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Abstract 

The MJMA 7.3 Kumamoto earthquake that occurred at 1:25 JST on April 16, 2016, not only triggered aftershocks in 
the vicinity of the epicenter, but also triggered earthquakes that were 50–100 km away from the epicenter of the 
main shock. The active seismicity can be divided into three regions: (1) the vicinity of the main faults, (2) the northern 
region of Aso volcano (50 km northeast of the mainshock epicenter), and (3) the regions around three volcanoes, Yufu, 
Tsurumi, and Garan (100 km northeast of the mainshock epicenter). Notably, the zones between these regions are 
distinctively seismically inactive. The electric resistivity structure estimated from one-dimensional analysis of the 247 
broadband (0.005–3000 s) magnetotelluric and telluric observation sites clearly shows that the earthquakes occurred 
in resistive regions adjacent to conductive zones or resistive-conductive transition zones. In contrast, seismicity is 
quite low in electrically conductive zones, which are interpreted as regions of connected fluids. We suggest that the 
series of the earthquakes was induced by a local accumulated stress and/or fluid supply from conductive zones. 
Because the relationship between the earthquakes and the resistivity structure is consistent with previous studies, 
seismic hazard assessment generally can be improved by taking into account the resistivity structure. Following on 
from the 2016 Kumamoto earthquake series, we suggest that there are two zones that have a relatively high potential 
of earthquake generation along the western extension of the MTL.
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Introduction
The MJMA 7.3 (Mw 7.0) Kumamoto earthquake occurred 
at 1:25 JST (Japan Standard Time) on April 16, 2016, 
which followed the nearby MJMA 6.5 (Mw 6.2) earthquake 
at 21:26 JST on April 14, 2016. The dextral strike-slip 
earthquake rupture propagated mainly in an ENE direc-
tion from the hypocenter to the west of Aso volcano 

along the Futagawa fault (e.g., Asano and Iwata 2016; 
Kobayashi et  al. 2016) (Fig.  1). One prominent feature 
of this earthquake sequence is the spatial distribution of 
the events: These are not limited to aftershocks in areas 
around the rupture zone, but include triggered seismic 
events located 50–100 km from the mainshock (Shimizu 
et al. 2016). The active seismicity can be divided into three 
regions: Seis. 1, around the main faults; Seis. 2, the north-
ern part of Aso volcano; and Seis. 3, the region around 
the three volcanoes, Yufu, Tsurumi, and Garan (Fig.  1). 
Since the earthquakes around Seis. 2 and Seis. 3 began 
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immediately after the Kumamoto earthquake, earth-
quakes in these regions are considered to be triggered 
by the mainshock of Seis. 1. Subsequent earthquakes not 
only were small earthquakes, but also included moder-
ate earthquakes (>MJMA 3.5) that totaled 230 events by 
May 8, 2016. The concern for future earthquakes has 
been derived from the fact that the NE–SW-trending 
line along which the earthquakes occur corresponds 
to the possible western extension of the Median Tec-
tonic Line (MTL), which is the longest and most active 
arc-parallel, right-lateral, strike-slip fault system in the 
Japan arc (Fig.  1). The oblique subduction of Philippine 
Sea Plate (Seno et al. 1993) induces a shear stress in the 
vicinity of the MTL and separates the fore-arc sliver from 
the crust of the arc at depth (Kamata and Kodama 1994; 
Miyazaki and Heki 2001; Tabei et  al. 2002). Along the 
western extension of the MTL in Kyushu, the shear stress 
is found to be partly released by deformation (Nishimura 
and Hashimoto 2006; Wallace et  al. 2009; Matsumoto 

et al. 2015). In 1975, MJMA 6.1 and MJMA 6.4 earthquakes 
occurred within 3  months in the region of Seis. 2, and 
between Seis. 2 and Seis. 3, respectively (Yamashina and 
Murai 1975). Along the MTL, three M7 class earthquakes 
occurred within 4 days in 1596 (Kanaori et al. 1994; Toda 
et  al. 2015). Therefore, it is reasonable to be concerned 
about the occurrence of large earthquakes around the 
MTL and its western extension.

In addition to the shear stress along the western exten-
sion of the MTL, the island of Kyushu is considered to 
be influenced by tectonics stress associated with back-
arc spreading (e.g., Seno 1999) (Fig.  1). Geomagnetic 
depth sounding research supports a region of increased 
electrical conductivity in the mantle below the back-
arc side of Kyushu (Handa et al. 1992; Shimoizumi et al. 
1997). Furthermore, the series of Kumamoto earth-
quakes, including those that were triggered by the ini-
tial series, occurred in a graben structure (Matsumoto 
1979; Kamata 1989; Handa 2005) and around the active 
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Fig. 1  Broadband magnetotelluric (MT) and telluric observation sites with hypocenters one month after the MJMA 6.5 earthquake of 21:25 JST, April 
14, 2016. The hypocenters are relocated by the manual reading of P-wave arrival times (Shimizu et al. 2016). Inset shows the location of studied 
area (solid rectangle), active volcanoes, plate boundary, and Median Tectonic Line (MTL). Seis. 1, Seis. 2, and Seis. 3 represent the seismicity noted in 
the text. The three stars represent hypocenters of events with MJMA > 6.0. The largest star represents the hypocenter of the Kumamoto earthquake 
(32.7552°N 130.7661°E, 12.9 km depth), which occurred at 01:25 JST, April 16, 2016
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volcanoes. Such complex tectonic settings suggest com-
plex subsurface structures that may be related to the 
characteristic seismicity. Because electrical resistivity 
is sensitive to the presence of fluids, and subsequently 
the elasticity of the media, it is important to investigate 
how resistivity structures relate to earthquake genera-
tion (Ogawa et al. 2001; Fujinawa et al. 2002; Goto et al. 
2005; Guerer and Bayrak 2007; Wannamaker et al. 2009; 
Yoshimura et  al. 2009; Ichihara et  al. 2011, 2014, 2016; 
Ogawa et  al. 2014; Kaya et  al. 2013). To investigate the 
relationship between earthquakes and electrical resistiv-
ity structure, we gathered and analyzed the broadband 
(typically 0.003–10,000 s) magnetotelluric (MT) and tel-
luric data, which resolve the resistivity structure from the 
surface to the depth of the upper mantle.

Broadband magnetotelluric data
We conducted the MT and telluric data surveys during 
2014–2015 in the vicinity of Aso caldera, in the region of 
triggered seismicity (Seis. 2 and Seis. 3), and to the south 
of the city of Oita. In addition, we used previously pub-
lished MT and telluric data from the region of the main 
shock of the 2016 Kumamoto earthquake (Asaue et  al. 
2004, 2007, 2012) and around Aso volcano (Takakura 
et al. 2000; Asaue et al. 2006; Hata et al. 2016). The num-
ber of sites used in this study amounted to 247, including 
94 unpublished new data.

For the 2015 MT survey around Aso volcano, the MT 
data were measured by the Phoenix MTU5 systems 
(telluric and geomagnetic field observations). The MT 
response functions were calculated using the SSMT2000 
program (Phoenix Geophysics Ltd). Typically, record-
ing duration was 2–3 nights. We also employed remote-
reference processing (Gamble et al. 1979) using MT data 
recorded at the Esashi Magnetic Observatory, which is 
located about 1000 km northeast of Aso volcano.

For the 2014–2015 MT surveys around Seis. 2 and Seis. 
3, and south of Oita, the MT data were measured with a 
Metronix ADU07e system (telluric and geomagnetic field 
observations) and the NT System Design ELOG1K (tellu-
ric only observations). Typically, recording duration was 
10 days. MT response functions were calculated using a 
robust estimation code (Chave and Thomson 2004). At 
the telluric observation sites, geomagnetic data from the 
nearest sites were used for calculations. In all calcula-
tions, notch filtering was applied to the time series data 
to reduce anthropogenic 60  Hz noise and its odd-order 
overtones (Aizawa et  al. 2013). We employed remote-
reference processing (Gamble et  al. 1979) for periods 
<10  s, using MT data recorded at other MT sites. For 
the periods >10  s, the 1-Hz-sampled geomagnetic data 
recorded at the Kakioka Magnetic Observatory (located 
about 1000 km east-northeast of Kyushu) were used for 

remote-reference processing. Using these approaches, we 
obtained MT response functions across a broad (0.005–
3000 s) range of periods. The periods of the MT response 
functions vary slightly among datasets due to differ-
ences in sampling frequencies. We interpolated the MT 
response functions and errors in the frequency domain 
using a cubic spline function. The MT response functions 
were then defined for specific frequencies.

Resistivity structure determined 
by one‑dimensional analysis
Recent development of 3-D MT inversion codes by finite 
difference methods (e.g., Siripunvaraporn and Egbert 
2009; Kelbert et  al. 2014) allows us to deduce three-
dimensional (3-D) resistivity structure. In our dataset, the 
sites are mainly located along five lines across the Futa-
gawa and Hinagu faults, with the overall region located 
along an elongated NE–SW region (Fig. 1). Applying 3-D 
inversion codes to such uneven site locations requires 
the construction of a huge horizontal mesh and subse-
quently has extensive memory and computational time 
requirements, even with a high-end workstation. In this 
study, as an alternative, we have adapted a one-dimen-
sional (1-D) inversion routine for the data at each site. 
The apparent resistivity and the phase of the sum of the 
squared elements (ssq) invariant impedance (Szarka and 
Menvielle 1997; Rung-Arunwan et al. 2016) are inverted 
with Occam’s algorithm (Constable et al. 1987). The ssq 
impedance (Zssq) is defined as,

where Zxx, Zxy, Zyx, and Zyy are the components of the 
impedance tensor. Commonly used determinant imped-
ances are generally biased downward by the presence 
of galvanic distortion, while ssq impedances are robust 
with respect to distortion and are therefore suitable for 
obtaining a first-order approximation of the regional 
structure (Rung-Arunwan et al. 2016).

In the 1-D inversion, we assigned error of ±10% to each 
ssq impedance (equivalent to ±0.0434 in log apparent 
resistivity and ±2.85° in phase), with the exception of the 
dead-band data from 6.4 to 25.6 s, which were assigned 
larger error of ±30%. In addition, outliers from smooth 
sounding curves were judged visually and were assigned 
errors larger than ±30%. Using these procedures, we 
estimated the smoothest resistivity structure in which 
the model response fit the data to an RMS tolerance of 
1.0. Figures 2 and 3 show the comparison of the apparent 
resistivity and phase maps of the observed data (obs) with 
the calculated response (clc). Overall, the observed data 
are well explained by the estimated resistivity structure.

Zssq =

√

Zxx2 + Zxy2 + Zyx2 + Zyy2

2
,
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Figure  4 shows the estimated resistivity structure. 
Strictly speaking, it is difficult to evaluate how well 1-D 
analysis using ssq impedance approximates regional 
structure. In this study, we calculated the skew angle (β) 
of the magnetotelluric phase tensor (Caldwell et al. 2004) 
(Fig. 5) to check for the presence of strong 3-D features 
produced by the true resistivity structure: Large |β| indi-
cates the presence of a 3-D resistivity structure around a 
site. Although large |β| values are present locally, large 
parts of the studied area show |β|  <  10° to periods of 
25.6  s, which correspond to a 12.5  km skin depth in a 
30-Ωm half-space. At longer periods, to 1024 s, areas of 
|β| > 10° are present, especially at the north flank of Kuju 
volcano. It should be noted here that the zones of large 
|β| approximately correspond to zones where the esti-
mated resistivity significantly changes horizontally. This 
implies that the 1-D analysis might approximate the 3-D 
structure, even in a zone of large |β|. Full 3-D analysis 
will be the subject of future work.

In a broad sense, obtained resistivity structure (Fig. 4) 
shows a structural boundary across the Hinagu and Futa-
gawa faults at depths of 1 and 4 km (i.e., the northwestern 
parts of the faults are conductive, while the southeast-
ern parts are resistive), as stated in Asaue et  al. (2012). 
A similar feature is also found between Kuju volcano 
and the city of Oita, where a NE–SW-trending structural 
boundary exists. Between such structural boundaries, 
Aso volcano exists with the local conductor. At depths of 
8 and 12 km, the zone around the Futagawa and Hinagu 
faults (the Seis. 1 zone) becomes approximately resistive, 

although the location of hypocenter of the Kumamoto 
earthquake was relatively conductive. The Aso and Kuju 
volcanoes are imaged as conductive zones. The Yufu, 
Tsurumi, and Garan volcanoes do not show a dominant 
conductor beneath them, while their southern part is 
imaged as a conductor. At a depth of 20 km, the north-
western parts of the Futagawa and Hinagu faults gradu-
ally become conductive again. This deep conductive zone 
is located beneath the region of Seis. 1, which extends to 
~16 km depth. The conductive zone beneath Aso volcano 
continues to depth, whereas the one beneath Kuju vol-
cano moves to the west.

Discussion
To investigate the relationship between the earthquakes 
and the resistivity structure in the study area, the hypo-
centers, which were relocated by manual readings of 
P-wave arrival times (Shimizu et  al. 2016), are plot-
ted on the resistivity sections at depths of 8 and 12  km 
(Fig. 6). Overall, the aftershocks (Seis. 1) were distributed 
mainly in the resistive zone (100–1000 Ωm) at depths of 
4–16  km beneath which the relatively conductive zones 
exist, especially to the northwest of Hinagu and Futagawa 
faults (Figs.  4, 6). The triggered earthquakes of Seis. 2 
also occur in the resistive zone or the resistive-conduc-
tive transition zone. In 1975, an MJMA 6.1 earthquake 
occurred at approximately the same location, although 
its hypocentral depth is poorly determined (Yamashina 
and Murai 1975) (Fig.  6). In the region of Seis. 3, the 
triggered earthquakes also occurred in the relatively 
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resistive zones (>100 Ωm) west of Yufu volcano and east 
of Tsurumi volcano, or within the resistive-conductive 
transition zone, and in general avoid the surrounding 

conductive (<100  Ωm) zones. Between Seis. 2 and Seis. 
3, the hypocenter of the 1975 MJMA 6.4 earthquake (Oita-
Chubu earthquake) is located in a relatively resistive 
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zone, although its hypocentral depth is poorly deter-
mined (Yamashina and Murai 1975; Fukuoka District 
Meteorological Observatory 1976) (Fig. 6). In general, the 
earthquakes occur in electrically resistive zones adjacent 
to conductive zones or resistive-conductive transition 
zones, and seismicity is low in conductive zones.

Because the conductive zones are located in the mid-
dle crust in the vicinity of active volcanoes (Kuju, Aso, 
Tsurumi, Garan, and Yufu) or in the lower crust beneath 
the Futagawa and Hinagu faults, we interpret that the 
deep conductors represent high-temperature ductile 
or low-rigidity zones due to the presence of fluids such 
as magma or saline water. In contrast, we interpret the 
resistive zones as relatively cold brittle zones with a fluid 

deficit. We hypothesize that the conductive zone prefer-
entially deforms, such that the static stress over Kyushu 
(Matsumoto et al. 2015; Savage et al. 2016) accumulates 
preferentially in proximal brittle resistive zones and sub-
sequently causes large earthquakes. The concept of local 
stress accumulation has been proposed based on the 
results of previous magnetotelluric studies (e.g., Ogawa 
et al. 2001; Ichihara et al. 2008, 2014; Wannamaker et al. 
2009). The concept is similar to the hypothesis of Iio et al. 
(2002) who assumed that the lower crust had a deform-
able weak zone. In addition, our results suggest that flu-
ids supplied from conductive zones to nearby resistive 
zones can promote earthquake occurrences (e.g., Mit-
suhata et  al. 2001; Ogawa et  al. 2001; Yoshimura et  al. 
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2009) by increasing pore pressure and decreasing the 
effective normal stress. Although it is usually difficult to 
uniquely determine the triggering mechanism, the effect 
of fluids on earthquake generation is especially plausible 
in the region of Seis. 3, which is approximately 100  km 
away from the hypocenter of the MJMA 7.3 earthquake. 
Between the hypocenter of the main shock and Seis. 3 
lies a remarkably conductive zone. In this case, the static 
stress change (e.g., Hardebeck et al. 1998) caused by the 
2016 Kumamoto earthquake was not effectively trans-
ferred at distance, but instead, the dynamic effects of 
seismic shaking were considered to be reasonable earth-
quake triggers (Miyazawa 2016). Because Seis. 3 occurs 
beneath active volcanoes, gas-rich hydrothermal water 
and/or gas bubbles exist at depth beneath the region, and 
their upwelling could have been facilitated by ground 
motion leading to earthquakes (e.g., Hill and Prejean 
2005; Aizawa et al. 2016) in the Seis. 3 region.

This study shows that the seismogenic zones corre-
spond approximately to resistive zones lying adjacent to 
conductive zones, or to the conductive-resistive tran-
sition zone. These results are consistent with previous 
magnetotelluric studies conducted across the epicent-
ers of large (>M 6) inland earthquakes (Mitsuhata et al. 
2001; Ogawa et  al. 2001; Tank et  al. 2003, 2005; Kasaya 
and Oshiman 2004; Ichihara et al. 2008, 2014; Yoshimura 
et  al. 2008; Kaya et  al. 2009; Umeda et  al. 2011, 2014; 
Chandrasekhar et al. 2012) with the exception that after-
shocks occur in a thick sedimentary layer (Uyeshima et al. 
2005). Note here that the dense magnetotelluric observa-
tions occasionally image localized subvertical conduc-
tors beneath the active faults (e.g., Unsworth et al. 1997; 
Wannamaker et al. 2002; Becken et al. 2008; Ikeda et al. 
2013; Sass et  al. 2014). These local conductors, which 
are termed fault zone conductors, were interpreted to 
be damaged zones characterized by a fluid filled fracture 
network and altered clay materials. Previous two-dimen-
sional (2-D) inversions in the region of our dataset have 
imaged the vertical conductors with a width of 1–4  km 
beneath the Futagawa fault (Asaue et al. 2004). The 1-D 
inversion of this study also shows the local conduc-
tor along the Futagawa fault at a depth of 1 km (FZC in 
Fig. 4). In addition, Fig. 4 shows the local conductor with 
a resistivity of around 100 Ωm at the hypocenter of the 
main shock. To confirm the presence of such small-scale 
conductors and their relationship to the earthquakes, the 
collection of more magnetotelluric observations and 2-D 
and/or 3-D inversions is necessary.

Considering the relationship between resistivity struc-
ture and seismicity, we suggest that two zones (Zones 
A and B in Fig.  6) have similar structures to the zones 
of Seis. 1–Seis. 3. Zone A corresponds to the southern 
part of Hinagu fault, which is 10–50 km from the hypo-
center of the main shock. Zone A includes a zone of high 
radon-222 concentration in soil gas, which suggests large 
gas ascent velocities caused by frequently induced strain 
along the Hinagu fault (Koike et al. 2014). Further, a con-
ductive zone like Seis. 1 is suggested at depths of ~20 km 
beneath Zone A, and therefore, this region is considered 
to have a relatively high potential of earthquake gen-
eration. Indeed in 1619, a M 6.2 earthquake occurred 
around Zone A (Usami 1967).

Zone B is located 70–100  km east-northeast of the 
mainshock hypocenter. Zone B has been classified as 
seismically inactive for the last 20  years (Matsumoto 
et  al. 2015), and no earthquake was triggered by the 
2016 Kumamoto earthquake (Figs. 1, 6). However, Zone 
B corresponds to the possible western extension of the 
MTL where a possibly active fault (the Imahata-Shiraie 
fault) is located (Research Group for Active Faults in 
Japan 1991). The resistivity structure show the struc-
tural boundary in Zone B at depths of 1–12 km (Figs. 4, 
6). To investigate the origin of the structural boundary, 
we compared the shallow resistivity structure with the 
gravity data. Figure  7 shows the resistivity structure at 
a depth of 1  km and the Bouguer anomaly, assuming a 
terrain density of 2.63 g/cm3 (Geological Survey of Japan 
AIST 2013). The structural boundary of Zone B is well 
correlated to a zone with a steep gravity gradient, which 
is interpreted to be the southern rim of a graben struc-
ture (Kamata 1989; Kamata and Kodama 1994). Recent 
studies suggest that the graben is a pull-apart basin 
related to the MTL dextral movements partly with vol-
canic depressions (Itoh et al. 1998; Saiga et al. 2010; Itoh 
et al. 2014). The altered volcano-clastic rock and hydro-
thermal water filling the graben are considered to be the 
cause of the low resistivity at shallow levels. Although 
Itoh et al. (1998) and Itoh et al. (2014) suggest that Zone 
B is inactive at the present time, GPS data support active 
shear around this region (Nishimura and Hashimoto 
2006; Wallace et  al. 2009). The stress field estimated 
from earthquakes also supports aseismic slip at the shear 
zone (Matsumoto et al. 2015). Furthermore, Zone B cor-
responds to the edge of the conductor at depths of 8 and 
12 km. Therefore, Zone B may have a high potential of 
occurrence of large earthquakes.
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Conclusions
1-D analysis of the resistivity structure constrained by the 
247 broadband MT and telluric observation sites has clari-
fied that the aftershocks and triggered earthquakes of the 
2016 Kumamoto earthquake occurred on electrically resis-
tive zones adjacent to conductive zones or resistive-conduc-
tive transition zones. Seismicity was found to be quite low in 
the electrically conductive zones that are interpreted to be 
fluidized. This relationship is consistent with previous MT 
studies of other seismogenic zones around the world. There-
fore, we conclude that seismic hazard assessments may be 
improved by considering the resistivity structure.

We interpret the difference in resistivity to represent a 
difference in elastic properties. The release of stress that 
had accumulated within the resistive region in the vicin-
ity of the resistive-conductive boundary, probably led to 
the series of earthquakes. Increases in pore pressure from 
fluids supplied from the conductive zone may have been 
an additional cause of the earthquakes. Future dense MT 
observations made around the Futagawa and Hinagu 
faults and 3-D inversion will contribute to improving the 
sharpness of resistivity structure images and will charac-
terize seismicity more clearly from the viewpoint of its 
relationship with resistivity structure.
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