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Prediction of stress field in Japan using GPS network data
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The applicability of a new inversion method to the Japanese Islands is examined. This method can compute a
self-equilibrating stress increment from a strain increment, and the validity of the method is verified for metal-like-
materials. Some modifications will be needed in applying the new inversion method to the Japanese Islands when
a strain increment measured by the GPS array is used as input data. In this paper, we try to compute the stress
increment associated with a measured displacement increment. It is shown that the inversion works and the stress
increment is computed. The validity of the results, however, cannot be verified right now. Some information on
regional constitutive relations is obtained from the measured strain increment and the predicted stress increment.
We discuss the applicability of the inversion method, and clarify modifications that are needed for more reliable
prediction.

1. Introduction
The Geographycal Survey Institute of Japan (GSI) has

been operating a nationwide Global Positioning System
(GPS) array since 1994; see, for instance, Kato et al. (1998).
While this array is aimed at monitoring crustal deformation,
the data obtained can be used for the prediction of regional
stress increments and constitutive relations by applying a
suitable inversion method. As such a method, we adopt a
new inversion method proposed by the authors (Hori and
Kameda, 1998; Hori et al., 1999). This method was origi-
nally developed to identify local stress and constitutive rela-
tions of a small sample of metal-like material, by measuring
a distribution of strain on the sample surface.
While restricted to a two-dimensional plane state, a key

feature of the new inversion method is that it can find three
components of a stress increment using two equations of
equilibrium and one condition determined by a measured
displacement increment. A specific form of the constitutive
relations needs not be assumed. This sounds strange since
ordinary inversion methods estimate the parameters of as-
sumed constitutive relations by minimizing the difference
between measured data and computed displacement. How-
ever, the validity of the new inversion method is rigorously
proved, and the practical usefulness is being checked by a
numerical simulation and a model experiment; see Hori and
Kameda (1998, 2000).
In this paper, we examine the applicability of the new in-

version method to the Japanese Islands. Since the method
is for elasto-plastic bodies, our present purpose is to exam-
ine whether the method can work to produce stress incre-
ments associated with measured displacement increments.
The content of the paper is as follows: In Section 2, the basic
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formulation of the new inversionmethod is briefly presented,
together with results of a numerical simulation. In Section 3,
we apply the new inversion method to compute the stress
increment implied by a strain increment measured by GPS
during 1997 and 1998. We discuss the basic applicability of
the new inversion method to the Japan Islands. Index nota-
tion is used in this paper and the summation convention is
employed.

2. Formulation and Verification of Inversion
Method

First, we clarify the problem setting. A thin body, V ,
consisting of an elasto-plastic material is considered. The
following two assumptions are made: 1) the body is in a
state of plane stress; and 2) displacement and traction, ui
and ti , are measured on the surface S and the boundary ∂S,
respectively; see Fig. 1. The elasto-plasticity means that the
strain increment can be decomposed into elastic and plastic
parts, i.e., ε̇i j = ε̇ei j + ε̇

p
i j , where superscript e or p stands

for the elastic or plastic part. The elastic strain increment is
related to the stress increment through an elasticity tensor,
ci jkl , and the plastic strain rate is given as the gradient of
a certain yield function. While the yield function is com-
plicated, it is generally observed for metals that the plastic
strain increment is incompressible. Hence, wemake the third
assumption of ε̇

p
11 + ε̇

p
22 = 0.

Now, we consider three in-plane stress components. The
increments must satisfy the equilibrium,

∂σ̇11

∂x1
+ ∂σ̇12

∂x2
= 0,

∂σ̇12

∂x1
+ ∂σ̇22

∂x2
= 0. (1)

It then follows from σ̇i j = ci jkl ε̇ekl that Eq. (1) and the as-
sumption of ε̇

p
11 + ε̇

p
22 = 0 yield three equations for ε̇

p
i j . To
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Fig. 1. Body in plane stress state.

simplify expression, we denote σ̇ ∗
i j = − ci jkl ε̇

p
kl and rewrite

the three equations for ε̇
p
i j in terms of σ̇ ∗

i j . When ci jkl is
isotropic,

σ̇ ∗
11 + σ̇ ∗

22 = 0 (2)

is derived from ε̇
p
11 + ε̇

p
22 = 0, and Eq. (1) becomes differen-

tial equations for σ̇ ∗
11(= −σ̇ ∗

22) and σ̇ ∗
12. Traction increment

measured on the boundary prescribes boundary conditions.
Thus, boundary value problems are posed for σ̇ ∗

i j .
After some manipulation, the boundary value problem is

decoupled, and two boundary value problems for σ̇ ∗
11 and σ̇ ∗

12
are derived. For instance, the problem for σ̇ ∗

11 is⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂2σ̇ ∗
11

∂x21
+ ∂2σ̇ ∗

11

∂x22
= −∂2σ̇ a

11

∂x21
+ ∂2σ̇ a

22

∂x22
on S,

σ̇ ∗
11 = n1 ṫ1 − n2 ṫ2 − (n21σ̇

a
11 − n22σ̇

a
22) along ∂S,

(3)

where σ̇ a
i j is the apparent stress increment that is computed

by using strain increment as σ̇ a
i j = ci jkl ε̇kl . Equation (3) is

linear and can be solved easily by numerical computation.
Once σ̇ ∗

i j ’s are obtained, the stress increment is given as

σ̇i j = σ̇ a
i j + σ̇ ∗

i j . (4)

As an illustrative example, we present results of the nu-
merical simulation by Hori et al. (1999), who studied a rect-
angular material sample subjected to distributed forces; see
Fig. 2. Field variables such as displacement and traction
were first computed, and then the new inversion method was

Fig. 2. Numerical simulation of material sample.

Fig. 3. Comparison of stress distribution.

applied to predict the stress increment using the computed
displacement and traction increments as input data. It should
be emphasized that no information about plastic constitu-
tive relations was given although the elastic properties were
known a-priori. In Fig. 3, the comparison of the predicted
stress increment with the exact one is presented; a) and b) are
the exact and predicted σ̇12. The agreement is satisfactory as
the maximum relative error in predicting σ̇12 is less 1%, and
the stress concentration near the load is almost the same. It
is also shown that unknown plastic constitutive relations are
well predicted by using the inverted stress and the measured
data; see Hori et al. (1999).
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Fig. 4. Convergence of τ̇ .

Fig. 5. Effects of boundary on τ̇ .

Fig. 6. Effects of reference elasticity on τ̇ .

3. Application of Inversion Method to Japanse Is-
lands

We examine the applicability of the new inversion method
to the Japanese Islands, using a displacement incrementmea-
sured by the nationwide GPS array. It should be emphasized
that while the stress state of the Japanese Islands varies verti-
cally, wemay assume the plane stress state of the deformation
during a period of the GPS measurement. This is because, in
analyzing the deformation of the Japanese Islands during a
short period, we can model the islands as a thin body which
is subjected to the horizontal movement of the surrounding
plates. Since theupper surface is traction free, the bottomsur-
face is modeled as traction free as well. (The total stress, as a

matter of course, is in equilibrium with the gravity force and
hence vertical stress components cannot be neglected. For
the stress increment, however, the vertical components are
assumed to be much smaller than horizontal ones and hence
are neglected.) We use the least squares prediction to get rid
of measurement noises and to obtain a smooth distribution
of the strain increment; see El-Fiky and Kato (1999a, b) for
the least squares prediction. We use an isotropic reference
elasticity of Young’s modulus E = 1 [Pa] and Poisson’s ratio
ν = 0.25.
In applying the new inversion method, we must pay some

attention to the assumption of Eq. (2) and the boundary con-
ditions. If inelastic deformation is due to the sliding of faults,
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Fig. 7. Distribution of first invariant of strain and stress increment.

Fig. 8. Distribution of maximum shear and stress increment.

Eq. (2) holds since the sliding produces only shear deforma-
tion and the area change is zero; recall that Eq. (2) is derived
from

ε̇
p
11 + ε̇

p
22 = 0.

It should be mentioned that the inversion method presented
here can be applied if another condition beside Eq. (2) is
assumed. For instance, the assumption of the local isotropy
can be used as well, although the form of the boundary value
problems is slightly modified; see Hori and Kameda (2000).
The effects of unknown boundary traction can be treated
separately in Eq. (3) due to the linearity of the boundary
value problem, i.e., the solution is given by the sum of a
stress increment satisfying the non-homogeneous equations
and null boundary conditions and a stress increment satis-
fying homogeneous equations and the prescribed boundary
conditions. The latter will produce a uniform stress incre-
ment if the boundary tractions are more or less uniform. In
this analysis, therefore, we neglect the latter and compute
only the former, i.e.,⎧⎪⎪⎪⎨

⎪⎪⎪⎩
∂2σ̇ ∗

11

∂x21
+ ∂2σ̇ ∗

11

∂x22
= −∂2σ̇ a

11

∂x21
+ ∂2σ̇ a

22

∂x22
on S,

σ̇ ∗
11 = −(n21σ̇

a
11 − n22σ̇

a
22) along ∂S.

First, we make three preliminary checks of the inversion
method, solving the boundary value problems with a finite
elementmethod. Thefirst check is the convergence of numer-
ical solutions. In Fig. 4, we plot the maximum shear stress

Fig. 9. Distribution of regional stiffness.

increment, τ̇ , for different discretizations; a) and b) are for
the element size of� = 0.25 and 0.125 degree, respectively.
The convergence is satisfactory as the relative difference be-
tween these two cases is around 1%. Second, we examine
the effects of the boundary conditions. Two configurations
of the domain are used, and zero tractions are prescribed on
the boundary. The distribution of τ̇ is plotted in Fig. 5. It is
seen that while there are some differences near the bound-
ary, the distribution within the Japanese Islands is not much
influenced by the boundary configurations. Finally, we com-
pute the effects of the reference elasticity, ci jkl , which com-
putes apparent stress increment; unlike elasto-plastic metals,
this elasticity cannot be determined for the Japanese Islands.
Since isotropy is assumed, we change Poisson’s ratio ν and
plot the distribution of τ̇ in Fig. 6; a) and b) are for ν = 0.2
and 0.3, respectively. Even though there are somedifferences
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from place to place, the overall patterns are similar to each
other. These preliminary checks support the applicability of
the new inversion method to the Japanese Islands.
Now, we compute the stress increment fully, using the

element size of � = 0.125, the configuration of Type 1
shown in Fig. 5a) and Poisson’s ratio of ν = 0.25. In Figs. 7
and 8, we plot the distribution of the first invariant of strain
and stress increment,

ε̇ = ε̇11 + ε̇22, σ̇ = σ̇11 + σ̇22,

and the distribution of the maximum shear strain and stress
increment,

γ̇ =
√

(ε̇12)2 + (ε̇11 − ε̇22)2/4,

τ̇ =
√

(σ̇12)2 + (σ̇11 − σ̇22)2/4,

respectively. The difference between the strain and stress
increment distributions clearly show that, since the apparent
stress increment does not satisfy equilibrium, non-zero σ̇ ∗

i j is
generated and produces self-equilibrating stress increment.
Since the strain and stress increments are obtained, we can
consider regional constitutive relations. As an example, we
plot the ratio of τ̇ to γ̇ , which is a measure of the regional
shear stress, in Fig. 9. It is seen that there are regional het-
erogeneities.
Finally, we consider the applicability of the new inversion

method to the Japanese Islands. In Figs. 7 and 9, high stress
concentration near the boundary and some regions of quite
large τ̇ /γ̇ are observed. These values are unrealistic, since
this means that these regions have stiffness larger by an order
of magnitude than nearby regions. They are probably due to
the singularity of the solution of the differential equations at
the corner and the failure of the assumption of Eq. (2). For
unknown traction increment, some guess can be made by
considering in-situ measurement of stress at several sites or
by computing the stress increment that is associated with the
overall crustal movement. The assumption of Eq. (2), how-
ever, should be replaced with a more general one. Also, we
have to consider the least square prediction of displacement
increment which may underestimate the regional particular

deformation. In the present boundary value problem, how-
ever, higher order derivatives of displacement increment are
computed and hence a smoother distribution is required. To
resolve these two problems, Hori and Kameda (1999) are
proposing several modification of the inversion method.

4. Concluding Remarks
The results of preliminary checks and trial computation

support the basic applicability of the new inversion method
to the Japanese Islands. While further investigation is def-
initely needed, it is seen that the new inversion method is
potentially useful in predicting the stress increment. Draw-
backs and limitations of the new inversion method are clari-
fied, and rationalmodificationswill bemade formore reliable
stress estimation. Once these drawbacks and limitations are
resolved, the comparisons with known crust structures will
bemade to examine the validity of the new inversionmethod.
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