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1. Introduction
Rapid magnetic reconnection occurs when the Maxwell

stresses in the magnetic field B in a highly conducting fluid
push the fluid so as to concentrate ∇ × B and the associ-
ated current density j into sheets of vanishing thickness and
unbounded intensity, i.e. surfaces of tangential discontinuity
in B. The essential point is that this condition prevails in
the static equilibrium of all but the simplest field topologies
because surfaces of tangential discontinuity are an integral
part of the lowest available energy state of the field. That is
to say, in almost all field topologies static equilibrium, with
theMaxwell stresses everywhere in balance, can be achieved
only by forming internal surfaces of tangential discontinuity.
The presence of a small resistivity in the fluid prevents

the formation of a true discontinuity, of course, so that the
magnetic field continually strives to concentrate the associ-
ated electric currents, but cannot do so, leaving the field in
the dynamical (nonequilibrium) state of rapid dissipation and
rapid reconnection across the incipient surface of discontinu-
ity (Parker, 1957, 1994). The dynamical reconnection con-
tinues until the topology of the field is reduced to so simple
a form that discontinuities are no longer part of static equi-
librium. Thus, internal rapid reconnection is intrinsic to the
static equilibrium of almost all field topologies, in the labora-
tory, in the bipolarmagnetic fields of the active Sun, the stars,
and the Galaxy. That is to say, in the real world, where there
is always some slight resistivity, it is not possible for most
fields to settle immediately into complete static equilibrium.
They must first go through the lengthy process of simplify-
ing their topology through internal reconnection. Since most
fields in astronomical settings are subject to continual con-
vective deformation, they are in a perpetual state of internal
rapid reconnection and magnetic dissipation, creating such
suprathermal phenomena as the solar corona.
The purpose of this lecture is to show this general condi-

tion from the magnetic force balance equation ∂ Mi j/∂x j =
0, where Mi j is the Maxwell stress tensor −δi j B2/8π +
Bi B j/4π , representing the isotropic pressure B2/8π and the
tension B2/4π along the field lines. The more difficult task
is the computation of the reconnection (dissipation) rates,
presumably starting with the onset of resistive instabilities
with the eventual dynamical stagnation flow in two and three
dimensions, perhaps in the presence of local plasma turbu-
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lence and anomalous resistivity excited by the concentrated
current density j. That we leave to the rest of this conference.

2. Static Equilibrium
Consider, then, the formation of surfaces of tangential dis-

continuity in a magnetic field embedded in an ideal fluid
lacking electrical resistivity. To fix ideas consider a uniform
magnetic field B0 extending from the nonresistive (infinitely
conducting) boundary plane z = 0 through a nonresistive
fluid to the nonresistive boundary plane z = +L . Holding
the footpoints of the field fixed at z = 0, introduce the two
dimensional fluid motion

vx = +kz∂ψ/∂y, vy = −kz∂ψ/∂x, vz = 0,

throughout L ≥ z > 0, where the arbitrary function ψ =
ψ(x, y, kzt) is bounded, continuous, with smooth deriva-
tives, etc. The arbitrary motion introduces arbitrary patterns
of interlacing of the field lines through the swirling and shuf-
fling of the upper boundary z = L . After a time t the mag-
netic field has the form

Bx = +B0kt∂ψ/∂y,

By = −B0kt∂ψ/∂x, Bz = B0.
(1)

Stop the motion at time t = τ . The field is everywhere
bounded, continuous, smooth, etc. with arbitrary field line
topology, sketched in Fig. 1. Needless to say, the magnetic
field is not in static equilibrium.
Then hold both boundary planes z = 0, L rigid while the

fluid throughout 0 < z < L is released so that the field may
relax to the lowest available energy state. A small viscosity
is introduced to provide dissipation, and the fluid pressure is
maintained at some uniform value at the boundary planes so
that the pressure is uniform throughout the field. Presumably
the field relaxes asymptotically as exp[−(t − τ)/T ] to the
lowest available energy state, where T is some finite charac-
teristic time.
In view of the absence of electrical resistivity, the field

line topology, i.e. the interlacing of the flux bundles and field
lines, is preserved. Thus, clearly, the ultimate equilibrium
state of the field exists, has the same topology as the initial
field, givenbyEq. (1), and thefinal equilibriumstate is unique
to that topology. The final state of the field is described by
∂ Mi j/∂x j = 0, or

∇ × B = αB, (2)
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Fig. 1. A sketch of the arbitrary interlace field created by the arbitrary
stream function ψ throughout 0 < z < L .

where the “torsion coefficient” α is a scalar function of po-
sition.

This familiar force-free equilibrium equation has some
remarkable properties, which are the central theme of this
lecture. First of all, the equilibrium equation is not linear
in spite of its deceptively simple appearance, because α is
not independent of B. The divergence of the equilibrium
equation yields

B · ∇α = 0

stating that α is constant along each field line and the field
lines collectively represent a family of real characteristics of
the equilibrium equation (2). The curl of the equilibrium
equation yields

B × ∇α = ∇2B + α2B.

The presence of the Laplacian operator indicates two families
of complex characteristics, and the equation looks like a sec-
ond order quasi-linear elliptic equation, except that we know
that there is also a family of real characteristics, viz. the field
lines (cf. p. 363, Parker, 1979). It is the mixed characteristics
that give the equilibrium equation its remarkable properties,
quite different from the fully elliptic and fully hyperbolic
partial differential equations with which we normally deal.
So we must abandon our basic intuition and proceed from
here by mathematical “dead reckoning”. Thus we find that
specification of the field B(x, y, 0) on the lower boundary
determines the field throughout the entire region, including
the upper boundary, because the real characteristics extend
the solution along the field lines to the upper boundary. In
particular, any singularity in the field at the lower boundary
propagates along the field lines through the entire region.
Conversely, any discontinuity created in the interior extends
out to the boundaries z = 0, L .

To see how this comes about, note that the three com-
ponents of the equilibrium equation (2) and the divergence
condition can be solved for ∂B/∂z and α at z = 0 in terms
of the field B(x, y, 0) at the boundary, yielding

∂ Bx

∂z
= ∂ Bz

∂x
+ αBy

∂ By

∂z
= ∂ Bz

∂y
− αBx

∂ Bz

∂z
= −∂ Bx

∂x
− ∂ By

∂y

α = 1

Bz

(
∂ By

∂x
− ∂ Bx

∂y

)
.

Differentiating these expressions with respect to z then pro-
vides all the higher derivatives with respect to z and the field
can be constructed as a series in ascending powers of z, given
the field B(x, y, 0) on the lower boundary.

The difficulty is that we do not know thefield on the bound-
ary, upper or lower, following the relaxation from the initial
form given by Eq. (1) to thefinal static equilibrium. We know
that the field line topology is preserved, and we know that
a unique equilibrium state exists. So the essential informa-
tion for the unique solution is there somewhere, obviously
contained in the precise topology of the field. That is the
outstanding feature of the equilibrium equation (2).

3. Optical Analogy
Given the central role of the field line topology, it is evi-

dent that we should understand how a field line propagates
(extends) through the region of field. For that we turn to the
optical analogy (Parker, 1987a, 1989, 1991, 1994). Draw
any curve C across the field, thereby defining a flux surface
Sc, made up of all the field lines intersecting C . The flux
surface Sc represents a two dimension non-Euclidean space,
in which the field has no curl. That is to say, if the field in Sc

had a curl, the curl would be perpendicular to Sc, whereas the
equilibrium equation (2) asserts that there is no component
of the curl perpendicular to Sc. Hence the magnetic field in
Sc can be written as the gradient of a scalar, −∇φ, and the
field lines satisfy

B
d Xi

ds
= − dφ

d Xi
, (∇φ)2 = B2

at each point on Sc, where B is the magnitude of the field,
Xi represents a local cartesian coordinate system with origin
at the point, and s represents arc length along the field lines.
Note then that the eikonal equation for the optical ray path
of the wave exp i	 is

n
dxi

ds
= −∂	

∂xi
, (∇	)2 = n2

where n is the index of refraction. It is evident by inspection
that the field line has the same path in Sc as an optical ray in a
medium with index of refraction proportional to B. Thus, for
instance, the field line is concave toward a local maximum
in B. Fermat’s principle applies and

δ

∫ 2

1
ds B = 0

for the integral of the “index of refraction” along the path
between points 1 and 2. Euler’s equation can be written

y′′

(1 + y′2)
= ∂ ln B

∂y
− y′ ∂ ln B

∂x

for the simple case of a flat surface, using the rectangular
coordinates (x, y) (For surfaces that are not flat, see p. 194,
Parker, 1994).
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4. Local Field Maxima
The original twisting and interlacing of the field lines, de-

scribed by the stream function ψ(x, y, kzt), carry over into
thefinal equilibrium state, and the result is an inhomogeneous
enhanced magnetic pressure. Each twisted flux bundle ex-
pands and crowds its neighbors while the interlacing wraps
one flux bundle around another. Denote by 
B the variation
of the field magnitude from the mean, and note that where
one taut flux bundle is drawn around another, sketched in
Fig. 2, there is a local maximum in the magnetic pressure
and, hence, a local maximum in 
B. Denote the charac-
teristic width of the maximum by w and the characteristic
length by h, and consider a field line passing through the re-
gion of the maximum between two fixed points at distances
λ on opposite sides of the maximum (w, h � λ). The field
line follows the “optical” path for which the line integral of B
is the least. If the line passes straight across the maximum,
the line integral is enhanced by something of the order of
h
B, whereas, if the line is diverted around the maximum,
the path length increases from 2λ to 2(λ2 + w2)1/2 and the
line integral is enhance by Bw2/λ. Thus the line is diverted
around the maximum when


B

B
>

w2

λh

in order of magnitude.
Diversion of field lines around a local maximum in 
B

leaves a gap in the flux surface Sc. The gap extends through
a stack of flux surfaces of finite thickness, of course, and the
fields on opposite sides bulge through the gap and meet each
other somewhere in the middle, sketched in Fig. 3. Since
the bulging fields are generally not parallel where they meet,
their surface of contact is a surface of tangential discontinuity.

Consider next the effect of twisting a flux bundle. The
result is a compression of the central region along the axis
of the twisted bundle, as a consequence of the tension in the
azimuthal field of the twist. However, the same azimuthal
field expands outward and increases the outer radius of the
bundle, or, if the bundle is confined to a fixed radius R, the
total field and the external pressure necessary to confine the
bundle are increased (see figure 9.1, p. 172, Parker, 1979).

As an example consider the simple case of a uniform mag-
netic field B0 within the circular boundary ω = R. The field
is subjected to the uniform twist, amounting to every line of
force making one revolution about the axis of the bundle in
a distance 2πa along the axis, so that Bϕ/Bz = ω/a. Then
for force-free equilibrium of the twisted flux bundle the field
components are expressible as

B2
z (ω) = f (ω) + 1

2
ω

d f

dω
, B2

ϕ(ω) = −1

2
ω

d f

dω

in terms of the generating function f (ω), which represents
the square of the field magnitude. Starting with the uniform
field B0 the longitudinal magnetic flux is π R2 B0. The flux
is conserved during the twisting, so that

R2 B0 = 2
∫ R

0
dωωBz(ω)

Fig. 2. A sketch of two flux bundles pulled around each other, thereby
increasing the magnetic pressure in the vicinity of their contact.

The ratio Bϕ/Bz yields

a2

(
−1

2
ω

d f

dω

)
= ω2

(
f + 1

2
ω

d f

dω

)

from which it follows that f (ω) = C/(a2 + ω2). The inte-
gration constant C has the value B0(R4/a4)[ln(1+ R2/a2)]2

so as to conserve total magnetic flux. The magnetic pressure
P = f (R)/8π at the fixed outer boundary ω = R increases
with decreasing a according to

P = B2
0

8π

(
R

a

)4 1

(1 + R2/a2)[ln(1 + R2/a2)]2

≈ B2
0

8π

(
1 + 1

12

R4

a4
+ · · ·

)
.

So the flux bundles begin to crowd each other, redistribut-
ing themselves to give the most efficient close packing, and
creating longitudinal ridges of pressure along their sides
where they crowd against their neighbors. The essential point
is that a ridge of maximum 
B (� B) refracts field lines so
that the inclination θ of the line to the crest of the ridge as the
line crosses the crest is (2
B/B)1/2 for grazing incidence
ε (� 1) of the line as it approaches the ridge, sketched in
Fig. 4. A field line at grazing incidence −ε from the oppo-
site side of the ridge (in a nearby flux surface) crosses at an
inclination −(2
B/B)1/2, so that in the limit ε → 0 the two
lines cross each other at an angle 2(2
B/B)1/2 at the crest of
the ridge. Thus there is a surface of tangential discontinuity
of this amount at the flux surface for which ε = 0.

5. Surfaces of Discontinuity
It is important to understand the nature of the surface of

tangential discontinuity because the structure plays an essen-
tial role in the physics. The surface of discontinuity is the
geometrical surface of contact between the two regions of
continuous field on either side. Thus the surface belongs to
neither region and so contains no field. It is important to
realize, then, that the finite shear in the field across the sur-
face of discontinuity is not reflected in the scalar function α,
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Fig. 3. A sketch of a gap in a layer of flux created by a localized magnetic pressure maximum (see Fig. 2).

Fig. 4. A sketch of a pressure ridge and the refracted field lines immediately
above and below the flux surface in which the field is parallel to the ridge.

which can be defined only in terms of the field B. To appre-
ciate the physical importance of this concept, recall that the
initial interlacing of the magnetic field in the fluid motion de-
scribed by ψ(x, y, kzt) is a purely mechanical manipulation
of the fluid and of the field carried in the fluid, allowing the
field to be interwoven and interlaced in any arbitrary pattern
(opposed only by the limited tension in the field lines). For
instance, it is possible to wrap three flux bundles around each
other so as to form a braid, in which each flux bundle wraps
first one way and then the other around each of the other two.
Now in order for the fields of the flux bundles to be continu-
ous where two bundles press against each other, the internal
torsion α of each bundle must match the spiraling of the bun-
dle around the contiguous bundle. If the internal torsions of
the bundles do not have precisely the correct magnitude and
sign to match together where they come in contact, then the
contact surface between the two bundles becomes a surface

of tangential discontinuity. The problem is that α is required
to be constant along each field line (B · ∇α = 0), so that α

cannot vary from one location to the next. It follows that if
a bundle spirals first one way and then the other around the
flux bundles against which it presses in passing from z = 0 to
z = L , the internal torsion cannot be adjusted to fit smoothly
to all the other fields. The result is surfaces of tangential
discontinuity between the equilibrium flux bundles. Note
then that the variable shear across the surfaces of disconti-
nuity does not violate the condition that B · ∇α = 0 because
the surface of discontinuity contains no B. Thus if surfaces
of discontinuity were not an intrinsic part of the solutions of
the equilibrium equation (2), the equilibrium equation would
contradict the physical fact that we can braid the flux bundles
in any arbitrary way. So the mathematics of the equilibrium
equation (2) takes care of the physics, as we know it must.

It is clear from the foregoing optical analogy why the sym-
metric nonlaced field topologies customarily employed in
our analytical calculations do not produce internal surfaces
of tangential discontinuity. The field magnitude B simply
does not have localized maxima. It is straightforward to pro-
duce analytical solutions of Eq. (2) which contain surfaces of
discontinuity, either by squeezing a slab of force-free field in
some limited neighborhood or by applying a ridge of pressure
to a force-free field which somewhere contains a flux surface
in which thefield lines are parallel to the ridge (Parker, 1987a,
1990 and Chap. 5, Parker 1994).

6. Conclusion
Note that all magnetic fields with both ends tied to a slowly

convecting body like the Sun are deformed so as to have mag-
netic free energy and interlaced field lines. The Maxwell
stresses in the interlaced field continually strive to produce
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internal surfaces of tangential discontinuity and the slight re-
sistivity of the ambient gas produces dissipation and rapid
reconnection at the sites of the incipient surfaces of disconti-
nuity. Thus localized rapid reconnection is a universal phe-
nomenon, common to all convecting stars. Observational
studies indicate that this is the origin of flares, microflares,
and nanoflares, evidently responsible for solar cosmic rays
and for the heating that creates the solar corona and the solar
wind and the emission of X-rays, as already noted (cf. Parker,
1987b, 1988, 1994). Then it should be borne in mind that a
slight misalignment within the laboratory magnetic config-
uration, so that the field topology is not quite as simple as
intended for plasma confinement, may provide the onset of
weak reconnection, restructuring the field topology in such a
way as to provide a growing rapid reconnection situation. So
rapid reconnection is an ubiquitous phenomenon, providing
for much of the suprathermal phenomena in the astronomical
universe and perhaps some of the headaches in the plasma
confinement laboratory.
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