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Probabilistic properties of GNSS integer ambiguity estimation
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Successful integer estimation of carrier phase ambiguities of Global Navigation Satellite Systems (GNSS) is the
key to many high precision positioning applications. In order to describe the quality of the positioning results
rigorously, one needs to know the probabilistic properties of both the integer and noninteger parameters in the
GNSS model. In this contribution these probability distributions are presented and discussed. The probability mass
function of the integer ambiguities is needed to evaluate the ambiguity success rate and the distribution of the GNSS
baseline is needed to evaluate the relevant confidence regions for positioning.

1. Introduction

Global Navigation Satellite System (GNSS) ambiguity
resolution is the process of resolving the unknown cycle am-
biguities of double difference (DD) carrier phase data as in-
tegers. Ambiguity resolution applies to a great variety of cur-
rent and future GNSS models. Apart from the current Global
Positioning System (GPS) models, it also applies to the future
modernized GPS and the future European Galileo GNSS. An
overview of GNSS models, together with their applications in
surveying, navigation, geodesy and geophysics, can be found
in textbooks such as Leick (1995), Parkinson and Spilker
(1996), Strang and Borre (1997), Hofmann-Wellenhof et al.
(1997), and Teunissen and Kleusberg (1998).

Despite the differences in application of the various GNSS
models, it is important to recognize that their ambiguity res-
olution problems are intrinsically the same. This implies that
it is possible to develop a single theoretical framework that
applies to every GNSS model for which ambiguity resolution
would make sense. Such a framework is available for the in-
teger estimation part of ambiguity resolution. Rigorous and
efficient methods of estimation exist for the determination
of the integer carrier phase ambiguities. This is not yet true
however when one considers the probabilistic aspects of am-
biguity resolution. To fill in this gap, one should first realize
that ambiguity resolution is not an end in itself. After all,
the sole purpose of ambiguity resolution is to use the integer
ambiguity constraints as a means of improving significantly
on the precision of the remaining model parameters, such as
baseline coordinates and/or atmospheric (tropopshere, iono-
sphere) delays. Hence, the qualitative aspects of ambiguity
resolution should be seen in the context of how well these
parameters can be determined. It is therefore the purpose of
this contribution to show how well these model parameters
can be determined by means of ambiguity resolution. Such
a qualitative description then also enables one to formulate
and test the requirements which ambiguity resolution has to
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fulfil in order to be successful.

As our point of departure we will take the following system

of linear(ized) observation equations

y=Aa+ Bb+e €))
where y is the given GNSS data vector of order m, a and b are
the unknown parameter vectors respectively of order n and
o0, and where e is the noise vector. In principle all the GNSS
models can be cast in this frame of observation equations.
The data vector y will usually consist of the ‘observed minus
computed’ single- or dual-frequency double-difference (DD)
phase and/or pseudorange (code) observations accumulated
over all observation epochs. The entries of vector a are
then the DD carrier phase ambiguities, expressed in units
of cycles rather than range. They are known to be integers,
a € Z". The entries of the vector b will consist of the
remaining unknown parameters, such as for instance baseline
components (coordinates) and possibly atmospheric delay
parameters (troposphere, ionosphere). They are known to be
real-valued, b € R°.

The procedure which is usually followed for solving the
GNSS model (1), can be divided into three steps. In the first
step one simply disregards the integer constraints a € Z" on
the ambiguities and performs a standard least-squares adjust-
ment. As a result one obtains the (real-valued) estimates of
a and b, together with their variance-covariance (vc-) matrix

HRt Al

This solution is referred to as the ‘float’ solution. In the sec-
ond step the ‘float’ ambiguity estimate @ is used to compute
the corresponding integer ambiguity estimate ¢. This implies
that a mapping S : R" = Z", from the n-dimensional space
of reals to the n-dimensional space of integers, is introduced
such that

~

a
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b
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a = Sa). (3)

Once the integer ambiguities are computed, they are used in
the third step to finally correct the ‘float’ estimate of b. As a
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result one obtains the ‘fixed’ solution
b=b-0;0;"@-a. )

In this contribution we will discuss the probabilistic conse-
quences of relation (3). We will refrain however, from dis-
cussing the computational intricacies of integer estimation.
For a discussion of these aspects, we refer to e.g. Teunissen,
(1993), de Jonge and Tiberius (1996a), Hassibi and Boyd
(1998) or to the textbooks (Hofmann-Wellenhof et al., 1997,
Strang and Borre, 1997; Teunissen and Kleusberg, 1998).
Practical results can also be found in e.g. Tiberius and de
Jonge (1995), Han (1995), de Jonge et al. (1996), de Jonge
and Tiberius (1996b), Boon and Ambrosius (1997), Boon et
al. (1997), Tiberius et al. (1997) and Jonkman (1998).

2. The Probability Distribution of Ambiguities
and Baseline

There are many ways of computing an integer ambigu-
ity vector a from its real-valued counterpart a. To each
such method belongs a mapping S : R" +— Z" from the
n-dimensional space of real numbers to the n-dimensional
space of integers. Due to the discrete nature of Z”, the map S
will not be one-to-one, but instead a many-to-one map. This
implies that different real-valued ambiguity vectors will be
mapped to the same integer vector. One can therefore assign
a subset S, C R” to each integer vector z € Z":

S,={xeR"|z=S8(x)), zeZ" )

The subset S, contains all real-valued ambiguity vectors that
will be mapped by S to the same integer vector z € Z”.
This subset is referred to as the pull-in region of z (Jonkman,
1998; Teunissen, 1998b). It is the region in which all am-
biguity ‘float” solutions are pulled to the same ‘fixed” am-
biguity vector z. Using the pull-in regions, one can give an
explicit expression for the corresponding integer ambiguity
estimator. It reads

=) z5.(a) (6)

zeZ"
with the indicator function

1if a € S.
0 otherwise *

Sz (&) = { (7)
Since the pull-in regions define the integer estimator com-
pletely, one can define classes of integer estimators by impos-
ing various conditions on the pull-in regions. In Teunissen
(1999) we defined one such class, which we called the class
of admissible integer estimators. These integer estimators
are defined as follows.

Definition The integer estimator ¢ = ), _,. zs.(a) is said
to be admissible if

) U.ez S:=R"
(ll) SzlnSh:@’ VZ],Zzezn,Zl#Zz
@{ii) . =z+ Sy, Vze Z".

This definition is motivated as follows. Each one of the above
three conditions describe a property of which it seems rea-
sonable that it is possessed by an arbitrary integer ambiguity

estimator. The first condition states that the pull-in regions
should not leave any gaps and the second that they should not
overlap. The absence of gaps is needed in order to be able
to map any ‘float’ solution @ € R” to Z”", while the absence
of overlaps is needed to guarantee that the ‘float’ solution is
mapped to just one integer vector. Note that we allow the
pull-in regions to have common boundaries. This is permit-
ted if we assume to have zero probability that a lies on one
of the boundaries. This will be the case when the probability
density function (pdf) of @ is continuous.

The third and last condition follows from the requirement
that S(x +z) = S(x) +z,Vx € R",z € Z". Also this
condition is a reasonable one to ask for. It states that when
the “float’ solution is perturbed by z € Z”, the correspond-
ing integer solution is perturbed by the same amount. This
property allows one to apply the integer remove-restore tech-
nique: S(a —z) +z = S(a). It therefore allows one to work
with the fractional parts of the entries of a, instead of with
its complete entries.

With the division of R” into mutually exclusive pull-in re-
gions, we are now in the position to present the distribution of
both the integer ambiguity estimator and the ‘fixed’ baseline
estimator. These distributions follow ones the pull-in region
of the chosen integer estimator has been defined. Three such
examples of integer estimators are ‘rounding’, ‘bootstrapping’
and ‘integer least-squares’. Since their pull-in regions dif-
fer, see Teunissen (1998a), also their probabilistic proper-
ties will differ. The probability of correct integer estimation
of the bootstrapped estimator is given in Teunissen (1997)
and that of the integer least-squares estimator in Hassibi and
Boyd (1998) and Teunissen (1998b). In the following we
will consider the probabilistic properties of the whole class
of'admissible integer estimators, of which ‘rounding’, ‘boot-
strapping’ and ‘integer least-squares’ are special cases. We
first consider the distribution of ¢. This distribution is of
the discrete type and it will be denoted as P(a = z). Itis
a probability mass function, having zero masses at nongrid
points and nonzero masses at some or all grid points. If we
denote the continuous probability density function of a as
pa(x), the distribution of @ follows as

Pa=z) =/ pax)dx , ze Z". ®)
S,

This expression holds for any distribution the ‘float’ ambi-
guities @ might have. In most GNSS applications however,
one assumes the vector of observables y to be normally dis-
tributed. The estimator a is therefore normally distributed
too, with mean a and ve-matrix Q. Its probability density
function reads

1
pa(x) = xpl=3 lx—alf) (O

1
pe———
Vdet(Qa)(2m)2"

with the squared weighted norm || . ”2Qa= (.)TQ;(.). Note
that P(a = a) equals the probability of correct integer am-
biguity estimation. It describes the expected success rate of
GNSS ambiguity resolution.

We are now in the position to determine the distribution
of the ‘fixed’ baseline b. It will be denoted as pj(x). Once
it has been determined, its peakedness can be studied and
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probabilistic statements such as

PheT) =/p,;(x)dx , TCR® (10)
T

can be made. The determination of p;(x) would be straight-
forward in case a is deterministic. In that case normality
would be preserved when propagating the normal distribu-
tion of 4 and b through (4). In our case however, a is not
deterministic but stochastic. We therefore also need to take
the distribution of these integer ambiguities into account. As
a result one obtains the probability density function of b as

Pyx) =) Phac.(0)P(d =2). (11

zeZ"

This distribution describes the probabilistic properties of the
GNSS baseline in case the integerness of the carrier phase
ambiguities is included in the model. The distribution is
clearly not normal. Itis a weighted and infinite sum of condi-
tional distributions. The weights are given by the probability
masses of the distribution of @. The conditional distributions
Pjja=.(X),z € Z" are translated copies of one another and
are given as

Do, (¥) = —————
' det 0527 (12)

1
exp{—3 | ¥ — ba=: llg,,}

with the conditional mean b;—. = b — Qj, Qg] (a — z) and
the conditional ve-matrix Q;;, = Q; — O, le O
In most practical applications of GNSS, the distribution
Pija=a¥) is used instead of the theoretically correct distri-
bution (11). This approximation is only permitted however,
when the estimated integer ambiguities can be considered
sufficiently nonrandom. This follows from the limit
Phaca) = lim  pp(x). (13)
P(a=a)—1
For this conditional distribution to be a good approximation,
one thus has to make sure that the probability of correct
integer estimation is sufficiently close to one.

3. An Optimal Integer Ambiguity Estimator

The distributional results presented so far hold for any ad-
missible ambiguity estimator. Two examples of admissible
ambiguity estimators are the ‘rounding’ estimator and the
‘bootstrapped’ estimator. The simplest way to obtain an in-
teger vector from the real-valued ‘float’ solution is to round
each of the entries of @ to its nearest integer. The correspond-
ing integer estimator reads therefore

dR = ([&1]7 cee [&n])T

(14)

where ‘[.]” denotes rounding to the nearest integer. The
pull-in region of this integer estimator equals the multivariate
version of a square.

Another relatively simple integer ambiguity estimator is
the bootstrapped estimator. The bootstrapped estimator can
be seen as a generalization of the previous estimator. It still
makes use of integer rounding, but it also takes some of

the correlation between the ambiguities into account. The
bootstrapped estimator follows from a sequential conditional
least-squares adjustment and it is computed as follows. If n
ambiguities are available, one starts with the first ambiguity
ay, and rounds its value to the nearest integer. Having ob-
tained the integer value of this first ambiguity, the real-valued
estimates of all remaining ambiguities are then corrected by
virtue of their correlation with the first ambiguity. Then the
second, but now corrected, real-valued ambiguity estimate is
rounded to its nearest integer. Having obtained the integer
value of the second ambiguity, the real-valued estimates of
all remaining » — 2 ambiguities are then again corrected, but
now by virtue of their correlation with the second ambiguity.
This process is continued until all ambiguities are consid-
ered. The components of the bootstrapped estimator ap are
given as

ag = ([a1], [aanl, - - - [Awn DT (15)

where the shorthand notation d;|; stands for the ith least-
squares ambiguity obtained through a conditioning on the
previous / = {1, ..., (i — 1)} sequentially rounded ambigu-
ities. The pull-in region of the bootstrapped estimator equals
the multivariate version of a parallelogram.

Although various integer estimators exist which are admis-
sible, some may be better than others. Having the problem of
GNSS ambiguity resolution in mind, one is particularly in-
terested in the estimator which maximizes the probability of
correct integer estimation. This probability equals P(a = a),
but it will differ for different ambiguity estimators. In order
to find the estimator which has the largest probability of cor-
rect integer estimation, we need to know which estimator
maximizes P(d = a). The answer to this question is given
by the following theorem.

Theorem Let the integer least-squares estimator be defined

as
v _ . A 2
ars =argmin || a —z ||y, (16)
and the pdf of @ be given as
Pa(x) =,/det(Q; NG (| x —a [I3,) (17)

where G : R +— [0, 00) is decreasing and Q; is positive-
definite. Then

P(ars =a) = P(a=a)

(18)
for any admissible estimator a.

This theorem gives a probabilistic justification for using the
integer least-squares estimator. For GNSS ambiguity reso-
lution it shows, that one is better off using the integer least-
squares estimator than any other admissible integer estimator.
The theorem was introduced and proved in [ibid]. The fam-
ily of distributions defined in (17), is known as the family
of elliptically contoured distributions (Chmielewsky, 1981).
Several important distributions belong to this family. The
multivariate distribution can be shown to be a member of
this family by choosing G(x) = (27)~3 exp—%x, X € R.
Another member is the multivariate 7-distribution.

As a direct consequence of the above theorem we have the
following corollary.
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Corollary Let ¥ be any positive-definite matrix of order n
and define

dy =argmin || @ —z ||% . (19)
zeZ"
Then a5 is admissible and
P(ars =a) = P(as = a). (20)

In order to prove the corollary, we only need to show that
as is admissible. Once this has been established, the stated
result (20) follows from the theorem. The admissibility can
be shown as follows. The first two conditions of the defini-
tion are satisfied, since (19) produces—apart from boundary
ties—a unique integer vector for any ‘float’ solutiona € R".
And since dx = argmin,ez || @ —u — z |5 +u holds
true for any integer u € Z”, also the integer remove-restore
technique applies.

As the corollary shows, a proper choice of the data weight
matrix is also of importance for ambiguity resolution. The
choice of weights is optimal when the weight matrix equals
the inverse of the ambiguity vc-matrix. A too optimistic pre-
cision description or a too pessimistic precision description,
will both result in a less than optimal ambiguity success rate.

Another aspect made clear by the corollary, is the relation
between ‘integer rounding’ and ‘integer least-squares’. One
of the simplest choices for ¥ would be a diagonal matrix.
In that case || @ — z ||% reduces to a sum of squares and dx
becomes the integer estimator that follows from a rounding to
the nearest integer of the entries of @. Thus dy = [@], where
‘[.]" denotes the operation of componentwise rounding, and

P(ars = a) = P([a] = a). (21

We can generalize this result to a whole class of integer esti-
mators based on rounding, when the choice ¥ = (Z” DZ)~!
is made, where D is a diagonal matrix with positive en-
tries and Z is an admissible ambiguity transformation. Am-
biguity transformations are said to be admissible when all
the entries of both Z and its inverse are integer (Teunissen,
1995). For this particular choice of &, we have || @ —z |2 =
(Za —u)'D(Za — u), withu = Zz € Z". Hence, when
parametrized in u, | @ — z ||22 again reduces to a sum of
squares. Thus & = [Za] and dy = Z~'[Za]. In this case
the integer estimator is computed by first transforming the
‘float’ solution, then applying the componentwise rounding
scheme, followed by the back-transformation. For the prob-
ability of correct integer estimation, we thus have

P(ars = a) = P(Z"'[Za] = a) (22)
for any admissible ambiguity transformation Z.

Note that (21) is a special case of (22). The choice Z = I,,,
however, is usually not the best one. That is, if one insists
on using the integer estimator based on rounding, one can
often improve upon the ambiguity success rate by choosing
an appropriate transformation matrix Z. This is particularly
true in case of GNSS, when the DD ambiguities are used.
Since the equality in (22) will hold true in case the vc-matrix
of Za is diagonal, an ambiguity transformation should be
used that results in a close to diagonal form as possible.
This is achieved when using the decorrelation process of the

LAMBDA method (Teunissen, 1993). Hence, when one de-
cides to use the integer estimator based on rounding, one
should at least decorrelate the ambiguities first, before ap-
plying the integer rounding scheme. In this way one will
obtain a success rate which is higher than the one obtained
without using the decorrelation process.

Summary

When evaluating the quality of the estimated real-valued
GNSS parameters, such as the ‘fixed” GNSS baselines or
atmospheric delays, it is not enough to simply assume that
the estimated integer ambiguities are deterministic variates.
Not only are the estimated integer ambiguities random by
definition, their probabilistic properties also depend on the
chosen method of integer estimation as governed by their
respective pull-in regions. In this contribution, these proba-
bilistic properties were given for the whole class of admissi-
ble integer estimators, of which ‘rounding’, ‘bootstrapping’
and ‘integer least-squares’ are special cases. Within this
class, assuming that the distribution of the ‘float’ solution
belongs to the family of elliptically contoured distributions,
the largest ambiguity success rate is obtained by the integer
least-squares estimator. This therefore also holds true for the
special case of a normally distributed ‘float’ solution, pro-
vided the ambiguity variance-covariance matrix is taken as
the corresponding weight matrix.
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