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Paleomagnetic inclination variations 
during the last 200 kyr in the Okhotsk Sea 
and their relation to persistent  
non‑axial‑dipole field
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Abstract 

Studies on geomagnetic paleointensity using marine sediments revealed that intensity fluctuations contain varia-
tions with timescales of 104 years and longer. In contrast, directional secular variations of such timescales were far less 
studied. In this paper we study inclination variations of longer than a millennial timescale using sediment cores at 
nine sites in the Okhotsk Sea. Relative paleointensity and magnetic susceptibility variations were used for inter-core 
correlations and age estimations. The average inclinations of individual cores were close to those of the geocentric 
axial dipole (GAD) field at the site latitudes. A stacked inclination curve for the last 200 kyr showed intervals of shal-
lower inclinations at about 25–45, 75–90, 110–135, and 185–200 ka. These are synchronous with inclination shifts 
toward negative previously reported in the western equatorial Pacific, and temporally coincide with paleointensity 
lows in general. Both the Okhotsk Sea and western equatorial Pacific are within a region of outward directed flux in 
the persistent non-axial-dipole (NAD) field, and the synchronous inclination shifts may have been caused by a larger 
contribution of the NAD field when the GAD was weaker.
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Introduction
Continuous records of past geomagnetic intensity vari-
ations during the last few million years recovered from 
marine sediments revealed that paleointensity fluctua-
tions between polarity reversals contain variations with 
timescales of 104 years and longer (e.g., Guyodo and Valet 
1999; Yamazaki and Oda 2005; Valet et al. 2005; Channell 
et al. 2009; Tauxe and Yamazaki 2015). It is expected that 
paleomagnetic direction also has secular variations of 
such timescales. However, discussion on directional secu-
lar variations has mostly been for centennial to millennial 
timescales utilizing datasets during Holocene (e.g., Korte 
and Constable 2005; Lund et  al. 2006; Yang et  al. 2009; 
Constable and Korte 2015). Directional secular variations 

of 104 or longer timescales, if exist, would have an ampli-
tude of ~5° or smaller, similar to differences between the 
time-averaged field during the last few million years and 
the geocentric axial dipole (GAD) field. Such variations 
are close to sampling and measurement errors for stud-
ies using sediment cores, and not easy to be detected. To 
enhance signal-to-noise ratios, precise inter-core correla-
tions among many cores are required, which is also not 
easy to be performed.

Occurrence of inclination variations with timescales 
of 104 years and longer was previously reported using 
sediment cores from the western equatorial Pacific 
(Yamazaki and Ioka 1994; Yamazaki and Oda 2002; 
Yamazaki et  al. 2008). Using a continuous inclination 
record for the last 2  m.y., a possibility of orbital influ-
ence on inclination variations was argued (Yamazaki 
and Oda 2002; Roberts et al. 2003). Correlation between 
paleointensity and inclination was also investigated using 
some records from this region, and a model explaining 
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the correlation was proposed (Yamazaki and Oda 2002, 
2004; Yamazaki 2002). For better understanding of the 
geomagnetic field behavior of 104 year and longer time-
scales, further accumulation of datasets with global site 
distribution is required. It is also necessary to understand 
long-term secular variations for tectonic application of 
paleomagnetism assuming the GAD field; we need to 
know a period of time required for averaging out secular 
variations in order to detect differences of several degrees 
in paleolatitudes.

In this paper, we present inclination variations dur-
ing the last 200 kyr recorded in sediment cores from the 
Okhotsk Sea. Three piston cores and nine gravity cores 
adjacent to each other were used for stacking. We show 
that synchronous inclination shifts occur in the Okhotsk 
Sea and western equatorial Pacific and that the inclina-
tion variations may correlate with paleointensity. We 
then present a model for the coherent variations.

Samples and methods
Three piston cores of about 20  m long were obtained 
from the central part of the Okhotsk Sea during the R/V 
Mirai MR06-04 cruise in 2006, and nine gravity cores of 
about 6 m or less in length were obtained from the same 
area during the R/V Yokosuka YK07-12 cruise in 2007 
(Fig. 1; Table 1). Three gravity cores out of nine were re-
occupation of the three piston-core sites to make up for 
disturbed surface sediments. Composite core sections, 
GC1 + PC7, GC8 + PC6, and GC9 + PC5, were estab-
lished at the three sites (Yamazaki et  al. 2013). Discrete 

samples for paleo- and rock magnetic measurements 
were taken sequentially from the half-split core surfaces 
using plastic cubes of 7 cm3 each.

Relative paleointensity and magnetic properties of 
the three major sites, GC1  +  PC7, GC8  +  PC6, and 
GC9  +  PC5, were already reported by Inoue and 
Yamazaki (2010) and Yamazaki et  al. (2013). The pro-
cedure of paleo- and rock magnetic measurements of 
other gravity-core sites, GC3, GC5, GC6, GC10, GC11, 
and GC12, was the same as that of Inoue and Yamazaki 
(2010) and Yamazaki et  al. (2013). Stepwise alternating-
field (AF) demagnetization showed univectorial behavior 
in general except for a soft secondary component that 
was removed at AF of 10 mT or less. Most samples have 
maximum standard deviation (MAD) of <10° at principal 
component analysis (Kirschvink 1980); a small number 
of samples with MAD >10° were discarded. For relative 
paleointensity estimation, anhysteretic remanent mag-
netization (ARM) was chosen as a normalizer of natural 
remanent magnetization (NRM) for compensating differ-
ences in NRM acquisition efficiency, and NRM and ARM 
intensities after AF demagnetization at 30 mT were used 
for calculating relative paleointensity.

Inter‑core correlation and age assignment
The scheme of inter-core correlations is shown in Fig. 2. 
Correlations and age estimations of the three major 
sites, GC1 +  PC7, GC8 +  PC6, and GC9 +  PC5, were 
based on relative paleointensity, which was tied to the 
PISO-1500 curve of Channell et al. (2009), as presented 
in Yamazaki et  al. (2013). The cores of the three sites 
cover the last 360–520  kyr with the average sedimenta-
tion rates of 37–59 m/m.y. The age model based on the 
oxygen-isotope (δ18O) stratigraphy at Site GC1  +  PC7 
well agrees with that of relative paleointensity (Yamazaki 
et  al. 2013). Coincidence of the relative paleointensity 
records of the three major sites is generally good (Fig. 3a), 
although relatively large temporal and spatial lithologi-
cal changes in the Okhotsk Sea sediments (Nürnberg and 
Tiedemann 2004; Yamazaki et al. 2013) are not ideal for 
relative paleointensity estimations, and thus, the records 
may partly be influenced by lithological changes (Tauxe 
and Yamazaki 2015).

Other short gravity-core sites were, on the other 
hand, tied to the Site GC1 + PC7 or GC9 + PC5 based 
on inter-core correlation using magnetic susceptibil-
ity (Fig.  2). We chose magnetic susceptibility for the 
correlation rather than relative paleointensity because 
the number of conspicuous features that can be used 
for correlation is larger in magnetic susceptibility for 
the cores that cover a relatively short period of time. 
The Site GC10, the northernmost site, was tied to Site 
GC9 + PC5, whereas other southern sites are correlated 
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to Site GC1 + PC7 (Fig. 2). This is because environmen-
tal changes and thus magnetic property changes includ-
ing magnetic susceptibility were asynchronous between 
the northern and southern parts of the Okhotsk Sea 
(Yamazaki et al. 2013); this is why relative paleointensity 
was used for the correlation of the three major sites. The 
southern part (Sites GC1 + PC7 and GC8 + PC6) was in 
mobile sea-ice conditions even in full glacials, and accu-
mulation of ice-rafted debris (IRD) increased in glacial 
and deglacial periods. This was succeeded by extremely 
enhanced ocean productivity induced by nearly ice-free 
conditions in early interglacials. The northern part (Site 
GC9 + PC5) was, on the other hand, covered with per-
ennial sea ice in glacials, and IRD accumulation was low 
in glacials and increased in early interglacials. Succeeding 
ocean-productivity enhancement was delayed compared 
to the southern part (Yamazaki et al. 2013).

The correlation between Site GC3 and Site GC1 + PC7 
is shown in Fig.  4; the correlations of other sites are 

presented in Additional file  1, Additional file  2, Addi-
tional file  3, Additional file  4, and Additional file  5. A 
constant sedimentation rate was assumed between tie 
points. The inter-core correlations using magnetic sus-
ceptibility yielded relative paleointensity variations con-
sistent with each other. Estimated ages of the bottom 
of the gravity cores range from about 57 (Site GC11) to 
197 ka (Site GC3). Age–depth curves of individual cores 
are shown in Additional file 6. The average sedimentation 
rate is from 21 (Site GC5) to 92 m/m.y. (Site GC6), which 
corresponds to time intervals of 1100 and 250 years for 
each discrete sample, respectively. 

Results and discussion
Inclination records of the three major sites are shown in 
Fig. 3, which suggests that variations of a timescale of a 
few tens of 1000  years occur in common. Inclination 
records of each gravity-core site are presented in Fig.  4 
and Additional file 1, Additional file 2, Additional file 3, 
Additional file 4, and Additional file 5 together with the 
records of the target sites of the inter-core correlations 
with magnetic susceptibility. The agreement of inclina-
tion records between the coupled sites is generally good. 
Inclination data of all nine sites are superimposed in 
Fig.  5a. Inclination variations with a timescale of a few 
tens of thousand years are visible. Sudden inclination 
decreases were observed at about 28, 35–40, 64 85, 113, 
and 188–195 ka in two or more cores. Part of them are 
close in age to known geomagnetic excursions, the Mono 
Lake excursion at ~33  ka, the Laschamp at ~41  ka, the 
Blake at ~120 ka, and the Iceland Basin at ~188 ka (Rob-
erts 2008), and they may have recorded the excursions. 
On the other hand, low inclination spikes at about 128 
and 180 ka, which were recorded in only one core (Site 
GC9 + PC5), may not be of geomagnetic origin.

 We constructed a stacked inclination record of the 
Okhotsk Sea. The age interval of the stack was limited 
for the last 200 kyr because the number of available cores 

Table 1  Positions of coring sites and summary of inclination data

I inclination, GAD geocentric axial dipole, ∆I inclination anomaly (observed inclination minus GAD inclination)

Site Latitude (N) Longitude (E) Depth (m) GAD I Mean I ∆I

GC1 + PC7 51°16.5′ 149°12.5′ 1253 68.2 71.2 3.0

GC3 52°36.1′ 150°08.3′ 1048 69.1 69.9 0.8

GC5 52°39.6′ 149°08.8′ 1084 69.1 75.0 5.9

GC6 53°13.5′ 148°56.5′ 1456 69.5 64.6 −4.9

GC8 + PC6 53°16.9′ 150°04.7′ 1145 69.5 69.2 −0.3

GC9 + PC5 54°19.0′ 149°16.1′ 828 70.2 70.9 0.7

GC10 54°43.0′ 149°17.9′ 513 70.5 70.8 0.3

GC11 53°25.7′ 148°58.3′ 1381 69.6 68.8 −0.8

GC12 53°10.4′ 148°56.5′ 1299 69.5 74.2 4.7
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Fig. 2  Scheme of inter-core correlation and age assignment
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for older ages is small, three or less. First, the mean incli-
nation of each site was calculated between 0 and 100 ka 
(Table  1). Inclination data from the uppermost 20  cm 
of each core were removed because of possible physi-
cal disturbance of surface sediments during coring. For 
calculating the mean inclination, incfish.py of the pmag.
py programs for inclination-only data (Tauxe 2010) 
was used. Inclination anomaly (∆I) of each site, which 
is defined as observed mean inclination minus GAD 
inclination, ranges from −4.9° to 5.9° (Table 1), and the 
mean ∆I of the nine sites is 1.0° ±  3.2° (the mean ∆I is 
2.1°  ±  1.7° when calculated between 0 and 200  ka for 
four sites that cover this time interval). Next, we chose 
Site GC1 + PC7 as a representative location, and differ-
ences in inclinations expected from the differences in site 
latitudes were corrected using GAD inclinations. In addi-
tion, inclinations of each site were shifted slightly so that 
the ∆I of each site becomes zero. Then, the mean and 
standard deviation were calculated at 1-kyr intervals after 
resampling of each record (Fig.  5b). Long-term inclina-
tion variations are visible on the stacked record; intervals 
of shallower inclinations occur at about 25–45, 75–90, 
110–135, and 185–200 ka in the Okhotsk Sea.

We then compare the inclination stack from the 
Okhotsk Sea with the stacks of relative paleointensity and 
inclination from the West Caroline Basin in the western 
equatorial Pacific (Yamazaki et al. 2008; Fig. 5). The incli-
nation records of the two regions show parallel variations, 
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although the two regions are about 5000  km apart; the 
periods of shallower inclinations in the Okhotsk Sea at 
about 25–45, 75–90, 110–135, and 185–200 ka coincide 
with those of negative steeper inclinations in the West 

Caroline Basin. These inclination shifts are synchronous 
with relative paleointensity lows in general (Fig.  5), as 
pointed out in the West Caroline Basin by Yamazaki and 
Oda (2002) and Yamazaki et al. (2008), although a period 
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of paleointensity low around 100  ka contradictorily has 
steeper, but not shallower, inclinations in the Okhotsk 
Sea.

Yamazaki and Oda (2002, 2004) and Yamazaki et  al. 
(2008) explained the inclination and paleointensity varia-
tions observed in the western equatorial Pacific that rela-
tive contribution of a persistent quadrupole component 
increased when the strength of the GAD field decreased. 
The western equatorial Pacific is known to have a large 
∆I associated with a quadrupole component, and the sign 
of ∆I flips with polarity reversals (Johnson and Constable 
1997). From sediment cores in the West Caroline Basin, 
∆I of −6.5° ±  2.8° (N =  13) in the Brunhes Chron was 
reported (Yamazaki et al. 2008). The phase of the paleoin-
tensity–inclination correlation also flipped with polarity 
reversals, in-phase in the Brunhes Chron and anti-phase 
in the Matuyama Chron (Yamazaki and Oda 2002). The 
coeval inclination variations observed in the Okhotsk 
Sea, however, cannot be explained by this model because 
∆I in this area is near zero, as observed in our cores.

Hoffman and Singer (2008) proposed that a magnetic 
field at Earth’s surface during polarity transitions and 
excursions is dominated by a field generated only in the 
shallower part of the core, designated the SCOR field. 
They also proposed that the SCOR field is represented 
by persisting higher-degree terms other than the GAD 
field and lasts for a timescale of ~106  years. Both the 
Okhotsk Sea and western equatorial Pacific are within a 
region of outward directed flux in the 1590–1990 time-
averaged non-axial-dipole (NAD) field, which extends 
from Europe and Asia to the south of Australia (Hoffman 
and Singer 2008; Constable and Korte 2015). Thus, the 
observed inclination shifts around excursions, shallower 
in the Okhotsk Sea and deeper toward negative in the 
western equatorial Pacific, may be explained by a larger 
contribution of the SCOR field when the GAD was weak. 
In the western North Atlantic, the 1590–1990 time-aver-
aged NAD field has opposite inward flux. In this region, 
periods of steeper inclinations than the site averages, in 
which rapid excursional directional swings are interca-
lated, were observed near the Laschamp excursion (Lund 
et  al. 2001, 2005) and “excursions 13a, 15a, and 17a” 
(~510, ~573, and ~666 ka, respectively; Lund et al. 2001). 
This may support the SCOR field model. The coher-
ent shifts in inclinations among the Okhotsk Sea, west-
ern equatorial Pacific, and North Atlantic may also be 
explained by hypothetical dipole wobbles. However, the 
correspondence of the inclination shifts to paleointensity 
lows prefers the SCOR field model.

Conclusions
In this study, we obtained a stacked inclination record for 
the last 200 kyr in the Okhotsk Sea. The mean inclination 

anomaly of nine sites is close to zero. Inclinations shallower 
than the average occurred at 25–45, 75–90, 110–135, and 
185–200  ka. These are synchronous to inclination shifts 
toward negative reported in the western equatorial Pacific 
and coincide in general with paleointensity lows. The syn-
chronous inclination shifts associated with decreased pale-
ointensity may be explained by a larger contribution of the 
SCOR field proposed by Hoffman and Singer (2008) when 
the GAD was weaker; both the Okhotsk Sea and western 
equatorial Pacific are within a region of outward directed 
flux in the persistent NAD field.
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