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A three-dimensional robust seismic ray tracer for volcanic regions
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Seismic velocity structure of volcanic region is highly heterogeneous so that seismic ray tracer used in this field
should be robust for the velocity heterogeneity. From this view point a three-dimensional robust seismic ray tracer,
effective in any complicated velocity structure, is developed by using a hybrid scheme of the shortest path calculation
and the downhill simplex optimization method. The node configuration necessary for the three-dimensional shortest
path calculation is newly presented. Validity and efficiency of the calculation are examined by synthetic tests. A
travel time accuracy of less than 0.1%, and a rms ray path error of 0.05 km are achieved. Calculations for the synthetic
velocity models and checkerboard testing show the effectiveness of this ray tracer in practical situations. The present
ray tracer is recommended to be used in travel time tomography in highly heterogeneous velocity structure such as
volcanic regions.

1. Introduction
The seismic ray tracer is a tool for obtaining ray paths and

travel times of seismic waves in a given velocity structure. It
is essential in forward modeling, such as hypocenter deter-
mination and travel time tomography. The seismic velocity
structure in volcanic regions is highly heterogeneous. The
seismic ray tracer used in volcanic areas should consequently
be robust to this heterogeneity. The present paper provides
a robust three-dimensional seismic ray tracer applicable to
observation in volcanic regions.
There are four kinds of algorithms used in existing ray

tracers. These are shooting, bending, finite-difference and
the graph theory (the shortest path calculation). Of these,
the finite-difference method and the method by the graph
theory are considered to be robust to heterogeneous velocity
structure.
The finite-difference method solves the eikonal equation

by using numerical schemes such as theRunge-Kuttamethod
andwave front expansion (Reshef andKosloff, 1986; Vidale,
1988; van Trier and Symes, 1991; Podvin and Lecomte,
1991). When accuracy and stability are required, thismethod
becomes similar to the method by the graph theory based on
Fermat’s principle (Klimeš and Kvasnička, 1994). It also
loses simplicity and becomes expensive (Zhang and Toksöz,
1998). Comparisons of the finite-difference method and
graph theory are found in Klimeš and Kvasnička (1994) and
Zhang and Toksöz (1998); they suggest the superiority of ray
tracing by the graph theory.
Nakanishi and Yamaguchi (1986) applied the idea of the

shortest path (in the graph theory) to seismic ray tracing. This
method regards the solution for the shortest path over a net-
work as satisfying the Fermat’s principle of stationary time
for wave propagation. The basic principle is straightforward
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and guarantees a stable global minimum travel time while
requiring no initial value and no derivative calculation. A
concise explanation on fundamental concept of this method,
and the calculation scheme for the first arrival and the latter
phases, are found in Moser (1991).
Moser (1991) evaluated the errors in this method and

demonstrated its superiority. He also recommended using
the heap data structure, followingGallo and Pallottino (1986)
in the shortest path calculation via Dijkstra’s algorithm
(Dijkstra, 1959). Since the work of Nakanishi and
Yamaguchi (1986), several improvements have increased the
accuracy and the efficiency of the calculation (e.g., Saito,
1989, 1990; Moser, 1991; Fisher and Lees, 1993; Klimeš
and Kvasnička, 1994; Cheng and House, 1996; Zhang and
Toksöz, 1998).
Reliability of the tomographic results is sensitive to nu-

merical noise introduced in the forward calculation (Fischer
and Lees, 1993). Furthermore, calculations of more than
thousands of seismic rays are involved. Robustness under ve-
locity heterogeneity is guaranteed from Dijkstra’s algorithm
for the shortest path calculation. However, the efficiency of
the calculation using existing shortest path ray tracers is in-
sufficient for practical use in applications such as travel time
tomography.

2. Methods
The error in the ray tracer using the shortest path calcu-

lation depends on the number of rays connected to the node
(angle resolution) and the size of the block (space resolu-
tion); these two errors are independent (Moser, 1991; Fisher
and Lees, 1993). To obtain accurate ray path and travel
times, it is therefore important to use the node configuration
of multi-connections and a small block size. However, use of
small blocks involves an increase in the number of nodes and
consequently reduced the efficiency of the calculations. Be-
low, a formulation of the node configuration is presented for
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multi-connections in three-dimensions and a hybrid scheme
is proposed for the rapid calculation of the shortest path.
2.1 Node configuration
Saito (1990) and Cheng and House (1996) present a three-

dimensional scheme of the shortest path calculation for ray
tracing. In this scheme the nodes are placed only at the
vertexes of the blocks. Therefore, high resolution of the
ray direction requires connection with the vertex of distant
blocks. To construct the ray path by connecting the nodes
with faraway blocks is inefficient because of the increase in
thenumber of nodes. Abrupt changes in thevelocity structure
are also problematic because they require long ray paths of
constant velocity.
Alternative schemes of node configuration have been pro-

posed for the two-dimensional problem (e.g., Nakanishi and
Yamaguchi, 1986; Moser, 1991; Fisher and Lees, 1993). In
this node configuration, nodes are placed on the boundary
of each cell, and the ray passes through to the neighbor cell
via a node common to each cell. This node configuration re-
quires neither a long ray path nor increases in the number of
nodes to give a high-resolution ray path. The corresponding
node configuration is formulated for the 3-D problem by the
following equations (1). An example of ray paths are shown
in Fig. 1.

|xv − xi | ≤ L

|yv − yi | ≤ L

|zv − zi | ≤ L

|xv − x j | ≤ L

|yv − y j | ≤ L

|zv − z j | ≤ L

(xv − xi )(xv − x j ) ≥ 0

(yv − yi )(yv − y j ) ≥ 0

(zv − zi )(zv − z j ) ≥ 0

(1)

Fig. 1. Node configuration and examples of path (A to B). nd: node
distance, NPE: number of nodes per edge. When the travel time of the
path indicated by thick arrows is less than that indicated by thin arrows,
the former is adopted as the ray path.

where

L: the edge length of the block (Fig. 1)

(Xi , Yi , Zi ): coordinate of the node Ni (Fig. 1)

(X j , Y j , Z j ): coordinate of the node N j (Fig. 1) connected
to the node Ni

(Xv, Yv, Zv): coordinate of a common vertex Nv of the
blocks to which the nodes Ni and N j belong
(Fig. 1).

Equations (1) constrain the relation of the nodes that rep-
resent the ray path. It is not necessary to make the node
distances identical on the edge. In the actual calculation,
however, identical distances are adopted for convenience of
the code (Fig. 1). The number of nodes per edge (NPE)
(Fischer and Lees, 1993) is determined from the accuracy
required.
The travel time between two nodes is calculated using the

trapezoidal rule, and the velocity of the node is obtained using
linear interpolation from surrounding eight vertexes whose
velocities are given as part of velocity structure (e.g., Um and
Thurber, 1987). Since the travel time between two nodes is
defined, we can find the shortest path and its travel time using
Dijkstra’s algorithm (Moser, 1991).
2.2 Hybrid scheme with optimization method
To increase the accuracy of the locus of the ray path and

the travel time, the cubic block must be small. This increases
the number of nodes and causes inefficiency. To avoid this
problem I propose the following hybrid scheme;

Step 1: Find a ray path using Dijkstra’s algorithm with the
appropriate block size and node configuration.

Step 2: Minimize the travel time of the ray path obtained in
Step 1 using conventional optimization methods.

There are many optimization methods including grid-search,
gradient-search, the Marquardt method, Monte Carlo tech-
niques, genetic algorithms, neural networks, fuzzy logic. For
speed and robustness the simplex method (Nelder andMead,
1965; Press et al., 1992) will be used here. This method
seeks the minimum value of a multi-dimensional function
and requires no calculation of derivatives. Calculation time
increases with the number of dimensions. However, in three-
dimensions, this is not severe and is compensated by the
stability.

Fig. 2. Velocity structure for the test and a schematic ray path. The velocity
depends on depth as V (z) = 1 + 0.5 ∗ z, where V (z) is velocity (km/s)
and z is depth (km).
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Fig. 3. Results for the velocity structure shown in Fig. 2. (a) Results obtained by shortest path calculation with block size 500 m and four nodes per edge
(NPE). (b) Results of optimization of the ray path in (a) with the simplex method. (c) Ray path obtained by exact solution (e.g., Sheriff and Geldart,
1995).

Fig. 4. The travel time and relative error as functions of the number of
nodes per edge (NPE) and the block size.

The detailed procedure for the shortest ray path calculation
with simplex optimization is as follows;

Step 1: Find the shortest raypathusingDijkstra’s algorithm

1-1: Set the node configuration (Block size, NPE)

1-2: Find the nearest neighbor node to the source
and the station

1-3: Find the shortest ray path using Dijkstra’s al-
gorithm

Step 2: Optimize the travel time using the simplex method

2-1: Construct the node series N1 to Nn , adding
the points of the source and the station to the

Fig. 5. The rms ray path error as a function of the number of nodes per
edge (NPE) and the block size.

nodes that represent the shortest ray path ob-
tained by Step 1-3, where N1, Nn represent
the source and station respectively

2-2: Calculate the “old” travel time from N1 to Nn

2-3: Set the termination condition of the simplex
method (minimum simplex size, maximum
number of function evaluations)

2-4: Search the coordinate of the node Ni using
the simplex method that minimizes the travel
time from Ni − 1 to Ni + 1 via Ni , where
Ni − 1 and Ni + i are fixed temporally, and
then move “i” from 2 to n − 1
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Fig. 6. CPU time as a function of the number of nodes per edge (NPE)
and block size. The open circle and open square respectively indicate the
CPU time for block sizes of 10 m and 200 m with NPE = 7.

2-5: Calculate the “new” travel time from N1 to
Nn using the results of 2-4

2-6: Compare the “new” travel time with the “old”
travel time and if the “new” one is larger then
terminate the procedure and take the old one
as the final travel time; otherwise exchange
the value of “new” and “old” and repeat the
procedure from 2-4

The appropriate block size and node configuration in Step
1 are determined from a few trials, taking into account the
heterogeneous size of the velocity structure and the accuracy
required.
When an abrupt change in the velocity field is anticipated

the search range for Ni in Step 2-4 should be kept small (e.g.,
the block size) because the travel time between the nodes is
calculated using the trapezoidal rule.
Step 2 connects the stations and the seismic sources to

the nodes for the shortest path calculation, and smoothes the
zigzag ray path of Step 1. With real data this function of Step
2 is very important because, in general, the coordinates of
stations and seismic sources do not coincide with the nodes
of the shortest path calculation.

Fig. 7. The travel time and rms ray path error, by shortest path calculation
with simplex method for a heterogeneous velocity model, as a function
of block size with NPE = 7.

3. Test Results
Example 1
Constant velocity gradient model
In this section the validity of this hybrid calculation scheme

is confirmedbyusing the synthetic velocity structure inwhich
the exact ray path and the travel time are obtained theoret-
ically. Figure 2 shows the adopted velocity structure and
the layout of the source and the station. The travel time and
the ray path loci for this velocity structure are easy to cal-
culate (e.g., Sheriff and Geldart, 1995). Using this velocity
structure, errors in the travel time and ray path are examined,
together with the efficiency of the scheme.
An example showing improvement of the ray path and the

travel time using this hybrid scheme with simplex method is
given in Fig. 3. In this case a large block size of 500 m is
adopted to highlight the effect of the hybrid scheme. Fig-
ures 3(a) and (b) are respectively the results of Steps 1 and 2.
The travel time with relative errors according to the shortest
path ray tracing (SPR) and SPR with the simplex method
are shown in Fig. 4 as a function of the number of nodes
(NPE) and the block size. When the NPE number is greater
than four the relative errors in the travel time are reduced
significantly. For example, relative errors in the travel time
for 200 m block size are 1.0∼1.3% by the shortest path ray
tracing (SPR) scheme alone, but are reduced to 0.02∼0.06%
by the hybrid scheme with simplex method.
The degree of improvement of the ray path loci is evaluated



K. NISHI: 3-D ROBUST SEISMIC RAY TRACER 105

Fig. 8. Examples of travel times and ray paths for a 2-D velocity structure. (a) Travel times and ray paths for a constant velocity gradient. (b) Travel times
and ray paths with lateral velocity variation.

using the ray dissimilarity defined by Fisher and Lees (1993);

Ray dissimilarity =
(

100∑
n=0

|pn − qn|2
101

) 1
2

where pn and qn are points along the two rays whose travel
times are equal to n/100 of the full rays’ travel times. The ray
dissimilarity with respect to the exact ray path loci and the
root mean square (rms) ray path errors are shown in Fig. 5.
Significant improvement in the ray path loci is achieved by
the present hybrid scheme with the simplex method.
The efficiency of the hybrid scheme with the simplex

method is now examined. The accuracy required for travel
times in tomography is between 1% (Fischer and Lees, 1993)
and 0.1% (Klimeš and Kvasnička, 1994). From the relative
error in the travel time as a function of block size in Fig. 4, a
block size of 10 m or less may be required to give a relative

error of 0.1%.
Figure 6 shows the CPU time taken as a function of block

size and the number of nodes per edge (NPE). Calculations
are performed with an ordinary personal computer with a
single CPU (K6-II, 400 MHz), 512 MB memory space and
the Windows 98 operating system. When the NPE is 7, the
CPU time for 10mblock size is estimated to be about 3×105 s
(open circle in Fig. 6), whereas for block size 200m the CPU
time is 34 s (open square in Fig. 6). The relative error for a
200 m block size is reduced to less than 0.1% by the hybrid
scheme with the simplex method (Fig. 4). The relative error
for a 10 m block size by SPR alone is estimated to be 0.1%
or more, as mentioned above. Since the CPU time for the
optimization using the simplex method is negligible (about
1 second), it is concluded that the efficiency of the orders of
about 4 (3×105/3.5×10) is achieved by the hybrid scheme
with the simplex method.
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Fig. 9. Ray paths for a strongly heterogeneous 2-D velocity structure.

Fig. 10. Examples of the propagation of a wave front and ray paths calculated for a 3-D heterogeneous velocity structure. (a) Assumed velocity structure.
Top: Horizontal projection. Solid star at (5, 0, 0) indicates the source point. Bottom: Vertical projection. (b) Wave fronts (thin lines) and ray paths
(thick lines) at the surface (z = 0 km) (top figure) and intermediate depth (z = 2 km) (bottom figure). The points A and B on the surface behave as
secondary sources (Huygens’ priciple).
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Fig. 11. Results of the checkerboard test for travel time tomography using the shots and stations configuration (top right) of Project ASO98 (Seismic
explosions) (Sudo, 1999). Solid dots and asterisks indicate the stations and shots respectively. Checkerboard pattern (top left) is for a depth of 1 km.
A bottom left and bottom right are the results of velocity inversion with a pseudo bending ray tracer and the present ray tracer, respectively. Superior
velocity recover is achieved by inversion with the present ray tracer.

Example 2
Discontinuous velocity model
The travel time between the nodes is calculated using the

trapezoidal rule. This causes some travel time errors in a
discontinuous velocity field. However, the error is reduced
by using a small block size. As an example, the velocity
model V (z) = 1.0 + 0.5 ∗ z km/s (0 ≤ z < 2 km) and
V (z) = 3 km/s (2 ≤ z) was tested, where z is the depth in
km and the source and station configurations are the same as
in Fig. 2. The travel time and ray dissimilarity by the shortest
path calculation with the simplex method and on NPE of 7
are shown in Fig. 7 as a function of block size. A travel time
error less than 0.1% and ray path error less than 0.05 km is
obtained with the block size of 50m. In the constant gradient
velocity model (example 1), this accuracy is achieved by the
larger block size of 200 m. The CPU time for a block size
of 50 m is about two orders of magnitude larger than for a
block size of 200 m (Fig. 6).
Example 3
Heterogeneous velocity model in 2-D
Examples of ray paths in a 2-D heterogeneous velocity

structure are shown in Figs. 8(b) and 9. Ray paths for the con-
stant velocity gradient are shown for comparison in Fig. 8(a).
The velocity of Fig. 8(a) is given by V (z) = 1.0 + 0.5 ∗ z,
where z is the depth in km. The velocity structure in Fig. 8(b)

is obtained from the velocity structure of Fig. 8(a) by impos-
ing a random velocity fluctuation of maximum amplitude
40% at all grids of 1 km spacing. The velocity structure of
Fig. 9 is obtained by imposing random values between 1 and
8 km/s on grids of 1 km spacing. It can clearly be seen that the
seismic rays pass preferentially through high velocity areas
and avoid low velocity areas.
Example 4
Heterogeneous velocity model in 3-D
Examples ofwave fronts and ray paths for a heterogeneous

3-D velocity structure (Fig. 10(a)) are shown in Fig. 10(b).
Seismic waves passing through a high velocity zone arrive
at points A and B in Fig. 10(b). The points A and B then
behave as new wave sources; this phenomenon is known as
Huygens’ principle.

4. Discussion
The performance of the present ray tracer for travel time

tomography was also examined by means of the checker-
board test. The configuration of the shots and the stations
of Project ASO 98 (Seismic explosions) (Sudo, 1999) were
used. The velocity structurewasmade by adding±40% fluc-
tuation to the regional velocity structure obtained by Sudo
(1991).
The results of the checkerboard test are shown in Figs. 11
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Fig. 12. Travel time residuals of the checkerboard test shown in Fig. 11. Comparison of inversion with pseudo bending (a) and inversion with the present
ray tracer (b) clearly shows that travel time residuals are halved by the present ray tracer.

and 12. Results of the inversion with pseudo bending ray
tracing (Um and Thurber, 1987) are also shown for compar-
ison. Velocity inversion with the present (SPR with simplex
method) shows much better velocity retrieval. The present
ray tracer is consequently recommended for the velocity in-
version in the heterogeneous velocity structure.

5. Conclusions
Of existing ray tracers, the shortest path calculation

method is themost robust for strong velocity heterogeneities.
Its efficiency, however, is not sufficient for practical applica-
tions such as travel time tomography. To improve the accu-
racy and efficiency of the calculation, the node configuration
for a 3-Dmedium and the hybrid calculation scheme are pro-
posed. Thehybrid calculation schemeemploying the shortest
path calculation with the simplex method, both improves the
efficiency of the calculation and resolves the inconsistency
between the coordinates of stations or seismic sources and
the nodes for the shortest path calculation.
Tests of the proposed method by synthetic data and a

checkerboard test for velocity inversion show the effective-
ness of this ray tracer in highly heterogeneous velocity struc-
tures.
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