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Analysis of pressure waves observed in Sakurajima eruption movies
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Four eruption movies of Sakurajima volcano taken in the 1980s are analyzed. Pressure waves associated
with these eruptions are identified by changes in luminance using a new image processing method. Results of
the processing determined the apparent speeds of these waves at approximately 342–574 m/s. Further, spatial
characteristics of the pressure waves are quantitatively investigated to estimate the source conditions of volcanic
explosions.
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1. Introduction
Strong atmospheric pressure perturbation is known to be

generated by an explosive volcanic eruption and propagates
as sound and infrasound waves. These waves, which have
been recorded by microphones and on microbarographs at
numerous volcanoes worldwide (e.g., Kamo et al., 1994;
Ripepe and Marchetti, 2002), are of importance in the
understanding of source dynamics and/or the mechanism
of volcanic explosions (Buckingham and Garcés, 1996;
Vergniolle and Brandeis, 1996; Morrissey and Chouet,
1997).

Strong pressure waves are commonly visualized above
the crater as a flashing arc, as first observed at Vesuvius by
a change in the refractive index of air (Perret, 1912). A vul-
canian eruption of Ngauruhoe in 1975 produced a temporal
condensation cloud that was considered to correspond to the
rarefaction phase of a shock wave (Nairn, 1976). At Saku-
rajima, the disappearance of a part of the preceding cloud
caused by the compression phase has been captured by a
TV camera (Ishihara, 1985).

Yokoo and Taniguchi (2004) recently developed a
method to detect pressure waves from eruption movies us-
ing image processing. This image processing method iden-
tified pressure waves within the ash-laden plume at Aso vol-
cano that were otherwise too weak to be recognized directly
by the naked eye. The same method is applied here to old
Sakurajima eruption movies to re-examine the characteris-
tic properties of pressure waves.

2. Movies Images of Sakurajima Eruptions
Nearly 8000 explosive eruptions (vulcanian-type of erup-

tions) have been recorded at Sakurajima volcano in southern
Kyushu, Japan since 1955. These eruptions are typically ac-
companied by strong air-shocks emitted by the outburst of a
gas pocket beneath the crater (Ishihara, 1985). The general
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waveform of air-shock observed from recordings by micro-
phones is mainly composed of two phases: an impulsive
compression phase lasting 0.6–1.5 s and a subsequent rar-
efaction phase with a longer duration (Iguchi and Ishihara,
1990; Garcés et al., 1999).

In the early 1980s, Sakurajima Volcano Observatory
(SVO) installed a monitoring system for eruptions by com-
bining a TV camera with seismometers (Fig. 1). This
system succeeded in capturing visible waves through the
clouds during explosive eruptions, the velocities of which
were estimated to be 440–550 m/s by tracing the disappear-
ance position of the clouds (Ishihara, 1985).

Four eruption movies obtained by the monitoring system
in the 1980s are selected in this study (Table 1). All movies
are of vulcanian-type eruptions accompanied by pressure
waves of 90–320 Pa recorded on a microbarograph at Haru-
tayama (HAR), 2.7 km from the summit (Fig. 1; Table 1).

An example of an eruption image (A23 eruption; Dec.
15, 1982) is selected to explain the nature of the visualized
pressure waves. Four snapshots with luminance profiles of
this eruption taken at 1.0-s intervals are shown in Fig. 2.
Before the eruption, white clouds existed just above the
crater (1065–1440 m altitude; frame #00 in Fig. 2). After
1.0 s, parts of the clouds turned slightly darker (#30), then
became white in the upper part (#60). The clouds quickly
returned to their original appearance before eruption (#90).
Detailed characteristics of this phenomenon are described
in the next section.

3. Image Processing and Results
Image processing of the four movies recorded on U-matic

video tapes are converted to digital files with VGA-sized
resolution (640×480 pix) and 30 fps. Image processing fol-
lows the method of Yokoo and Taniguchi (2004) in which
the luminance data of the image is calculated by the follow-
ing equation:

Y = 0.299 × R + 0.587 × G + 0.114 × B, (1)

where, Luminance, Y , is an index of brightness on digital
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Table 1. Summary of results obtained from the movie image analysis

No. Date & Time P a Vcomp
b Vrare

b λcomp
c λrare

c

(Pa) (m/s) (m/s) (m) (m)

A05 1982/05/23 11:28 140 574 (±21) >280

A09 1982/06/07 11:26 90 342 (±28) 150

A23 1982/12/15 11:25 110 459 (±22) 464 (±14) 175 >390

A83 1987/12/08 10:40 320 514 (±14) >210

aAmplitude of pressure wave recorded at HAR, 2.7 km from the summit crater.
bPropagation speed of compression and rarefaction phases of pressure wave.
cLength of compression and rarefaction phases of pressure wave.

Fig. 1. Sketch map of Sakurajima volcano with 100-m contours. SVO
and HAR (open circles) denote the locations of a TV camera and a
microbarograph, respectively. Solid circles denote the seismic stations.
The area between the two lines indicates the field of view of the movie
image of the A23 eruption, as shown in Fig. 2.

images and is calculated from R, G and B color data for
each pixel (Richard, 1977; eq. (1.38) of Plataniotis and
Venetsanopoulos, 2000). This index corresponds to the gray
scale of the image. R, G and B data are 8-bit values for
each; therefore, the range of Y becomes 0–255. Increases or
decreases in Y values show darker or brighter on the digital
images, respectively.

To quantify the pressure wave visualized by image pro-
cessing, a rectangular zone of 20-pix width is selected, as
shown at the center of the frame #00 (Fig. 2). Next, the
mean luminance, Y , for each horizontal line in this zone,
which is an indicator of altitude, is calculated for each
frame.

Resulting sequential changes in mean luminance at sev-
eral altitudes (1100–1475 m) are shown in Fig. 3(a). Prop-
agating pressure waves are recognized as the first dark and
the subsequent bright changes in the images. This effect
is particularly clear at altitudes of 1125–1425 m where the
clouds existed before the eruption (Fig. 2). Temporal con-
densation clouds are also recognized as increasing in lu-
minance at an altitude of 1450 m where no cloud existed
before the eruption.

The luminance changes in an amplitude of the first dark
portion is normalized and shifted to match the onset time,
indicated by left-side arrows in Fig. 3(a). As a result of
stacking the normalized changes, the duration of the dark

portion is constrained to be about 0.4–0.5 s (Fig. 3(b)). On
the other hand, the duration of the bright portion is 1.0–
2.5 s. The luminance change in the bright portion is a few
times greater than that of the dark portion, making it easy to
recognize the latter phase by the formation of condensation
clouds on the time-sequenced images.

Also of note is that the differences between onset time of
the dark portion and time of the brightest peak were fairly
constant at 0.7–0.9 s (Fig. 3(b)). This finding suggests that
the apparent speeds of the propagating pressure wave were
of similar value. To verify this, these two times of changes
in luminance are checked at every 5–8 m increase in altitude
(Fig. 4). The velocities of the waves are estimated to be 459
m/s (±22 m/s) and 464 m/s (±14 m/s), respectively, both of
which are greater than the speed of sound in air (∼335 m/s).

Iguchi and Ishihara (1990) reported that duration of the
compression phase observed at SVO (5.5 km from the
crater; Fig. 1) was 0.6–1.5 s with a much longer rarefac-
tion phase. Image processing in the present study revealed
a similar duration for the first dark portion of about 0.4–
0.5 s, with that of the following dark portion a few times
longer. Considering that these changes occurred just above
the crater, the dark and bright portions are thought to corre-
spond to the compression and rarefaction phases of the pres-
sure wave, respectively. Assuming that the visual appear-
ance of the pressure wave was induced by a phase change
of H2O with no time delay, the velocity of the compression
phase of the pressure wave, Vcomp in Table 1, is considered
to be 459 m/s and the representative velocity of rarefaction
phases, Vrare, is 464 m/s.

The spatial dimension of the compression and rarefaction
phases is estimated by a method that averages luminance
data in the selected rectangular zone at the first frame (#00),
which is then subtracted from mean data estimated in subse-
quent frames. Resultant profiles of the luminance change at
5-frame intervals (1/6 s) are plotted in Fig. 5. The first dark
portion and subsequent bright portion can be clearly seen to
propagated upwards. The length of the compression phase,
λcomp, was approximately 175 m, and that of the rarefaction
phase, λrare, was 390 m or more.

Results of data processing for all four eruptions are sum-
marized in Table 1. Apparent speeds of the pressure waves,
Vcomp and Vrare, were greater than the sound velocity in air.
However, all parameters could be determined only for the
A23 eruption. In the cases of the A05 and A83 eruptions,
only condensation clouds were distinguishable from lumi-
nance data (Fig. 6). In this case, the velocity and wave-
length of the rarefaction phase of the pressure waves were
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Fig. 2. Four snapshots of the A23 eruption at 1.0-s intervals (frames #00, #30, #60 and #90). Vertical luminance profiles along the rectangular zone,
as shown in #00, are also seen to the right of each snapshot. The white dashed line in #00 indicates the profile of the summit crater based on the
topographical map of 1981 created by the Geographical Survey Institute (altitude of crater bottom is ∼850 m).
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Fig. 3. (a) Luminance changes with time at several altitudes ranging
from 1100–1475 m. Increasing luminance or brightening is plotted
upwards. Each arrow on the left side denotes the onset of the dark
portion and that on the right denotes the time of highest luminance, or
the brightest portion. (b) Eleven stacked luminance changes normalized
to the change in the first dark portion (1150–1400 m). All downward
arrows are at the same position of time in (a).

estimated. Only the values of the compression phase for the
A09 eruption could be calculated.

4. Discussion
The time delay between the pressure wave and other

eruption phenomena provides us with useful information on
eruption dynamics (Ripepe et al., 2001, 2002). In the case
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Fig. 4. Sequential relationship of (A) onset time of the dark portion
and (B) time of the brightest peak at each altitude. Eight dotted lines
represent sequential luminance changes at each altitude.
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Fig. 5. Differences in luminance data over the time sequence. Plus values
are shown to the right, indicating brightening.

of the A23 eruption, the pressure wave was emitted from
the crater about 2.4 s or longer before the ejection of the
volcanic cloud (Fig. 7). This time delay suggests that sur-
face phenomena of a volcanic explosion are started by the
outburst of a gas pocket just beneath the crater bottom (at
the uppermost part of a magma conduit), then pyroclastic
materials are ejected as a volcanic cloud from a deeper part
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Fig. 6. (a) Images of A83 eruption (frames #00 and #60). (b) Sequen-
tial luminance changes at several altitudes with arrows indicating the
brightest portions. Disturbance in the lower right is caused by a rising
volcanic cloud.
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Fig. 7. (a) Relationship between propagating pressure wave and rising
volcanic cloud over time for the A23 eruption. �t is minimum time
delay of these two phenomena at the crater bottom. (b) Snapshot of the
A23 volcanic cloud at frame #1200.

of the conduit (Ishihara, 1985).
We attempt here to estimate the internal pressure and size

of the gas pocket using a 1-D spherical explosion model that
is characterized as an instantaneous rupture of a spherical
vessel containing a high-pressurized gas (Sod, 1977; Saito
and Glass, 1979). Velocities of pressure waves and pressure
changes are calculated numerically and then compared with
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Fig. 8. (a) Relationship between internal pressure and mean velocity of
pressure wave at a range of 250–600 m distance calculated from a 1D
spherical explosion model. r denotes the radius of the gas pocket. (b)
Comparison between calculated waveforms of pressure waves at 550 m
from the source and observed luminance change at 550 m above the
bottom but plotted upside down (data equivalent to 1400 m altitude).

those of the luminance change derived from the images.
The 1-D basic equations for an inviscid, non-heat-

conducting, spherical-symmetric flow can be written in vec-
tor form as follows (Sod, 1977):

Ut + F(U)x = −W (U), (2)

where,

U =
⎛
⎝

ρ

m
e

⎞
⎠ (3)

F(U) =
⎛
⎝

m
m2/ρ + p

m(e + p)/ρ

⎞
⎠ (4)

W (U) = (α − 1)

⎛
⎝

m/x
m2/ρx

m(e + p)/ρx

⎞
⎠ . (5)

Here, ρ is the density, m is the momentum, p is the pres-
sure, e is the energy per unit volume, t is time, x is the space
co-ordinate of symmetry, and subscripts indicate differenti-
ations. α is a constant which is equal to 3 for this spherical
symmetry case. We may write m and e as

m = ρu (6)

e = p

γ − 1
+ 1

2
ρu2, (7)

where u and γ are the velocity and the ratio of specific heat,
respectively. The gas pocket is assumed to be composed
of 500◦C H2O vapor degassed from magma, and the atmo-
sphere is air of 5◦C. The values of ρ for both the gas pocket
and outside the gas pocket are estimated using the equation
of state for ideal gas: p = ρRT .
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Based on the results of numerical calculation, the mean
velocity of the pressure wave at 250–600 m distance from
the crater bottom is determined from two parameters: inter-
nal pressure and radius of the gas pocket (Fig. 8(a)). This
range of distance is equivalent to altitudes of 1100–1450 m,
within which the waves of the A23 eruption are observed
in movie images (Figs. 2 and 4). This relation indicates
that if a source pressure is assumed to be 140–280 bars,
as estimated from initial ejection speeds of ballistics basi-
cally according to Bernoulli’s equation (Iguchi et al., 1983;
Ishihara, 1985, 1990), then a radius of 10–15 m would be
required. This estimated radius is comparable to the size of
a red-growing part in the lava dome that disappears after the
explosion. It is also consistent with the size of the pressure
source estimated from ground deformation data (Ishihara,
1990).

Pressure waveforms at a distance of 550 m from the crater
bottom for the two cases of source conditions are calcu-
lated (Fig. 8(b); internal pressure and radius are 140 bar
and 15 m, and 280 bar and 10 m, respectively). Observed
luminance change at the same distance, corresponding to
an altitude of 1400 m, is also illustrated in the same fig-
ure using a representative actual pressure wave. Compar-
ing the pressure waveform with the luminance change, the
calculated duration of the compression phase of the wave is
found to almost coincide with that of the luminance change.
In contrast, the subsequent rarefaction phase does not show
such good agreement with that of luminance. We believe
this discrepancy is due primarily to the simplicity of the
explosion model used here; for example, the model does
not account for viscous property of the air through which
the waves pass. Nevertheless, combining digital image pro-
cessing with numerical simulations of propagating pressure
waves appears to be a promising tool for the the evaluation
of the source conditions of volcanic explosions.

5. Concluding Remarks
We re-examined eruption movies of Sakurajima volcano

using an image processing method that allows for the easy
identification of propagating atmospheric pressure waves
from changes in luminance. Characteristic features of the
waves excited by the explosions, such as velocity, were de-
rived quantitatively. The apparent propagating speeds of the
identified pressure waves were greater than the sound veloc-
ity of air (342–574 m/s). A spatial scale of the compression
phase was about 150 m and that of the rarefaction phase
was a few times longer. Such results from movie images
may lead to a better understanding of the source conditions
of volcanic explosions when combined with numerical sim-
ulation of pressure wave dynamics.
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