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A Coupled Map Lattice model for geomagnetic polarity reversals
that exhibits realistic scaling
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Seki and Ito (1993) showed that the geomagnetic polarity reversals had a power-law distribution and presented a
simple model in which the geodynamo was assumed to be a system of magnetic spins in a critical phase-transition
state. We present an improved, more realistic model, and obtain a power exponent in agreement with the observed
value, which is about −1.5. The revised model is a Coupled Map Lattice (CML). A CML is a dynamical system
with discrete time and space, but continuous state. In the present model, elementary dynamo evolves autonomously
according to the Lorenz map obtained from Rikitake dynamo dynamics. We examine the behavior of the system and
the distribution of polarity reversal intervals for various values of parameters. We find some sets of the parameters
which yield a power exponent close to −1.5.

1. Introduction
The geomagnetic field has reversed repeatedly in earth’s

history. For understanding this phenomenon, researchers
improve methods of data acquisition, analyze these data and
examine the statistical properties. Kono (1987) stated that
exponential distribution of polarity reversal lengths is one of
the most important statistical properties of the geomagnetic
field. This property was originally suggested by Cox (1968).
Naidu (1971) showed that gammadistribution provides better
fit to the observed intervals of the Cenozoic time scale than
exponential one. McFadden (1984) suggested that the under-
lying process of geomagnetic reversals may be Poissonian
rather than gamma process because incomplete data from a
non-stationary Poisson process leads to a distribution indis-
tinguishable from a gamma distribution.
Reseachers of geomagnetism traditionally examine the na-

ture of paleomagnetic polarity data divided into two groups
separated by the Cretaceous quiet epoch. Gaffin (1989)
analyzed the geomagnetic polarity reversal record for the
past 165 m.y., and found that the cumulative distribution of
the polarity intervals follows a power law. He concluded,
however, that the apparent scaling does not warrant self-
similarity and demonstrated that the non-stationary Poisson
model (McFadden and Merrill, 1984; Lutz and Watson,
1988) provides an adequate description for the distribution
of interval lengths. Seki and Ito (1993) obtained a similar
result to Gaffin (1989), but interpreted the power law distri-
bution as an evidence of the dynamical phase-transition state
of geodynamo.
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The important questions are if the geodynamo process is
stationary, or if the outliers in the distribution of polarity
intervals are to be included in a singlemodel or to be attached
to some fundamentally different state. We take the view that
a model is good if the total distribution can be explained by
the single model without assuming the existence of different
states.
Seki and Ito (1993) stressed some peculiar properties of a

stable distribution with a form of power-law like

P(x) ∝ x−α−1 (0 < α < 2)

with α = 1.5 in the polarity interval distribution. In partic-
ular, the mean value as well as the variance of x fluctuate
strongly as time advances (Takayasu, 1990). Such a process
is statistically non-stationary but is dynamically stationary,
occurring in a single physical state.
A typical model which exhibits the power-law distribution

is self-organized criticality (SOC) model proposed by Bak
et al. (1987). Appilcatons of the idea of SOC to various
kinds of natural phenomena are reviewed in Bak (1996). The
model with proper injection and dissipation of energy tends
to self-organize into a critical state independent on the initial
condition, Sornette (1992) extended the mechanism of SOC
and proposed a generalmodel of open systemwith a feedback
of the order parameter onto its control parameter.
Themodel in Seki and Ito (1993) has a similar to Sornette’s

model feedback mechanism and exhibits critical behavior
like the power-law distribution of the polarity reversal inter-
vals. The behavior of model, however, differed from that of
geomagnetic data in the power exponent being −0.5, while
the power exponent obtained from geomagnetic data was
−1.5. In the present paper, we present an improved, more
realistic model, in which its power exponent is in agreement
with the observed value.
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2. Explanation of CML Model
In our previous paper, we used data from Harland et al.

(1982). After their work, various researchers estimated new
time scales. Thus, we retried to plot a cumulative distribution
of polarity reversal length on a log-log graph (Fig. 1). Here,
the time scale from late Cretaceous to present is like in Cande
and Kent (1995), and before 118.0Ma, we have modified the
scale of Channell et al. (1995) to be consistent with the one
by Cande and Kent (1995). We can regard the distribution
in Fig. 1 as a power-law using the latest data about the time
scales. The exponent of power in new geomagnetic data is
about −1.5.
Since the distribution of geomagnetic reversal length ap-

pears to followapower-law, we take a power lawas aworking
model. We presented a simple model in which turbulent ed-
dies in the outer core were assumed to behave as magnetic
spins (Seki and Ito, 1993), and obtained a power-law distri-
bution for the interval of polarity reversals with the power
exponent being−0.5. The exponent from geomagnetic data,
however, was −1.5. We thought that this discrepancy was
due to the fact that ourmodel was oversimplifiedwith respect
to the actual geodynamo. We tried to improve the model in
order to make it more realistic and to obtain the power expo-
nent to be closer to the observed value. The previous model
had discrete time, space, and states. At first, we examined
behavior of spin systems on fractal lattices of various fractal
dimension, since if the convection of the outer core of the
earth is turbulent (de Wijs et al., 1998), then the distribution
of turbulent eddies is self-similar. However, the change from
regular to fractal lattice did not have significant effect on the
power exponent of polarity intervals distribution.
In the present paper, we examine another model which

consists of dynamical elements with continuous state. Such
a model is generally called “Coupled Map Lattice” (See
Kaneko, 1993). The model in Seki and Ito (1993) had two-
states (1 or−1) elements like Ising model, whereas elements
of the presentmodel have continuous state values varying be-

Fig. 1. Log-log plot of the cumulative distribution of polarity reversal length
using data from Cande and Kent (1995) and Channell et al. (1995).

tween 1 and −1. Moreover, the elements themselves evolve
and reverse the polarity autonomously according to Rikitake
dynamo dynamics (Rikitake, 1958).
The differential equations of Rikitake dynamo are ex-

Fig. 2. The Lorenz map of Rikitake Dynamo system (K = 2.0, μ = 1.3).

Fig. 3. The piece-wise linear Lorenz map of Rikitake dynamo which we
use in CML model.
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Fig. 4. The variation of magnetization in elements represented by piece-wise linear Lorenz map of Rikitake dynamo for 200 steps, each case being (a)
a = 0.01, b = 0.45, (b) a = 0.01, b = 0.25 and (c) a = 0.001, b = 0.45.

pressed in a non-dimensional form as

ẋ1 + μx1 = x2y1 (1)

ẋ2 + μx2 = x1y2 (2)

ẏ1 = ẏ2 = 1 − x1x2. (3)

From (3), we get:
y2 = y1 + α (4)

where, x1 and x2 are the currents of dynamo coils, y1 and y2
are the angular velocities of the dynamo discs. The Rikitake
system has two equilibrium points N and R
(±K , ±K−1, μK 2) in the x1 - x2 - y1 phase space, where
K is given by

− α = μ(K 2 − K−2). (5)

Shimizu and Honkura (1985) proposed N -coupled disk dy-
namo models, but did not try to find the condition of phase

transition at which the distribution of polarity reversal inter-
vals is expected to be of power-law type. The computing
time that is necessary to solve large sets of differential equa-
tions is generally too long, especially near bifurcation points.
To reduce computing time, we adopt a one-dimensional map
with chaotic behavior based on the differential equations of
Rikitake dynamo. Ito (1980) carried out a detailed study of
its behavior in the (μ, K ) space, and showed that for a wide
combination of μ and K , Rikitake dynamo system exhibits
chaos of the Lorenz (1963) type, characterized by irregular
flipping between two unstable fixed points (Fig. 2).
Figure 2 shows a Lorenz map of Rikitake dynamo system

with chaotic behavior. Lorenz map is a graph which plots
combinations of n-th local maximum of |x | and n+1-th one.
We simplify the graph in Fig. 2 into a piece-wise linear form
connecting linear functions in [−1, 1] (Fig. 3). The map is
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Fig. 5. The effect of parameter p on the distribution of polarity reversal intervals in systems (16×16). Other parameters are fixed; a = 0.0001, bo = 0.25,
and b = 0.25.
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Parameter a controls the condition of laminar phase of
motion (Bergé et al., 1984), and parameter b controls the
width of a domain where chaotic bursts occur. Parameter
b determines the intensity of chaos. If b = 0, then the
Lyapunov exponent is 0, and if b = 0.5 and a = 0, then the
Lyapunov exponent is loge 2. Parameter a determines the
length of laminar phase of intermittency. The closer is a to
0, the longer is the interval of non-chaotic state. Similar to
Ising model, we consider a two-dimensional regular lattice
with nearest-neighbor interaction. The state of the site (i ,
j) is represented by Si, j (−1 ≤ Si, j ≤ 1). The interaction
between elements depends on the summation over the states

of four nearest neighbors, sum,

sum =
∑

Si±1, j±1.

We denote the intensity of interaction by bo, and take the
following procedure of spin flipping. If Si, j × sum < 0, and
|Si, j | < |bo×sum|, then Si, j = −Si, j . If |Si, j | ≥ |bo×sum|,
then Si, j = −Si, j with probability pd which represents a kind
of thermal fluctuation. If Si, j × sum ≥ 0, then Si, j = −Si, j
with probability pi .

pi ≤ pd , which also represents a simplified thermal fluc-
tuation. In the following simulation, we assume pi = pd .
In the present model, the elements reverse the polarity

autonomously as well as through interaction with the neigh-
boring elements. Note, that the elements in the previous
model changed the sign only due to interaction. It is there-
fore expected that the present system may exhibit a behavior
similar to real data, when short-term polarity reversals occur
more often than in the previous model.

3. Results of CML Model
The simulation was done using mainly 16 × 16 and 32 ×

32 square lattice systems with periodic boundary condition.
The initial state was given by random numbers. The regular
latticewas divided to two sublattices as in the previousmodel.
One step represents a pair of each one procedure of spin
flopping on the two sublattices. We examined the behavior
for 1.0 × 106 steps, and took the data of polarity reversal
intervals within 14999 samples discarding the first 2.0× 105

steps. Behaviors differ, depending on parameters of the map
as well as the probability.
Parameter b controls the width of a chaotic bursts. The

larger is b, the more frequently polarity reverses, and shorter
are the intervals (Figs. 4(a) and 4(b)). Parameter a controls
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Fig. 6. The effect of parameter bo on the distribution of polarity reversal intervals in systems (16×16). Other parameters are fixed; a = 0.00001, p = 0.0,
and b = 0.45.

Fig. 7. The variation of magnetization in systems (16 × 16) for 25000 time steps. Each case has different value of b; (a) b = 0.2, (b) b = 0.35 and (c)
b = 0.4.
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Fig. 8. The effect of parameter b on the distribution of polarity reversal intervals in systems (16× 16). Other parameters are fixed; a = 0.0001, bo = 0.1,
and p = 0.0.

Fig. 9. The power exponent of the distribution of polarity reversal intervals
in systems (16×16) as a function of parameter b. Here other parameters
a, p and bo are fixed at a = 0.0001, p = 0.0 and bo = 0.1 for b = 0.2,
0.35, and 0.4. For b = 0.45, a = 0.00001, p = 0.0 and bo = 0.1.

the laminar domain. In this domain the absolute value of S
shows a monotonous gradual increase. The behavior of ele-
mental map (Fig. 3) is very sensitive to the change of a. The
smaller is a, the longer is polarity reversal interval (Figs. 4(a)
and 4(c)). It should be kept in mind that St is not a graph of
continuous change in the strength of magnetization but rep-
resents the change in the amplitude of oscillations. When we
change a, we observe a similar phase transition from periodic
to chaotic behavior in the distribution of polarity reversals in
elementary systems as in the whole system.
Next we examine the effect of control and probability pa-

rameters on the behavior of magnetization and distribution

Fig. 10. The variation of magnetization of a system (16×16) for 200 steps.
It has the exponent near −1.5. Here a = 0.00001, bo = 0.1, p = 0.0
and b = 0.45.

of polarity reversal intervals in CML model. As for pi and
pd , we assume pi = pd = p for simplicity. It is consid-
ered that p corresponds to a kind of temperature. When
p is small (low-temperature), long intervals of polarity re-
versals increase in accordance with the supercritical (< Tc)
behavior of the previously considered model. When p is
large (high-temperature), long intervals of polarity reversal
vanish in accordance with the subcritical (> Tc) behavior
(Fig. 5). Changes in parameter p have little effect on the
power exponent. Parameter bo expresses the intensity of in-
teraction between turbulent dynamos. The larger is bo, the
more ordered the system is. As a result, systems with large
bo behave solid-like, showing a supercritical character. The
slope of distribution plot tends to be flatter (Fig. 6). As to
the effect of b on element’s dynamics (Fig. 7), we find that
magnetization of the system shows strongly chaotic behavior
like white noise and intervals of polarity reversals become
short for large b (Fig. 7(c)). Such a tendency is clear in the
distribution of polarity reversal intervals (Fig. 8). The larger
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Fig. 11. The effect of parameter a on the distribution of polarity reversal intervals in systems (16× 16). (a) bo = 0.1, p = 0.0 and b = 0.4, (b) bo = 0.0,
p = 0.0 and b = 0.4.

is b, the steeper is the slope in the distribution plot. In sum-
mary, we find that the slope of the distribution of polarity
reversal intervals can be controlled by b and bo. When we
put bo = 0.05 ∼ 0.1 and b = 0.4 ∼ 0.45, we find that the
value of power exponent is near −1.5 which agrees with that
obtained from geomagnetic data (Figs. 9 and 10). The CML
system is as sensitive to the variation of parameter a as the
basic map itself. When a is large, the CML system behaves
too chaotically. When a is small, the distribution of polarity
reversal intervals shows a crossover between two domains
(Fig. 11). The crossover point is roughly determined by a,
depending on the time the elementarymap spends in the peri-

odic domain. We thus consider the behavior observed when
a is too small as an artifact due to the use of piece-wise linear
map for the element dynamics.

4. Discussion
In this paper, we improve themodel of Seki and Ito (1993).

The power exponent in the distribution of polarity reversal
intervals found by Seki and Ito (1993) was −0.5, in contra-
diction with −1.5 for the real geomagnetic data. In order to
approach the value of the real exponent, we improved our
model by adding more realistic features that the actual geo-
dynamo may have. In the CML model, like in other coupled
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disk dynamomodels, spins do not have discrete (−1 or 1) but
continuous values of magnitude and can reverse the polarity
autonomously. The dynamics is given by a simplified dis-
crete map obtained from the Rikitake dynamo model. Since
our CML model is much less computation time consuming
than other coupled disk dynamo models, we can examine
the behavior for much longer time intervals, even near the
critical phase-transition. As a result, we succeed in finding
a set of the parameter values for which the power exponent
is similar to that of the geomagnetic data. In the model, we
adopted the Rikitake dynamo dynamics as local dynamics.
The Rikitake dynamo reverses its polarity, but its magne-
tization fluctuates widely before a polarity reversal, a very
different behavior from that of the dynamo. In the future,
we need to improve the local dynamics of CML model. We
note that short intervals are missing in the reversal data and
deviate from the power-law. Some explanations are needed
to explain the deviation (Marzocchi et al., 1997; McFadden
and Merrill, 1993).
The Rikitake dynamo exhibits a chaotic state and reverses

the polarity randomly in some parameter regions (Ito, 1980).
CoupledMapLatticewas introduced byKaneko for the study
of spatiotemporal chaos (Kaneko, 1993). In our simulation,
the power exponent of polarity reversal lengths is close to
the experimentally found value when each element behaves
chaotically. A study related to geomagnetic reversal and
chaos was done also by Cortini and Barton (1994). They
concluded that low-dimensional chaos can not be demon-
strated in the case of the geomagnetic field. Our CMLmodel
is not low-dimensional but high-dimensional, although it is
a deterministic dynamical system. The model parameter b
must be large while parameter bomust be small, in order the
model power exponent to be similar to that of the geomag-
netic field reversal data. When b is large, each element is in a
strongly chaotic state and has large Lyapunov exponent. The
evidence that the slope of power law distribution of geomag-
netic reversals data is steep and is 1.5 may suggest that the
dynamo in the Earth’s core is turbulent, and is in a strongly
chaotic state.
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