensor
source, we might have to perform two independent computa-
tions corresponding to Cases 1-(a) and (b) or Cases 2-(a) and
(b), or two to four independent calculations corresponding to
Cases 3-(a) and/or (b) and/or (c) and/or (d), to calculate their
linear combination. Then the computer memory can still be
reduced by half or quarter as compared with the full-domain
modelling, while the computation time might not be saved.

7. Conclusion
We have presented an efficient approach of the pseu-

dospectral method for calculation of wavefields in models
symmetric with respect to a vertical plane or two orthogo-
nal vertical planes. Using this approach, the wavefields only
need to be computed in a half or quarter domainof themodels,
so that the computer memory and computation time can be
reduced ideally by half or quarter, respectively, as compared
with the calculation of the entire models.

Acknowledgments. Wewould like to thank TakaoKagawa and the
anonymous reviewer for critically reading the original manuscript
and for providing helpful suggestions. This study was partially
supported by the Superplume Project funded by the Science and
Technology Agency.

References
Boore, D. M., Finite-difference methods for seismic wave propagation in

heterogeneous materials, in Methods in Computational Physics, vol. 11,
edited by B. A. Bolt, 310pp., Academic Press, New York, 1972.

Cerjan, C., D.Kosloff, R.Kosloff, andM.Reshef, Anon-reflecting boundary
condition for discrete acoustic and elastic wave equations, Geophysics,
50, 705–708, 1985.

Daudt, C. R., L. W. Brail, R. L. Nowack, and C. S. Chiang, A comparison
of finite-difference and Fourier method calculations of synthetic seismo-
grams, Bull. Seism. Soc. Am., 79, 1210–1230, 1989.

Fornberg, B., The pseudospectral method: Comparisons with finite differ-
ences for the elastic wave equation, Geophysics, 52, 483–501, 1987.

Furumura, T. and K. Koketsu, Specific distribution of ground motion during
the 1995 Kobe earthquake and its generation mechanism, Geophys. Res.
Lett., 25, 785–788, 1998.

Furumura, T. andH.Takenaka, A stablemethod for numerical differentiation
of datawith discontinuities at end-points bymeans of Fourier transform—
Symmetric differentiation, Butsuri-Tansa (J. SEGJ), 45, 303–309, 1992
(in Japanese with English abstract).

Furumura, T., B. L. N. Kennett, and H. Takenaka, Parallel 3-D pseudospec-
tral simulation of seismic wave propagation, Geophysics, 63, 279–288,
1998.

Kosloff, D., M. Reshef, and D. Loewenthal, Elastic wave calculations by
the Fourier method, Bull. Seism. Soc. Am., 74, 875–891, 1984.

Reshef, M., D. Kosloff, M. Edwards, and C. Hsiung, Three-dimensional
elastic modeling by the Fourier method, Geophysics, 53, 1184–1193,
1988.

Saatcilar, R. and S. Ergintav, Solving elastic wave equation with the Hartley
method, Geophysics, 56, 274–278, 1991.

H. Takenaka (e-mail: takenaka@geo.kyushu-u.ac.jp), Y. Wang, and T.
Furumura


	1. Introduction
	2. Pseudospectral Modelling for ElasticWaves
	3. Symmetry of Elastic Wavefield
	4. Spatial Differentiation Using the FFT
	5. Numerical Example
	6. 3-D Cases
	7. Conclusion
	References



