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Simple Waves characterizing wave propagation in a nonlinear elastic medium
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In the field of nonlinear waves, there exist two kinds of waves, i.e., one is Non-Coupled Simple Wave (nonlinear
P wave) and Coupled Simple Wave (nonlinear S wave). In this paper, the problem is limitted to the two-dimensional
case. After numerical computations, we have then found that the behavior of waves in the nonlinear wave field is
governed by the theory of Simple Waves. Even complex wave form can be analyzed as composite Simple Waves.

1. Introduction
In the previous papers (Momoi, 1990, 1992; these papers

will be referred to papers A and B, respectively), we found
two kinds of Simple Waves in a nonlinear elastic medium,
that is to say, Non-Coupled SimpleWave (only a longitudinal
component) and Coupled SimpleWave (a transverse compo-
nent accompanied by a weak longitudinal component).
In order to clarify that these SimpleWaves behave as domi-

nant waves in nonlinear field, more intensive numerical com-
putationswas carriedout in two-dimensonal case in this paper
by use of the method in papers A and B. The behavior of
the waves obtained is then explained by using the theory of
Simple Waves.

2. Simple Waves
In papers A and B, we have obtained expressions for

Simple Waves. By use of second-order equations in two-
dimensional case under new notations, these Simple Waves
are described here in the case of an isotropic elastic medium
as follows.
Let (x, z) be the components of Cartesian coordinates,

(u, w) the displacement components of Simple Waves in the
longitudinal (x-axis) and transverse (z-axis) direction, re-
spectively, t a time variable, vp and vs the velocities of linear
P and S waves, respectively, and {λ, μ, A, B, C} the elastic
constants. Furthermore, these elastic coefficients are nor-
malized by μ as follows.

Lm = λ/μ, Am = A/μ,

Bm = B/μ,Cm = C/μ.

(i) Non-Coupled Simple Wave

u = (2kr1Vp1)/g1, w = 0, (1)

Vp1 = (v2
p − v2

r1)/v
2
s , kr1 = vr1t − x,

g1 = 6 + 2Am + 6Bm + 2Cm + 3Lm,

where vr1 is a velocity of Non-Coupled Simple Wave.
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(ii) Coupled Simple Wave

u = (kr2Vs2)/ f1,

w = sgw(kr2W
1/2
r )/( f1vs), (2)

Wr = Vs2(2v
2
p + v2

s (−2 + (2 − g1/ f1)Vs2)),

Vs2 = 1 − v2
r2/v

2
s , kr2 = vr2t − x,

f1 = 2 + Am/2 + Bm + Lm,

where vr2 is a velocity of Coupled Simple Wave and sgw a
double sign ± associated with the displacement w.

3. Finite-Difference Equation
Let h be a unit length of the coordinate axes x and z. By

use of the following expressions of time, coordinates and
displacement components normalized by h,

t̂ = h · vpt, x̂ = h · x, ẑ = h · z,
û = h · u, ŵ = h · w.

The governing equation is given by (refer to papers A and
B)

∂ û/∂ t̂ = U, ∂ŵ/∂ t̂ = W,

∂U/∂ t̂ = T10 + T11, ∂W/∂ t̂ = T30 + T31 (3)

with

T10 = û x̂2 + ŵx̂ ẑ L AM + (û ẑ2v
2
s )/v

2
p,

T30 = ŵẑ2 + û x̂ ẑ L AM + (ŵx̂2v
2
s )/v

2
p,

and

T11 = (g1û x̂ û x̂2 + 2 f1û x̂ ẑ û ẑ + f1û x̂ û ẑ2

+2 f2û x̂ ẑŵx̂ + f2û ẑŵx̂2 + f1ŵx̂ ŵx̂2

+ f3û x̂ ŵx̂ ẑ + g2û x̂2ŵẑ + f1û ẑ2ŵẑ

+ f3ŵx̂ ẑŵẑ + f1û ẑŵẑ2 + f2ŵx̂ ŵẑ2)(vs/vp)
2,

T31 = ( f3û x̂ û x̂ ẑ + f2û x̂2û ẑ + f1û ẑ û ẑ2

+ f1û x̂2ŵx̂ + f2û ẑ2ŵx̂ + f1û x̂ ŵx̂2

+2 f2û ẑŵx̂ ẑ + 2 f1ŵx̂ ŵx̂ ẑ + f3û x̂ ẑŵẑ

+ f1ŵx̂2ŵẑ + g2û x̂ ŵẑ2 + g1ŵẑŵẑ2)(vs/vp)
2,
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where

LAM = 1 − (vs/vp)
2, f2 = 1 + Am/2 + Bm,

g2 = 2Bm + 2Cm + Lm, f3 = f2 + g2,

ξx̂ = ∂ξ/∂ x̂, ξx̂2 = ∂2ξ/∂ x̂2,

ξẑ = ∂ξ/∂ ẑ, ξẑ2 = ∂2ξ/∂ ẑ2,

ξx̂ ẑ = ∂2ξ/∂ x̂∂ ẑ. (for ξ = û, ŵ, U and W ) (4)

In order to solve the above equation by use of finite-
differenece method, (û, ŵ) and (U,W ) are expanded by
Taylor expansion up to the terms of second order with re-
spect to time step dt̂ (= t̂ − t̂0) (refer to papers A and B).

û = û0 + dû1dt̂ + dû2dt̂
2/2,

ŵ = ŵ0 + dŵ1dt̂ + dŵ2dt̂
2/2,

U = U0 + dU1dt̂ + dU2dt̂
2/2,

W = W0 + dW1dt̂ + dW2dt̂
2/2, (5)

with

d�1 = (∂�/∂ t̂)0, d�2 = (∂2�/∂ t̂2)0,

(for � = û, ŵ, U and W )

where (û, ŵ,U,W ) and (û0, ŵ0,U0,W0) are displacement
and velocity components at a time t̂ and t̂0, respectively, and
other quantities with suffix 0 indicate the quantities at a time
t̂0. The above method based on second-order expansion of
Taylor series is much more stable and effective in conver-
gence, so that the required time by this method is about a
tenth of that by usual first-order finite-difference method.
After some reduction, the coefficients in (5) are expressed

as

dû1 = U0, dŵ1 = W0,

dû2 = (∂U/∂ t̂)0 = (T10 + T11)0,

dŵ2 = (∂W/∂ t̂)0 = (T30 + T31)0,

dU1 = (∂U/∂ t̂)0 = (T10 + T11)0,

dW1 = (∂W/∂ t̂)0 = (T30 + T31)0,

dU2 = (∂2U/∂ t̂)0 = (T10t + T11t )0,

dW2 = (∂2W/∂ t̂)0 = (T30t + T31t )0,

with

T10t = ∂T10/∂ t̂,

= Ux̂2 + Wx̂ẑ L AM +Uẑ2(vs/vp)
2,

T30t = ∂T30/∂ t̂,

= Wẑ2 +Ux̂ẑ L AM + Wx̂2(vs/vp)
2,

T11t = Q1t (vs/vp)
2, T31t = Q3t (vs/vp)

2,

Q1t = g1û x̂2Ux̂ + f1û ẑ2Ux̂ + f3ŵx̂ ẑUx̂

+ g1û x̂Ux̂2 + g2ŵẑUx̂2 + 2 f1û ẑUx̂ ẑ

+ 2 f2ŵx̂Ux̂ ẑ + 2 f1û x̂ ẑUẑ + f2ŵx̂2Uẑ

+ f1ŵẑ2Uẑ + f1û x̂Uẑ2 + f1ŵẑUẑ2

+ 2 f2û x̂ ẑWx̂ + f1ŵx̂2Wx̂ + f2ŵẑ2Wx̂

+ f2û ẑWx̂2 + f1ŵx̂Wx̂2 + f3û x̂Wx̂ ẑ

+ f3ŵẑWx̂ ẑ + g2û x̂2Wẑ + f1û ẑ2Wẑ

+ f3ŵx̂ ẑWẑ + f1û ẑWẑ2 + f2ŵx̂Wẑ2,

Q3t = f3û x̂ ẑUx̂ + f1ŵx̂2Ux̂ + g2ŵẑ2Ux̂

+ f2û ẑUx̂2 + f1ŵx̂Ux̂2 + f3û x̂Ux̂ ẑ

+ f3ŵẑUx̂ ẑ + f2û x̂2Uẑ + f1û ẑ2Uẑ

+ 2 f2ŵx̂ ẑUẑ + f1û ẑUẑ2 + f2ŵx̂Uẑ2

+ f1û x̂2Wx̂ + f2û ẑ2Wx̂ + 2 f1ŵx̂ ẑWx̂

+ f1û x̂Wx̂2 + f1ŵẑWx̂2 + 2 f2û ẑWx̂ ẑ

+ 2 f1ŵx̂Wx̂ ẑ + f3û x̂ ẑWẑ + f1ŵx̂2Wẑ

+ g1ŵẑ2Wẑ + g2û x̂Wẑ2 + g1ŵẑWẑ2.

In the above, û, ŵ,U andW with suffix indicate the deriva-
tives given by (4) and these are replaced by the following
difference equation.

ξx̂ = (ξ21 − ξ01)/(2δh), ξẑ = (ξ12 − ξ10)/(2δh),

ξx̂2 = (ξ01 + ξ21 − 2ξ11)/δh2,

ξẑ2 = (ξ10 + ξ12 − 2ξ11)/δh2,

ξx̂ ẑ = (ξ00 + ξ22 − ξ02 − ξ20)/(4δh2),

where the numerical suffix in the above indicates ameshpoint
described in Fig. 1 and δh is a mesh interval normalized by
h.

Fig. 1. Mesh points, where hx and hz indicate x̂ and ẑ, respectively.

A stability problem of the computation always occurrs
in the numerical computation by use of the finite difference
method. On the occasion of the numerical computation in the
linear equation, we can analytically find a stability criterion
like Neuman condition. In the case of nonlinear equation,
such a treatment is impossible, so that the stabilty of the
computation is confirmed by a lot of numerical trials of the
computation. After such trials, the following values

dt̂ = 0.1, δh = 0.5

are confirmed to keep the numerical computation sufficiently
stable.

4. Initial Condition
The following expression for an initial condition is given

near the wave origin.

ξ = (A(ξ)/2){1 + cos(x̂π/4)}, (6)

(−4 < x̂ < 4) (for ξ = û, ŵ, U and W ).

Since we are treating the problem in two-dimension, a
wave origin is like a mountain ridge.

5. Numerical Experiment
The ability of a computer goes up more than that when the

computation in papers A and B was carried out, so that new
computation was made by use of more efficient computer.
Then the values of elastic coefficients were specified as

Lm = Am = Bm = Cm = 1.0.
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5.1 Instance 1
In Fig. 2, the amplitudes in (6) are expressed as

A(û) = 0.2 and A(ξ) = 0 (ξ = ŵ, U, W ).

The wave origin (6) with the above amplitude indicates that a
push-type displacement is given at the origin in the direction
of the wave propagation.
As found from Fig. 2, the positive side (push part) of the

amplitude of the wave decreses with propagation, while, in
due course, the negative side (pull part) increases. Eachwave
form of these waves is a pulse of triangular type instead of
a sinusoidal one, and further propagated at a velocity near
linear Pwave (not exact Pwave velocity). The above exposed
results are very important together with those in the next
numerical instance.
In the figure, hx and hu-axes indicate normalized dis-

tance hx = x̂ and normalized displacement multiplied with
‘Vertical scale’ (described on the top of the figure), i.e.,
hu = (Vertical scale)× û. The first (leftmost) broken line is
that at t̂ = 0 (initial value). The other broken lines indicate
wave forms by step time 50 and the bold solid line a final
wave form, which is that at t̂ = 500 in this case, respec-
tively. These conventions except the last one associated with
the time of the last wave form follow in the same way in the
subsequent Figs. 3, 5, 6, 7 and 8.
In Fig. 3, the amplitudes in (6) are expressed as

A(û) = −0.2 and A(ξ) = 0 (ξ = ŵ, U, W ).

The wave origin (6) with the above amplitude indicates that a
pull-type displacement is given at the origin in the direction
of the wave propagation.
As found from Fig. 3, the pull-type wave at the wave ori-

gin is propagated by holding a pull-type feature at a velocity

Fig. 2. Propagation of Non-Coupled Simple Wave in the case of positive
initial displacement of wave origin.

Fig. 3. Propagation of Non-Coupled Simple Wave in the case of
negative initial displacement of wave origin, where hx = x̂ and
hu = (Vertical scale) × û. The final wave form (bold line) is that at
t̂ = 500.

near linear P wave. As propagating, the width of the wave
becomes wider by changing the wave form into a trapezoidal
one. The wave shown in Figs. 2 and 3 will be named nonlin-
ear P wave later on.
Let us explain the above-mentioned two features such that

the push-type nonlinear P wave pulse (Fig. 2) becomes nar-
rower in a triangular form and the pull-type nonlinear P wave
pulse (Fig. 3) becomes wider in a trapezoidal form.
We assume that these waves consist of a few fragments of

Simple Waves described in Section 2. Though we use a term
of ‘assume’ in here, all numerical experiments indicate that
this assumption is not only an assumption, but a truth itself.
Suppose that Non-Coupled Simple (nonlinear P)Waves in

Section 2 constitute the waves exposed in Figs. 2 and 3. We
can put

vr1 = vp + dvp (dvp : a small quantity) (7)

in (1). By taking the term up to first order of dvp, we obtain

u = (−4dvpvp(vr1t − x))/(g1v
2
s ), (8)

The expressions (7) and (8) indicate very important facts such
that
(i) when the wave front (fragment of Non-Coupled Sim-

ple Wave) is propagated at a velocity f aster than that of
linear P wave (dvp > 0), the wave front is of a pull-type (u
decreases).
(ii) when the wave front is propagated at a velocity slower

than that of linear P wave (dvp < 0), the wave front is of a
push-type (u increases).

(9)

Let us consider a triangular or trapezoidal pulse of a wave
composed of two push and pull Non-Coupled SimpleWaves.
As shown in Fig. 4, very interesting features are found from
(i) and (ii) in (9). In this figure, lines with arrow Slow or
Fast indicate wave fronts (Simple Waves) of a pulse which
moves at a velocity slower or f aster than that of linear P
wave, respectively.
Two features in (9) leads to very interesting features such

that
(i) a triangular push pulse (top figure) becomes narrower

with the propagation,

Fig. 4. Behavior of push- and pull-type pulse constituted by composite
Simple Waves. dvp indicates dvp.
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(ii) a triangular pull pulse (bottom figure) becomes wider
with the propagation and tends to a trapezoidal form.

(10)

Byuse of the theoreticalmodelmentioned above, the result
of numerical experiments (Figs. 2 and 3) will be elucidated
again. The phenomenon such that the push wave becomes
smaller in a triangular form with the propagation (Fig. 2)
can be explained by the top model in Fig. 4, while the phe-
nomenon such that the pull wave becomes wider in a trape-
zoidal form with the propagation (Fig. 3) can be explained
by the bottom model in Fig. 4.
In the linear theory, a trapezoidal wave like that in Fig. 3

is named a saturated wave. On the occasion of the nonlin-
ear theory, the term saturated wave is not appropriate, since
the generation process of the trapezoidal wave is completely
irrespective of a saturation process.
Let us makemention of the advancing velocity of Coupled

Simple Wave in here. Like the case of Non-Coupled Simple
Wave, we put

vr2 = vs + dvs (dvs : a small quantity) (11)

Substituting the above into (2) and taking the term up to
first-order of dvs, we have

u = −2dvs(vr2t − x)/( f1vs),

w = sgw2(−dvs)
1/2(v2

p − v2
s )

1/2

· (vr2t − x)/( f1v
3/2
s ), (12)

In the above expression, the displacement component w has
a factor (−dvs)

1/2, so that dvs is required to be negative in
order for the component w to exist (square root is required
to be real). In due course, Coupled Simple Wave is always
propagated at a velocity less than that of linear S wave from
(11). Furthermore, the longitudinal u-component (∼ |dvs|)
is smaller in quantitiy than the transverse w-component (∼
|dvs|1/2).
Some comment is made, in here, on the wave form like

that appeared in Fig. 2. Such an oscillatory wave form is
frequently found on the occasion of large earthquake. If
the interpretation of the wave form like that is done based
on a linear theory, the wave source is interpreted to be of
an oscillatory type. If a nonlinear process occurs both near
the wave source and during the propagation process, this
interpretation based on a linear theory is completely wrong
from the result in Fig. 2.
5.2 Instance 2
Figure 5 is an instance where the amplitude in the expres-

sion (6) is given by

A(U ) = 0.2 and A(ξ) = 0 (ξ = û, ŵ, W ).

This expression indicates the case where a push veloc-
ity is given at the wave origin in the direction of the wave
propagation. In this case, a push-type step wave appears in
the figure, the height of which decreases gradually with the
propagation. The front of the generated wave is a push-type
Simple Wave and the top of the wave is propagated at a ve-
locity slower than that of linear P wave as expected from (ii)

Fig. 5. Propagation ofNon-Coupled SimpleWave in the case of positive ini-
tial velocity of wave origin, where hx = x̂ and hu = (Vertical scale)× û.
The final wave form (bold line) is that at t̂ = 500.

Fig. 6. Propagation ofNon-CoupledSimpleWave in the case of negative ini-
tial velocity of wave origin, where hx = x̂ and hu = (Vertical scale)× û.
The final wave form (bold line) is that at t̂ = 500.

in (9). In the figure, ‘Supposed Top . . .’ indicates an apex
of a linear triangular P wave instead of a rightward foremost
head.
Figure 6 is an instance where the amplitude in the expres-

sion (6) is given by

A(U ) = −0.2 and A(ξ) = 0 (ξ = û, ŵ, W ).

This expression indicates the case where a pull velocity is
given at the wave origin in the direction of the wave prop-
agation. In this case, a pull-type step wave appears in the
figure. The wave front is a pull-type Simple Wave and the
top of the wave is propagated at a velocity faster than that of
linear P wave as expected from (i) in (9). In the part of the
wave front, the dispersion of the wave (several steps) occurs
in such a way that the foremost head part (steep gradient) is
more accelerated than the later part (gentle gradient). This
feature is explained as follows.
From (7) and (8), it is found that, if the gradient of u

is steeper (larger), dvp is also larger (from (8)), so that the
velocity of the wave becomes faster (from (7)).
5.3 Instance 3
Figure 7 is an instance where the amplitude in the expres-

sion (6) is given by

A(ŵ) = 0.2 and A(ξ) = 0 (ξ = û, U, W ).

This expression indicates the case where an initial dis-
placement is given at the wave origin in the transverse direc-
tion of the wave propagation. In this case, an triangular pulse
appears as an compositewave of Coupled SimpleWave in the
figure. In this figure, ‘Supposed Top . . .’ indicates an apex
of a triangular pulse of linear S wave instead of a foremost
head.
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Fig. 7. Propagation of Coupled Simple Wave in the case of positive initial
displacement of wave origin in the transverse direction, where hx = x̂
and hw = (Vertical scale) × ŵ. The final wave form (bold line) is that
at t̂ = 1000.

Fig. 8. Propagation of Coupled Simple Wave in the case of positive initial
velocity of wave origin in the transverse direction, where hx = x̂ and
hw = (Vertical scale) × ŵ. The final wave form (bold line) is that at
t̂ = 1000.

Figure 8 is an instance where the amplitude in the expres-
sion (6) is given by

A(W ) = 0.2 and A(ξ) = 0 (ξ = û, ŵ, U ).

This expression indicates the case where an initial velocity

is given at the wave origin in the transverse direction of the
wave propagation. In this case, a wave front of Coupled
Simple Wave appears at the head of the wave.
In Figs. 7 and 8, the top of Coupled Simple Wave is prop-

agated at a velocity a little slower than that of linear S wave
as discussed in (11) and (12), so that Coupled Simple Wave
is named nonlinear S wave.

6. Conclusion
In this study, we have found a very impotant fact such that

the propagation of nonlinear waves is fundamentally gov-
erned by the theory of Simple Waves. Even oscillatory com-
plex waves can be analyzed as waves consisting of several
fragments of Simple Waves. This fact has an important sig-
nificance in such a way that on the occasion of the response
evaluation of nonlinear waves at the boundary we can as-
sume, as the first approximation, the incident and reflected
nonlinear waves to be a congregation of Simple Waves. By
using nonlinear stress boundary conditions and the above
Simple Waves, we can analyze the temporary behavior of
nonlinear waves near the boundary at a certain moment.
Another important exposed fact is such that nonlinear push

P pulse becomes narrower in a triangular formwith the prop-
agation, while nonlinear pull P pulse becomes wider in a
trapezoidal form with the propagation.
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