Earth Planets Space, 60, 773-779, 2008

A conservative and non-oscillatory scheme for Vlasov code simulations
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A new numerical positive interpolation technique for conservation laws and its application to Vlasov code

simulations are presented.

In recent Vlasov simulation codes, the Vlasov equation is solved based on the

numerical interpolation method because of its simplicity of algorithm and its ease of programming. However, a
large number of grid points are needed in both configuration and velocity spaces to suppress numerical diffusion.
In this paper we propose a new high-order interpolation scheme for Vlasov simulations. The current scheme is
non-oscillatory and conservative and is well-designed for Vlasov simulations. This is compared with the latest
interpolation schemes by performing one-dimensional electrostatic Vlasov simulations.
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1. Introduction

Kinetic simulations are essential approaches to the study
of nonlinear microscopic processes in space plasmas. Nu-
merical methods used in these kinetic simulations fall into
two groups. One is particle-in-cell simulation, which fol-
lows the motions of individual particles in a self-consistent
electromagnetic field. However, a limitation on the number
of particles gives rise to numerical thermal fluctuations. An-
other approach is Vlasov simulation, which follows the spa-
tial and temporal development of distribution functions in
the position-velocity phase space. Both particle-in-cell and
Vlasov codes have advantages and disadvantages. An ad-
vantage of Vlasov codes is that thermal fluctuations, which
are strongly enhanced in particle-in-cell simulations, can be
suppressed. However, the particle-in-cell simulation tech-
niques are well-developed, while numerical techniques for
Vlasov simulations are still being worked out.

Recent Vlasov codes use transformation (spectral)
schemes (Shoucri and Gagne, 1976; Klimas, 1983; Elias-
son, 2003) or the splitting scheme (Cheng and Knorr, 1976;
Gagne and Shoucri, 1977). The splitting scheme is widely
used because of the simplicity of its algorithms and ease
of programming (Utsumi et al., 1998; Nakamura and Yabe,
1999; Sonnendrucker et al., 1999; Filbet et al., 2001; Filbet
and Sonnendrucker, 2003; Pohn et al., 2005; Umeda et al.,
2006). With the splitting scheme the integration of distribu-
tion functions reduces to a numerical interpolation. How-
ever, a large number of grid points are needed in both con-
figuration and velocity spaces to maintain the energy and
mass conservations and to suppress numerical diffusion.

Recently, a high-order semi-Lagrangian scheme, called
the Constrained Interpolation Profile (CIP) scheme (Yabe
et al., 2001), was implemented in Vlasov codes (Utsumi et
al., 1998; Nakamura and Yabe, 1999) where it was used for
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a simulation of harmonic Langmuir waves (Umeda et al.,
2003). Although numerical diffusion in the CIP scheme is
very low, this scheme needs to solve the equations for par-
tial derivatives or integrals of a distribution function f, i.e.,
V.fand V,f,or [ fdx, [ fdv,and [ [ fdxdv. The addi-
tional storage of partial derivatives or integrals makes it dif-
ficult to apply the CIP scheme to five- or six-dimensional
phase-space Vlasov codes. It is also demonstrated that
multi-dimensional CIP-type schemes become oscillatory,
generating a positive gradient in a velocity distribution
function that causes a non-physical instability (Umeda et
al., 2006).

Meanwhile, Filbet ef al. (2001) developed a high-order
conservative scheme called the Positive and Flux Conserva-
tive (PFC) scheme. Although numerical diffusion in con-
servative schemes is somewhat higher than that in non-
conservative schemes, the PFC scheme appears to be more
efficient for Vlasov simulations of several classical prob-
lems of plasma physics (Filbet and Sonnendrucker, 2003).
Umeda et al. also demonstrated that Vlasov codes with
conservative schemes provide better characteristics for the
mass and energy conservations (Umeda et al., 2006). Itis a
new trend to implement conservative interpolation schemes
in Vlasov codes. A new conservative scheme without split-
ting has also been proposed (Elkina and Buchner, 2005).

Characteristics of the recent Vlasov codes for classical
problems of plasma physics, such as linear and nonlinear
Landau damping, linear growth, and saturation of weak
beam-plasma interactions, have been studied by many au-
thors (Filbet and Sonnendrucker, 2003; Pohn et al., 2005;
Arber and Vann, 2002; Mangeney et al., 2002). In con-
trast, Umeda ez al. (2006) compared recent interpolation
schemes for long-time and nonlinear kinetic processes in
space plasmas. They concluded that non-oscillatory, shape-
preserving, conservative, positivity-preserving, low numer-
ical diffusion, and computer-memory saving are necessary
properties of interpolation schemes for Vlasov simulations.

In this study we propose a new positive interpolation
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scheme for conservation laws that is a modified version
of the PFC scheme and has all the properties listed above.
The purpose of this paper is twofold. The first is to give
a detailed numerical procedure for the present scheme, and
the second is to compare the present scheme with the latest
non-conservative and conservative schemes by performing
one-dimensional (1D) Vlasov simulations.

The paper is structured as follows. The present scheme
is introduced in Section 2. Numerical solutions to the 1D
linear advection equation and results of Vlasov simulations
with the present and other high-order interpolation schemes
are compared in Section 3. A discussion and conclusion are
presented in Section 4.

2. Numerical Procedure
We adopt here a conservative semi-Lagrangian scheme
used by Filbet et al. (2001). The starting point is a solution
to the linear advection equation
aof of

=0.
ot T 0x

Let us consider an arbitrary piecewise function g(x) that
approximates a profile f;. The profile f; is defined as the
integral of the piecewise function g(x) as shown in Fig. 1,

i+s
ﬁ:/ | g,

A solution to the advection equation (2) then takes the fol-
lowing conservative form

M
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where U is a numerical flux, v is a constant advection
velocity, and v = —v is the CFL number which is taken
in the opposite dlrectlon to v. Note that Eq. (3) corresponds
to the general solution to the linear advection equation (2),
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As an example, the third-order upwind-biased Lagrange
polynomial interpolation is considered,
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Here Ax = 1 is assumed for simplicity. Note that the func-
tion f(x) does not correspond to g(x) since f; = f(x =1i)
is defined as the integral of g. To take the conservative
form (3), numerical flux is given as

Uiyt (0) = vfi + (1 = )2 =) fz+1 fi

6
+v(1—v)(l+v)f 6ﬁ ,

where v = i — x. Since the numerical flux is also defined
as

(6)
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Fig. 1. Schematic illustration showing a procedure for solving the advec-
tion equation with a conservative scheme. The profile is advanced by
Eq. (1).

Eq. (6) is easily obtained by the following constraints,
Uiy 0 = 0, Upy() = fiu Uy @ = fior, and
Uiy (=1) = —fisr.

For a negative velocity v < 0 we use upwind-biased
points fi_y, fi, fi+1, and fiy;. Thus, the numerical flux
is given as

,+1<v>—vﬁ+1+v(1+v)<2+v>f f’“

2

It is well-known that a high-order scheme is oscillatory
and generates new extrema, i.e., local maximum or mini-
mum (Godunov, 1959). Thus, a flux limiter or slope correc-
tor has been introduced to suppress the numerical oscilla-
tions (Filbet et al., 2001). Equation (6) is rewritten as

®)

+v(l —v)(1 +v)
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where
mln[z(ﬁ - fmin)a (fi+1 - fl)]
) _ if fiv1 = fi
L= max2(fs = faw) (fin — 01 19
if fir1 < f;
min[z(fmax - ﬁ)? (fl - fi*l)]
=) _ if fi > fic1
L~ = max[2( funin — fi), (fi — fi1)] (b
if fi < iy

In the PFC scheme proposed by Filbet et al. (2001),
the maximum and minimum values of the piecewise poly-
nomial fi.x and fiin are given by frax = foo =
max;=i~n, [ fi], and fmin = 0, respectively. This means that
the maximum value of the profile decreases. To allow the
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Fig. 2. Detection of discontinuities and local extrema.

profile to rise uncontrollably, Schmitz and Grauer modified
the limiter using fmax = 00 (Schmitz and Grauer, 2006).
In these schemes, however, one can find that the profile is
not necessarily non-oscillatory and has a local maximum
and/or minimum. Here, the concept of a “non-oscillatory”
scheme is not to generate new extrema numerically but to
keep already-existing extrema.

As a non-oscillatory scheme, we use the following max-
imum and minimum values for the piecewise polynomial,

fmax:max [fmaxlv fmax2] s
Smin=min [ fumint, fmin2]

where

Smaai=max [max[f;_i, f;l, min[2f;_ — fi_2,2fi — fir1ll,
Smaxo=max [max[fiy, fil, min[2fi 1 — fir2, 2fi — fi-1ll,
Smini=min [min[f;_y, f;], max[2f;_1 — fi_2,2fi — finll,
Sminz=min [min[ fi1y, f;], max[2fi 41 — fiz2, 2fi — fi1ll.

We can easily detect both extrema and discontinuities with
the above procedure, as shown in Fig. 2. It is noted that we
can preserve positivity if we use

fmin = max [O’ min[fminl ) fminZ]] .

Thus, the present scheme is a modified version of the PFC
scheme.

3. Numerical Tests
3.1 Linear advection

We solved the 1D linear advection equation % +v % =0
with a constant velocity v numerically. We used rectangu-
lar and sinusoidal waves as initial profiles and applied the
forth-order Monotone Upstream-centered Scheme for Con-
servation Laws (MUSCL) scheme (Yamamoto and Daiguji,
1993), the fifth-order Weighted Essentially Non-Oscillatory
(WENO) scheme (Jiang and Shu, 1996), the third-order CIP
(CIP-3) scheme (Yabe et al., 2001), the rational CIP (R-
CIP) scheme (Xiao et al., 1999), and the present scheme.
Note that the Euler time-integration scheme was used for
both the MUSCL and WENO schemes. We imposed the
periodic boundary condition. Figure 3 shows results of the
numerical tests for the linear advection with the CFL num-
ber v% = 0.1. The left and right panels correspond to the
results with the rectangular and sinusoidal waves, respec-
tively. The solid lines show the profiles at the tenth cycle
(i.e., time step = 8000), while the dashed lines show the
initial profiles.
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The MUSCL and WENO schemes show the best prop-
erty for the linear advection of the rectangular wave be-
cause these are called “shock capturing” schemes. For the
sinusoidal wave, on the other hand, we found a modifica-
tion of the profile during the linear advection. The MUSCL
scheme artificially rectangularizes profiles to keep mono-
tonicity, while the sinusoidal wave is strongly amplified
with the WENO scheme. Note that the amplification can be
suppressed with higher-order Runge-Kutta time-integration
schemes. However, we found that the property for the lin-
ear advection become worse with the Runge-Kutta schemes
than with the Euler scheme. Although the MUSCL and
WENO schemes are well-designed for shocks and discon-
tinuities, they are not necessarily appropriate for the advec-
tion of sinusoidal waves.

The CIP-3 scheme gives the best result for the linear ad-
vection of the sinusoidal wave, whereas this scheme gen-
erates spurious oscillations for the rectangular wave. One
can suppress the spurious oscillations using a rational inter-
polant instead of the cubic polynomial interpolant (Xiao et
al., 1999). However, the amplitude of the sinusoidal wave
with the R-CIP scheme becomes lower than that with the
CIP-3 scheme, which means that R-CIP scheme is more dif-
fusive than the CIP-3 scheme.

The results with the present scheme look very similar to
those with the R-CIP scheme. However, one may think that
the present scheme is much more diffusive than the CIP-3
and R-CIP schemes. We emphasize that the both CIP-3 and
R-CIP schemes use twice as much computer memory space
as the present scheme because the CIP-type schemes need
to store partial derivatives or integrals of the profile. As
shown in Fig. 3, the results with the present scheme improve
to being better than the results with the R-CIP scheme when
we use 1.5-fold more computer memory space for the 1D
problem.

In summary, the MUSCL and WENO schemes, which
are commonly used in fluid simulations, are useful for keep-
ing rectangular shapes or discontinuous profiles. Note that
the rectangular waveforms with the MUSCL and WENO
schemes are preserved for a longer time. Meanwhile,
the CIP-type and present schemes are based on the semi-
Lagrangian method in which profiles are interpolated with
a cubic polynomial or a rational functions. Thus, these
schemes are good at the advection of continuous profiles.
However, the amplitude of sinusoidal waves with the CIP,
R-CIP, and the present schemes gradually decreases with
more timesteps.

3.2 Vlasov simulations

The Vlasov equation is solved with the time-advance
algorithm called the splitting method (Cheng and Knorr,
1976), in which the Vlasov equation without magnetic
fields splits into the following two advection equations:

o, of,
s s _ g 12
o + v, o (12)
a N S a N
Uy dsp Os (13)

Jat mg vy

where the subscript s represents particle species (e.g., elec-
trons and ions). The time advance of distribution functions
fs(x, vy) is carried out by shifting the distribution function
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Numerical test results for the linear advection. The one-dimensional linear advection equation is solved with the forth-order Monotone

Upstream-centered Scheme for Conservation Laws (MUSCL) scheme, the fifth-order Weighted Essentially Non-Oscillatory (WENO) scheme, the
third-order Constrained Interpolation Profile (CIP-3) scheme, the rational CIP (R-CIP) scheme, and the present scheme. A rectangular wave is used
as the initial profile in the left panels, while a sinusoidal wave is used as the initial profile in the right panels. The solid lines show profiles after
ten cycles (8000 time steps with the CFL number 0.1), and the dashed lines show the initial profiles. For the present scheme, results with different
number of cells (120 cells with 12000 time steps and 160 cells with 16000 time steps) are also presented.

in the x direction (12) with the time step A¢/2, computing
spatial profiles of charge density p by integrating the dis-
tribution functions over v, thereby solving Poisson’s equa-
tion to obtain spatial profiles of electric field E ., shifting the
distribution function in the v, direction (13) with the time
step At, and again shifting the distribution function in the x
direction (12) with the time step Az/2. We used the forth-
order MUSCL scheme, the fifth order WENO scheme, the
CIP-3 scheme, the R-CIP scheme, and the present scheme
to solve the above two advection equations.

We have examined the long-time nonlinear evolution of
the electron two-stream instability to study the character-
istics of the different interpolation schemes for a strongly
nonlinear problem. Note that classical problems of plasma
physics, which are usually done as benchmark tests for
Vlasov codes, are not focused on in this paper because there
is no critical difference between conventional and recent
schemes. In fact, the present scheme gives almost the same
result as the PFC scheme (Filbet et al., 2001) in the bench-
mark tests for linear and nonlinear Landau damping, and
linear growth and saturation of weak beam-plasma inter-
actions, since the present scheme is a modified (i.e., non-
oscillatory) version of the PFC scheme.

We assume two electron beams having equal density 0.5
and equal initial thermal velocity V; = 0.3|V4|. The two

electron beams drift along the ambient magnetic field with
a drift velocity Vy = £3.3V;. The number of cells in the x
direction is N, = 256. The number of cells in the v direc-
tion is N, = 512, with vp.x = 5.0Vy, vmin = —5.0V4. The
grid spacing is equal to Ax = 0.5Vy/wy., and the time step
is equal to wpe At = 0.01. In the x direction we imposed the
periodic boundary condition. In the v direction we imposed
the open boundary condition where constant numerical
fluxes %Ex (x; %f(va Vmax) and %E,\‘ (xi)%f(xi’ Vmin)
are assumed while outgoing perturbations of distribution
functions are perfectly absorbed.

Figure 4 shows results of the numerical tests. In the left,
middle, and right panels, we plot electron phase-space den-
sities f(x, v) at wpet = 50, wpet = 200, and wpet = 1000,
respectively. The velocity and position are normalized by
V4 and Vy/wpe, respectively. For a long run-time, nonlin-
ear evolution, the electron two-stream instability develops
to form solitary electron phase-space holes. We started the
test runs under exactly the same initial conditions. The pro-
files of phase-space distribution functions at the early non-
linear stage (wp.t = 50) are almost the same except for the
case with the MUSCL scheme. The profiles of phase-space
distribution functions at wp.t = 200 are also similar, giv-
ing three or four phase-space density holes. On the other
hand, the profiles of phase-space distribution functions at
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Results for Vlasov simulations of the electron two-stream instability. The Vlasov equation is solved with the forth-order Monotone

Upstream-centered Scheme for Conservation Laws (MUSCL) scheme, the fifth-order Weighted Essentially Non-Oscillatory (WENO) scheme, the
third-order Constrained Interpolation Profile (CIP-3) scheme, the rational CIP (R-CIP) scheme, and the present scheme. (left) Electron phase-space
densities f(x, v) at wpet = 50. (middle) Electron phase-space densities f(x, v) at wpet = 200. (right) Electron phase-space densities f(x, v) at
wpet = 1000. The velocity and position are normalized by Vg and V/wpe, respectively.

wpet = 1000 are very different from each other because of
the accumulation of numerical error. It is noted that we have
performed several runs with more grid points (2048, and
4096) in the velocity space. We found two electron phase-
space holes at the final state (wpet = 1000) in the runs with
WENO, CIP, R-CIP, and the present schemes, implying that
the coalescence of phase-space holes is stimulated by nu-
merical error in the runs with WENO and R-CIP schemes
shown in Fig. 4.

The MUSCL scheme artificially “rectangularizes” a pro-
file that generates a very sharp gradient in velocity distribu-
tion functions. Since the rectangularization in the velocity
distribution function causes strong growth and damping of
waves in a resonant velocity range, an equilibrium state can
be numerically broken. Thus, there is not any coherent po-
tential structure wpet = 1000 with the MUSCL scheme.
One may find that TVD schemes widely used in the com-
putational fluid dynamics are not necessarily effective for
Vlasov simulation.

In Fig. 5 we show time histories of electric field energy
& = Y |E.|% kinetic energy & = Y v?|f], total en-
ergy £ = & + &, momentum M = ) v|f|, L1 norm
(total density) £; = Y |f|, L2 norm £, = Y |f]?, en-
tropy S = — Y |f|In|f]|, and the maximum and mini-
mum values of the distribution functions obtained with the
fifth-order WENO, CIP-3, R-CIP, and the present schemes.
Here, ) f means that the phase-space distribution function
f(x, v) is integrated over x and v. The quantities &, &, L1,
L, and S are plotted as deviations from the initial values.
The momentum, L1 and L2 norms, and entropy are normal-
ized by their initial values, whereas the energy quantities
are normalized by the initial total energy.

In the case with the CIP-3 scheme, there are spurious 0s-

cillations in the phase-space distribution function as seen at
wpet = 200 and 1000 in Fig. 4. The CIP scheme numeri-
cally generates apparent overshoots or undershoots, which
results in a positive gradient in the velocity distribution
function. Waves are excited by an instability caused by
the positive gradient in the velocity distribution function,
which is, however, a non-physical process. The spurious
oscillations in the distribution function can be suppressed
using a rational function. The properties of density, energy,
and momentum conservations with the R-CIP scheme be-
come better than those with the CIP scheme. However, the
R-CIP scheme is not necessarily non-oscillatory in multi-
dimensional systems. Thus, we found weak oscillations in
the phase-space distribution function at wp.t = 1000. Note
that the value of the distribution function can be also nega-
tive with the CIP and R-CIP schemes, as seen in the history
of fumin in Fig. 5.

Since the WENO scheme is a higher-order non-
oscillatory scheme, the WENO scheme provides better
properties for the momentum and energy conservations than
the CIP and R-CIP schemes. However, the total density
(L1 norm) is not conserved in Fig. 5, although the WENO
scheme is a conservative scheme. This is simply because
we have computed the L1 norm by ) | f| instead of }_ f.
In other words, > f is almost constant, but Y _ | f| varies
in time. We found the increase in the L1 norm for wy.t =
50 ~ 200, when a strong nonlinear wave-particle interac-
tion takes place in the x — v phase space and the distri-
bution function take a negative value, as seen in the his-
tory of fumin. Since the positivity is not preserved with the
WENO scheme, the distribution function can take a neg-
ative value by the strong modification of the distribution
function, which may distort the energy and momentum con-
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the present schemes. The quantities &, &£, L1, L7, and S are plotted as deviations from the initial values. The momentum, L1 and L2 norms, and
entropy are normalized by their initial values, whereas the energy quantities are normalized by the initial total energy.

Table 1. CPU time for each run.

| MmuscL WENO

CIP-3 R-CIP Present

Time (sec) | 21201 7221.4

servations.

Since the present scheme is also a non-oscillatory
scheme, we can completely remove the non-physical in-
stability due to the numerically generated positive gradient
in the velocity distribution function. We can also keep the
density conservation with the present scheme because the
positivity of the distribution function is achieved. The to-
tal density (L1 norm) slightly decreases in time due to the
open boundaries in the v direction. Note that the present
scheme is the most diffusive in the high-resolution schemes
used in the present study. Thus, the saturation level of the
electric field is lower than that with the WENO, CIP-3, and
R-CIP schemes. Nevertheless, the present scheme provides
the best result for the energy and momentum conservations.

4105.7 5569.7 1656.5

However, the history of entropy shows monotone increas-
ing in the late nonlinear stage (wp.t > 400) due to the high-
numerical diffusion, whereas the history of entropy shows
saturation with the WENO, CIP, and R-CIP schemes. This
means that the cubic polynomial interpolant used in the
present scheme is not enough, and we need to develop a
higher-order scheme.

Finally, CPU loading of the schemes is discussed. Table 1
shows the CPU time of entire simulation run (wpet = 0 ~
1000). The CPU time is measured on a single Intel Core 2
processor. The present scheme works as fast as the MUSCL
scheme, in which the third order numerical flux is computed
with several “IF” statements. The CIP-type schemes need
more CPU time than the present scheme because the former
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schemes update % and % as well as f. The WENO scheme
reconstructs the fifth-order non-oscillatory flux from the
third-order numerical flux, which needs much more CPU
time than other schemes.

4. Discussion and Conclusion

For classical problems of plasma physics, such as the
linear growth and saturation of an instability, there is no
critical difference between the results with all the high-
resolution schemes used in the present study. On the other
hand, for a long-time and highly nonlinear problem, the
present scheme appears to be more efficient although it is
somewhat more diffusive than the other schemes.

The present benchmark test suggests that it is important
for conservation laws to preserve the positivity of the dis-
tribution functions. Another important point is the sup-
pression of numerical diffusion, by which a velocity dis-
tribution function becomes wider in velocity space. Due to
the numerical modification of velocity distribution function,
the following non-physical effects appear: (1) Growth rates
of unstable wave modes become lower; (2) The saturation
level of field energy becomes lower; (3) The total energy in-
creases numerically. The effects (1) and (2) lower the elec-
tric field energy at the saturation state, whereas effect (3)
increases the total energy in the long-time nonlinear evo-
lution. To suppress numerical diffusion, we need enough
resolution in both velocity and configuration spaces or we
need schemes of a much higher order.

In conclusion, we have developed a new non-oscillatory,
positive, and conservative scheme for Vlasov code simu-
lations, which would be named as “PIC” scheme (where
“PIC” stands for Positive Interpolation for Conservations).
The present scheme was implemented by the author in the
1D electrostatic Vlasov code. It was used for the simula-
tions of nonlinear beam-plasma interactions (Umeda, 2006,
2007; Ryu et al., 2007). It is noted that application of the
present scheme should not be limited to Vlasov codes. Im-
plementation of the present scheme to MHD, Hall-MHD,
and multi-fluid codes is currently being undertaken (e.g.,
Tanaka et al., 2008).

It is also noted there have been a number of recent at-
tempts to implement advanced numerical techniques, such
as an unstructured grid system (Besse and Sonnendrucker,
2003), an adaptive multi-scale grid system (Gutnic et al.,
2004), or a moving grid system (Sonnendrucker et al., 2004;
Yabe et al., 2004). These techniques are useful to suppress
numerical diffusion. However, these are beyond the scope
of this paper and remain to be discussed in future research.
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