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Chaotic reconnection due to fast mixing of vortex-current filaments
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We propose a new reconnection mechanism ““‘chaotic reconnection”. A basic mechanism of the chaotic reconnec-
tion is examined by means of numerical simulations of collision between two vortex-current filaments. The term
“reconnection” means a reconnection of the filaments. We conclude that thle chaotic process works to enhance the
reconnection rate of the filaments. We shall propose a similar chaotic process as a candidate for the mechanism of

the fast magnetic reconnection.

1. Introduction

Nowadays many researchers share a common aspect that
the magnetic reconnection is a fundamental process in the
solar flare (Shibata, 1996). It is accepted in most cases that
the electric resistivity plays a minor role and most of the
theoretical works on the magnetic reconnection to date deal
with the time scale problem (Biskamp, 1997; Horiuchi et al.,
1999).

We expect that the magnetic field has a chaotic configu-
ration in the diffusion region. Thus we shall propose a new
reconnection model, “chaotic reconnection”. In our model,
the diffusion region contains many vortex-current filaments
with axial magnetic field. The configuration of the filaments
may evolve into chaotic one with time. Although the direct
approach to reveal the mechanism of our reconnection model
enhanced by the chaotic process entails three-dimensional
MHD simulation, it is difficult due to the high magnetic
Reynolds number. Thus we chose a filament model and
examine an interaction of the two vortex-current filaments
in this paper. We consider that the essential mechanism of
the chaotic reconnection may be demonstrated by the simple
filament model.

In Section 2, we give simulation results of collision be-
tween two straight vortex-current filaments and diagnosis
via the Lyapunov exponents. The collision means the strong
interaction between two filaments and yields fast mixing of
the filaments. The configuration of the filaments becomes
chaotic after the collision.

In Section 3, we show the basic mechanism of the chaotic
reconnection due to the fast mixing of the filaments. The
mechanism is revealed by the evaluation of the reconnection
rates. We conclude that the chaotic process works to enhance
the reconnection rate of the filaments.
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2. Simulation Results

We have introduced the vortex-current filament model in
our previous papers (Yatsuyanagi et al., 1996, 1998). The
vortex-current filament consists of the electric current and
the vorticity inside it. As basic equations, we use the ideal
MHD equations with gravity. Integrating the equation of
motion over the small volume element, we obtain a macro-
scopic force balance equation correct to O (p~2) where p is
a local radius of curvature of the filament. The velocity of
the filament 0R/d¢ is given in the follwing form with the
cutoff Biot-Savart integral correct to O(p~!) (Yatsuyanagi et
al., 1996):
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Here the mass density is constant and normalized to unity.
The scale lengh of the system is taken as £ = a where a is
initial radius of the filament and initially normalized to unity
in the simulations. The characteristic value of the magnetic
field is taken as B. The Alfvén velocity and time scale are
givenby il = B/ Mo and i = X /i, respectively. The char-
acteristic values of the electric current density and velocity
are denoted by j = B /%110 and & = E/)?ﬂ, respectively.
In numerical simulations, we introduce dimensionless vari-
ables and all the above-mentioned quantities are utilized as
scaling factors. It is noticeable that the ratio @/ f has a mag-
nitude of /g ~ 1072

[lustration of the initial conditions of the simulation is
givenin Fig. 1. The most crucial parameter in our simulations
is symmetry of the initial configuration of the filaments. The
symmetry of the initial configuration is determined by an
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Fig. 1. Schematics of the simulations are shown.

Fig. 3. Snap shots of the configuration of the filaments at 7 = 75 x 10* A¢ are shown.

initial angle 6 between the two filaments projected on the 25 - T T

x —z plane. The values of the initial angle are chosen as /2, | !

2 arctan(1/2), and zero which are called types (a), (b), and 20r T I :;”" :I"’) N
(c), respectively as shown in Fig. 2. The most symmetrical ] / ~ —T:m @] |

case is € = 0 and the most asymmetrical case is 0 = /2.
We show typical results of simulations in Fig. 3. For all
the types, the filaments attract each other and then collide.
Although the results for types (a) and (b) show complicated
configuration near the collisional region, the result for type
(c) shows non-complicated configuration. This is because
the initial configurations of the types (a) and (b) are more -05 .
asymmetrical than that of the type (c). . & 1 % %
The time evolution of the instantaneous Lyapunov expo- Time [10°a1)
nent is shown in Fig. 4. The largest peak for type (c) is due
to the collision where the two filaments fully overlaps with
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Fig. 4. Evolution of the instantaneous Lyapunov exponents is shown.
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Type (c)

Fig. 5. Trajectory of the three-dimensional space-averaged distribution of the electric current is shown. Original data are given in Fig. 3.

each other. We consider that the other peaks at that time for
types (a) and (b) are caused by the same reason. After the
collision, the exponents only for types (a) and (b) are posi-
tive. We, therefore, conclude that the chaotic configuration
is induced by the collision of the two filaments with initially
low-symmetrical configuration.

3. Chaotic Reconnection

We consider when the filament 1 approaches the filament
2 and the electric currents inside the filaments are antiparal-
lel to each other, the net electric current must be nearly zero.
This means the filaments should locally annihilate each other
in that region. Here we introduce a three-dimensional space
averaging. The three-dimensional space averaging is a kind
of mixing. It is well known that the mixing increases the
entropy of the system, and this implies that the mixing is an
irreversible process. Thus the space averaging should intro-
duce a dissipation process into the system artificially. We
calculate the three-dimensional space-averaged distribution
of the electric currents numerically from the results shown
in Fig. 3, and trace the trajectories by its distribution. The
results are shown in Fig. 5.

For types (a) and (b) in Fig. 5, the macroscopic filaments,
which mean the reconstructed filaments obtained by tracing
the distribution of the electric current, are reconnected with
each other. The reconnection is due to the chaotic configu-
ration induced by the collision of the two filaments in low-
symmetry system. Thus it is obvious that the reconnection
is not observed for type (c) because the initial configuration
is symmetrical and the configuration does not evolve into a
chaotic one. We call this reconnection mechanism “chaotic
reconnection” from now on (Yatsuyanagi et al., 1999).

One can estimate the efficiency of the reconnection process
by a reconnection rate. We assume the reconnection rate
R¢(t) of the chaotic reconnection is given by the following
form:

Re(t) = D(1)S2(t, 0), 2

where D(t) is a conventional (non-chaotic) reconnection rate
in a single overlapping region where the dissipation plays an
essential role. The notation Q(z, ) is a non-dimensional
factor and represents a normalized overlapping volume be-
tween the filaments per unit volume. The illustrations of the
diffusion regions are shown in Fig. 6. The size of the dif-
fusion region of the chaotic reconnection is relatively large
compared with that of the traditional reconnection theory.
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Fig. 6. [Illustrations of the diffusion regions are shown. The size of the
diffusion region of the chaotic reconnection is relatively large compared
with that of the traditional reconnection theory.
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Fig. 7. Evolution of the normalized overlapping volume (¢, 6) is plotted.

The value of D(¢) is usually zero for the case of ideal MHD
and positive for the case of non-ideal MHD. It is well known
that a kind of dissipation process is needed for the mangetic
reconnection. In other words, the factor D(¢) should be
finite. Thus we introduce an artificial dissipation process,
space averaging, which is concerned with D(¢). Please note
that we do not pay attention to the conventional dissipative
reconnection rate here. It is most important that D(¢) is not
zero but finite.

A new enhancement factor comes from the normalized
overlapping volume (¢, 0). The normalized overlapping
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volume is a mesoscopic enhancement factor. The term meso-
scopic means the scale which is describable by MHD but
much less than the scale length of the phenomena while the
collisionless process is microscopic. We consider that the
large 2(¢, 0) yields the fast reconnection. Unnormalized
overlapping volume is calculated from the time-developed
configuration of the filaments numerically and is normalized
by the non-chaotic overlapping volume which is determined
by the initial configuration. Evolution of the normalized
overlapping volume 2 (¢, 6) is plotted in Fig. 7. For each
type, there is a peak at T = 25 x 10* or so, and these peaks
are due to the collision. In later time the values of the nor-
malized overlapping volume become large for types (a) and
(b), while zero for type (c). This is due to the mixing of
the two filaments. The large value of the normalized over-
lapping volume is rapidly achieved by the chaotic dynamics
of the filaments based on the ideal MHD, and means that
many overlapping regions emerge everywhere along the tan-
gled filaments. Each overlapping region is small and may
be equivalent to the conventional diffusion region. The re-
connection rate in this region is determined by D(z). Then
the total reconnection rate R¢(¢) becomes sufficiently large
if the factor D(¢) in Eq. (2) has a nonzero value. Thus we
conclude that thle chaotic process works to enhance the re-
connection rate of the filaments. It is the main mechanism
of the chaotic reconnection in the three-dimensional space.
If the overlapping volume €2 (¢, 6) is small, the reconnection
time scale is the same as that of the conventional resistive
(non-chaotic) reconnection which is determined only by the
factor D(t).

4. Conclusions

In this work we have proposed a new fast reconnection
mechanism, “chaotic reconnection” of the vortex-current fil-
aments in the three-dimensional space. Note that the basic
dynamics are based on the nonlinear ideal MHD in which the
time scale is mainly determined by the Alfvén transit time,
although we have introduced a dissipation process, i.e. three-
dimensional space averaging. We must extend the present
model to realistic one. We shall propose a similar chaotic
process as a candidate for the mechanism of the fast magnetic
reconnection. Further progress in understanding chaotic re-
connection dynamics requires the fully three-dimensional
MHD simulations in the high magnetic Reynolds number.
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