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Abstract 

A simple and efficient finite-difference scheme is developed to calculate seismic wave propagation in a partial spheri-
cal shell model of a three-dimensionally (3-D) heterogeneous global Earth structure for modeling on regional or 
sub-global scales where the effects of the Earth’s spherical geometry cannot be ignored. This scheme solves the elas-
todynamic equation in the quasi-Cartesian coordinate form similar to the local Cartesian one, instead of the spherical 
polar coordinate form, with a staggered-grid finite-difference method in time domain (FDTD) that is one of the most 
popular numerical methods in seismic-motion simulations for local-scale models. The proposed scheme may be a 
local-friendly approach for modeling on a sub-global scale to link regional-scale and local-scale simulations. It can be 
easily implemented using an available 3-D Cartesian FDTD local-scale modeling code by changing a very small part of 
the code. We implement the scheme in an existing Cartesian FDTD code and demonstrate the accuracy and validity 
of the present scheme and the feasibility to apply it to real large simulations through numerical examples.
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Introduction
In recent years, there have been remarkable develop-
ments in numerical modeling techniques of seismic 
wave propagation, associated with progress in computer 
architecture. The numerical simulation has become 
a dominant tool for understanding seismic events in 
both earthquake seismology and exploration seismol-
ogy. There are several numerical methods used for such 
purposes, such as the finite-element, spectral-element, 
and finite-difference methods. Among these the finite-
difference method (FDM) is one of the most popular 
ones. The FDM can be applied in either the time or fre-
quency domain. The finite-difference method in time 
domain (FDTD) is popular because it is relatively simple 
and easy to program. For a review on various schemes of 
the FDTD, see, e.g., Moczo et al. (2014). Simplicity of the 

FDTD implementation motivates seismologists to apply 
this method.

The FDTD has been widely utilized for three-dimen-
sional (3-D) seismic wave simulations on local scales 
(e.g., Graves 1996; Hayashida et  al. 1999; Pitarka 1999). 
The FDTD has also been successfully applied to global-
scale modeling (e.g., Thomas et al. 2000; Toyokuni et al. 
2005; Toyokuni and Takenaka 2006). The global-scale 
modeling usually solves the elastodynamic equation in 
spherical polar coordinates, while the local-scale mod-
eling solves the equation in Cartesian coordinates. We 
often deal with a problem of an intermediate scale, so we 
may search for a simple but accurate or stable scheme. 
For modeling on regional scales, we may have to con-
sider the spherical geometry of the Earth. Historically, 
Earth-flattening transformation has been used in wave-
form modelings for laterally homogeneous (i.e., spheri-
cally symmetric) Earth models (see, e.g., Box  9.2 of Aki 
and Richards 2002) with, for example, the reflectivity 
method. It can exactly transform a SH-wave propagation 
problem posed for a medium with spherical symmetry 
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into a problem posed for a plane-stratified medium 
and give a useful approximation to a P-SV problem in a 
spherically symmetric medium. However, for laterally 
or three-dimensionally heterogeneous Earth models the 
validation of the use of Earth-flattening approximation 
should be eventually checked by comparing the solutions 
with those computed by numerical methods such as the 
FDTD without the approximation for each of the same 
models. The FDTD has actually been applied to modeling 
wave propagation even for media with random proper-
ties (e.g., Igel and Gudmundsson 1997). We thus prefer 
to use a method without Earth-flattening approximation. 
The FDTD has been exploited for intermediate-scale, 
regional- or continental-scale modeling as well as local-
scale modeling. Igel et  al. (2002) presented an excellent 
scheme for a partial spherical shell (spherical section) 
model of a 3-D heterogeneous global earth structure, 
which is a rather global-friendly method to link regional-
scale and global-scale modelings because it solves the 
elastodynamic equation in spherical polar coordinates.

In this paper, we propose a local-friendly approach for 
modeling on sub-global scales to link regional-scale and 
local-scale modelings. This solves the elastodynamic 
equation in the quasi-Cartesian coordinate form similar 
to local Cartesian one, instead of in the original spheri-
cal polar coordinate form, with the FDTD. The proposed 

scheme can be easily implemented in an available 3-D 
Cartesian FDTD code of local-scale modeling such as 
strong-motion simulation by changing a very small part 
of the code. It is one of the most important merits of use 
of the quasi-Cartesian formulations instead of the origi-
nal spherical polar ones.

The quasi-Cartesian approach could be easily applied 
to a multiscale hybrid method or domain decomposition 
method that divides the computational domain into mul-
tiple domains in which wave propagation is calculated 
separately by changing grid size and type (e.g., uniform or 
non-uniform), often with different methods (e.g., Moczo 
et  al. 1997; Wen and Helmberger 1998; Robertsson and 
Chapman 2000; Yoshimura et al. 2003; Opršal et al. 2009; 
Monteiller et  al. 2013). If we consider a local domain 
embedded in a sub-global domain (Fig.  1a, c), the wave 
propagation in the sub-global domain is computed with 
the quasi-Cartesian FDTD as a background model. In 
the local domain, the propagation is then calculated with 
the Cartesian FDTD. In this process, we may be able to 
couple the computations between the domains through 
the hybrid of the Cartesian and quasi-Cartesian formula-
tions without combining different methods. For coupling 
the wavefields in the two domains, for instance, so-called 
a finite-difference injection method could be exploited, 
which allows us to calculate synthetic seismograms 

Cartesianquasi-Cartesian

a

b

c

Cartesian
quasi-Cartesian

Cartesian

quasi-Cartesian

Fig. 1  Possible seismic cases for which a hybrid method of the quasi-Cartesian and Cartesian FDTDs may be useful. a Modeling or inversion for 
shallow subsurface structure of a localized region by using waveform data at local stations from regional and/or teleseismic events. b Source inver-
sion for a fault in a localized region from local (strong-motion), regional, and teleseismic records. c Modeling or inversion for a very deep structure 
below a local seismic array using scattered waves from the deep target region
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efficiently after model alterations in the local domain 
(Robertsson and Chapman 2000; Borisov et al. 2015). The 
hybrid may also be applicable to a source inversion that 
estimates a spatiotemporal slip distribution on a fault 
plane from local (strong-motion), regional, and teleseis-
mic records (Fig. 1b). In this case, the target fault may be 
set in the local domain where Cartesian coordinates are 
used. These issues on the hybrid method might be near-
future subjects.

Methods
For simplicity, we here consider formulations for elas-
tic waves without anelastic attenuation to explain the 
scheme. In a spherical polar coordinate system (r, θ, φ) 
(Fig. 2), the velocity-stress form of the 3-D isotropic lin-
ear elastodynamic equation may be written as (e.g., Igel 
et al. 2002; Toyokuni et al. 2012):

(equation of motion)
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and (constitutive equation)

where ρ is the density, vr, vθ, and vφ are the particle veloci-
ties, σrr, σθθ, σφφ, σrθ, σθφ, and σrφ are the stress compo-
nents, fr, fθ, and fφ are body-force components, λ and μ are 
Lamé constants, and Ṁrr , Ṁθθ , Ṁφφ , Ṁrθ , Ṁθφ , and Ṁrφ 
are the time derivatives of moment-tensor components.

A differential position or coordinate vector dr may be 
written in the spherical polar coordinate system as
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dr = r̂dr + θ̂rdθ + φ̂r sin θdφ

= r̂dsr + θ̂dsθ + φ̂dsφ ,

Fig. 2  Relationship between quasi-Cartesian and spherical polar coordinates. Left global view. Right local view
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where (r̂, θ̂ , φ̂) are the spherical polar coordinate unit 
base vectors (Fig.  2), and dsr, dsθ, and dsφ are line ele-
ments of the arc lengths sr, sθ, and sφ, respectively.

Changing the coordinate variables as

where z is depth, R0 is the Earth’s radius, and θ′ is latitude, 
the differential coordinate vector may be represented as

Relabeling (ẑ, θ̂ ′, φ̂), dsz, dsθ ′, and dsφ as (ez, ex′, ey′), dz, 
dx′, and dy′, respectively,

(4)z = R0 − r, θ ′ =
π

2
− θ ,

(5)dr = ẑdsz + θ̂
′
dsθ ′ + φ̂dsφ .

(6)dr = ezdz + ex′dx
′
+ ey′dy

′
,

(7)dx′ = rdθ ′, dy′ = r cos θ ′dφ.

Note that the unit vectors ez, ex′, and ey′ are pointing 
downward, north, and east, respectively, in a local Car-
tesian coordinate system, which vary in direction as the 
angles θ′ and φ. In Fig. 2, x′- and y′-curves are identical 
to the latitude and longitude lines passing a position (r, 
θ, φ), respectively. We here call the coordinates (z, x′, y′) 
quasi-Cartesian coordinates. They all have dimension 
of length. Equation  (7) shows that for lateral derivatives 
∂ • /r∂θ ′ = ∂ • /∂x′ and ∂ • /r cos θ ′∂φ = ∂ • /∂y′.

There are simple relations (one-to-one correspond-
ence) among the components of the particle velocity vec-
tor and the stress tensor in the original spherical polar 
coordinate and the quasi-Cartesian coordinate systems. 
Using these relations and the differential coordinates in 
Eqs. (6) and (7), we can get the form of the elastodynamic 
equation in quasi-Cartesian coordinates:
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In derivation of these equations, we have carried out sim-
ple variable changes such as Eq. (4) and relabeling some 
coordinate-related quantities but have not introduced 
any approximation. The quasi-Cartesian form, a set of 
Eqs.  (8), (9) and (7), is equivalent to the original spheri-
cal polar form and is exact. We found that each of quasi-
Cartesian Eqs.  (8) and (9) is formally identical to the 
corresponding 3-D Cartesian coordinate equation except 
r-dependence of d′, r- and θ′-dependence of dyx′, and the 
terms with 1/r which are enclosed by blue-dashed lines 
and called “additional terms” hereafter. This fact means 
that we could implement a set of Eqs. (8), (9) and (7) by 
adding the additional terms in an available computer 
code for 3-D local Cartesian form and using the lateral 
grid intervals Δx and Δy depending on the radius r (or 
depth z) and the latitude θ′ as

The finite-difference stencil (a set of weights) for each 
of the x′-derivatives in the modified code then depends 
on the depth coordinate at the evaluation point, while 
the stencil for each of the y′-derivatives varies with both 
coordinates of the depth and latitude. Note that the grid 
points for the FDM of the quasi-Cartesian form are iden-
tical to those of the spherical polar form.

In the staggered-grid FDMs such as the FDTD, the 
derivatives of every field quantity are naturally defined 
halfway between the grid points where the field quantity 
is defined. Thus, terms on the right-hand side of the elas-
todynamic equation [Eqs.  (8) and (9)], including spatial 
derivatives, are consistently evaluated at the same grid 
position where the field quantity on the left-hand side is 
defined. However, this is not the case for terms that do 
not include spatial derivatives, i.e., the additional terms 
in Eqs.  (8) and (9). In our FDTD scheme, these terms 
are evaluated using Lagrange interpolation of the same 

(10)�x = r�θ ′, �y = r cos θ ′�φ.

accuracy order as the corresponding finite difference 
(e.g., Fornberg 1988).

This scheme can be easily implemented using an avail-
able 3-D Cartesian FDTD code of local-scale modeling. 
We have implemented the scheme in an existing Carte-
sian FDTD code (Nakamura et al. 2012) which can calcu-
late local seismic wave propagation in a 3-D land–ocean 
unified model with sea layer, topography, and anelastic 
attenuation by the FDTD of fourth-order accuracy in 
space and second-order accuracy in time. This code uti-
lizes a unified scheme for fluid–solid boundary to cor-
rectly model land and seafloor topography (Takenaka 
et  al. 2009) and employs perfectly matched layer (PML) 
absorbing boundaries to suppress the artificial reflections 
from the sides and bottom of the computational domain.

Modeling target for the quasi-Cartesian approach may 
be a limited area of the globe that is a section of a spheri-
cal shell. When the simulation area is at higher latitude, 
the grid spacing of the y′-direction changes more rapidly. 
From a point view of the accuracy and the stability of the 
finite-difference approximation, it is better to keep the 
variation of spatial grid spacing smaller in the computa-
tional domain. A simple approach to do so is to move the 
target area to around the equator of the computational 
spherical coordinate system using geometrical rotations 
of the coordinate axes (e.g., Igel et al. 2002). We exploit 
the transformation from equatorial coordinates to eclip-
tic coordinates as one of the methods for this approach, 
which is widely used in astronomy.

We now describe how to apply the equatorial-to-
ecliptic coordinate transformation to our aim. Before 
conducting the equatorial-to-ecliptic coordinate trans-
formation, we choose a central position of the target area 
(“Original” in Fig. 3) as the reference point with latitude 
of ε and rotate the computational domain about the 
north pole so that the longitude of the reference point is 

Original

North pole

Target point

Reference point

Step 1

North pole

(90 , ε)
(α, δ)

Step 2

North pole

Δφ

(90 , ε) → (90 , 0 )

λ

β
(α, δ) → (λ, β)

Fig. 3  Schematic view for converting equatorial coordinates to ecliptic coordinates. Yellow circle is a target point with the converted coordinates. 
Orange circle indicates the reference point on the simulation area
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shifted into 90°E (“Step 1” in Fig. 3). The equatorial coor-
dinates of the reference point are then (longitude, lati-
tude) = (90°, ε). We set the ecliptic through the reference 
point and employ the equatorial-to-ecliptic coordinate 
transformation which transforms the coordinates of the 
reference point to (90°, 0°) (“Step 2” in Fig. 3). Let us con-
sider an arbitrary point on the computational area with 
equatorial coordinates (α, δ), which is indicated by a yel-
low circle called target point in Fig. 3. Applying the equa-
torial-to-ecliptic coordinate transformation to the target 
point gives its ecliptic coordinates (λ, β) as

The angle between the longitude lines through the target 
point in the equatorial and ecliptic coordinate systems, 
Δφ, is then

This gives the angle change of azimuths in the equatorial-
to-ecliptic coordinate transformation.

Numerical examples
In this section, we show two numerical examples of the 
quasi-Cartesian FDTD application. The first numeri-
cal example demonstrates seismic wave propagation in 
a Moon section model. Since the Moon is smaller than 
the Earth, the effects of the spherical geometry on wave 
propagation could be stronger than those of the Earth. 
We compare waveforms (synthetic seismograms) for a 
spherical Moon model and the corresponding flat model. 
The synthetic seismograms for the spherical Moon model 
are calculated by solving a set of Eqs.  (8), (9) and (7) 
(hereafter called “quasi-Cartesian FDTD”), while those 
for the flat model are obtained by using the equations 
without the additional terms and assuming constant Δx 
and Δy (hereafter called “Cartesian FDTD”). In the first 
numerical example, we check the accuracy and validity of 
the quasi-Cartesian scheme by comparing the synthetic 
seismograms with those obtained by the spherical FDTD 
(Toyokuni and Takenaka 2012) which treats an axisym-
metric global model including the center of the sphere in 
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spherical polar coordinates. The second numerical exam-
ple demonstrates a long-range (~1000 km) simulation of 
seismic wave propagation around Japan for a virtual sub-
duction event. The structural model for this simulation 
is three-dimensionally heterogeneous and has land and 
ocean topographies and seawater. In the second numeri-
cal example, we also compare waveforms for a 3-D het-
erogeneous spherical Earth model with those for the 
corresponding flat model.

Simulation for a Moon section
Figure  4 shows the model setting. The compu-
tational domain is a spherical cubic section of 
45° ×  45° ×  450  km, which is discretized with cells of 
0.06172°  ×  0.06172°  ×  1  km for the quasi-Cartesian 
FDTD. The spacing of 0.06172° corresponds to 1.87  km 
at the Moon surface. The time step is 0.0125 s. The source 
(point source) and receivers are located at a depth of 
100 km. The datum (acquisition surface) is indicated by 
light blue surface in Fig. 4. Note that subsurface receiv-
ers could be more affected by the spherical geometry 
than surface receivers because of the shorter radius. 
The employed seismic structure is spherically symmet-
ric, i.e., 1-D, which is shown in Fig.  5. We constructed 

0.06172

100km

FDTD cell

A'

A

Fig. 4  Model setting for the Moon simulation. Location of the source 
(star) and the datum (light blue-colored surface). Receivers are set at 
line A–A′ (blue line) on the datum. This line also indicates location of 
cross section shown in Fig. 7 for the snapshots. A small curved cubic 
on the right side of the model schematically shows a grid cell for the 
computation by the quasi-Cartesian FDTD
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this structure based on Garcia et  al. (2011). This model 
is perfectly elastic without anelastic attenuation. We put 
an axisymmetric source of Mzz = 1018 Nm whose source 
time function is a bell-shaped pulse with width of 15 s.

Figure  6 shows the vertical and radial components of 
calculated waveforms at seven receivers on A-A′ line 
shown in Fig. 4. The transverse components are not dis-
played as they are all zero because of the axisymmetric 
source. The waveforms are bandpass-filtered in the period 
range 25–100 s. The traces of the quasi-Cartesian and the 
spherical FDTDs (spherical models) are almost identi-
cal, which illustrates the accuracy and validity of the pre-
sent quasi-Cartesian scheme. The traces of the Cartesian 
FDTD (flat model) are different from those of the other 
FDTDs (spherical models). The discrepancy becomes 
larger as the epicentral distance increases. Figure 7 shows 
snapshots of vertical particle velocity field over the verti-
cal cross section including the source and the receivers 
shown in Fig. 6. It is found that the PML works well for 
the sides and the bottom of the computational domain. 

VP [km/s]
VS [km/s]
ρ [g/cm3]

Fig. 5  1-D velocity and density model (depth profiles) for the Moon 
simulation

Z

R

Fig. 6  Comparison among synthetic seismograms (particle velocity components) by three methods: quasi-Cartesian (red line), spherical (black line) 
and Cartesian (green line) FDTDs. Right upper and lower panels show the waveforms in the radial and vertical components, respectively. The ampli-
tude of each trace has been multiplied by the epicentral distance. The number beside each trace indicates the receiver number corresponding to 
the location shown in the left panel
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Simulation for an Earth section around Japan
We show the target area (around Japan) for the next 
simulation in Fig. 8. This simulation area is much larger 
than that for usual local strong-motion simulations 
which can often be carried out with Cartesian FDTD. 
The right panel of Fig. 8 displays the computational area 
moved around the equator by the equatorial-to-ecliptic 
coordinate transformation. The computational domain 
is discretized with cells of 0.05° ×  0.05° ×  0.5  km. The 
total grid size is then 1601 × 2401 × 401. The time step 
is 0.025  s. The structural model is the 3-D model that 
Nakamura et  al. (2015) used for a strong-motion simu-
lation of a real moderate earthquake, one of aftershocks 
of the 1995 Kobe earthquake, for land and ocean-bottom 
seismic networks. This model incorporates realistic 3-D 
heterogeneous velocity, density, and anelastic attenuation 
structures including a seawater layer, the seafloor and 
land surface topography, sediment layers and crust and 
upper mantle for the continental and the oceanic plates. 
Anelastic attenuation could be implemented by using a 
viscoelastic formulation (e.g., Blanch et  al. 1995; Jafar-
Gandomi and Takenaka 2013) instead of the elastic one, 
and it is straightforward to apply the quasi-Cartesian 
scheme to the viscoelastic formulation. We here demon-
strate a simulation of seismic wave propagation using a 
3-D structural model with anelastic attenuation.

We set a virtual point source in the Hyuga-nada area 
in the southwestern Japan for the simulation. We assume 
the source depth of 21 km, which is in the oceanic crust 

Fig. 7  Snapshots of elastic wave propagation for a vertical cross sec-
tion through the source (yellow star) and the receivers shown in Fig. 6

Fig. 8  Left map in original coordinates. Region enclosed by the red line indicates the target area. Right map after converting to ecliptic coordinates. 
A red star and orange circle indicate the epicenter and the reference point, respectively. Triangles denote the location of F-net seismic stations. Red 
dashed lines indicate the location of cross sections shown in Fig. 9 for the structure model used in the simulation
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of the Philippine Sea slab (Fig.  9), and a thrust-type 
event (strike = N22.4°E, dip = 79°, rake = 76°) with seis-
mic moment of 5.33 × 1017 Nm (MW 5.8) whose source 
time function is a bell-shaped pulse with width of 2.5 s. 
We output the seismograms at F-net stations within 
the simulation area, which are operated by the National 
Research Institute for Earth Science and Disaster Resil-
ience (Okada et al. 2004).

Figure  10 shows the synthetic seismograms at three 
stations (TKD, ABU, and TSK) marked in the right panel 
of Fig. 8, for the spherical Earth (quasi-Cartesian FDTD) 
and the corresponding flat Earth (Cartesian FDTD). The 
epicentral distances of the three stations are 103.5, 438.7, 
and 859.3 km for TKD, ABU, and TSK, respectively. The 
waveforms have been bandpass-filtered in the period 
range 10–20 s. At station TKD nearest to the epicenter, 
the traces of all components from the quasi-Cartesian 
FDTD are identical to those from the Cartesian FDTD 
within the line thickness, which means the contribu-
tion of the additional terms in Eqs.  (8) and (9) is tiny at 
this distance. At stations ABU and TSK, the discrepancy 

between the traces for the 3-D spherical and the 3-D flat 
Earth models is visible, and at TSK in particular the dif-
ference between them looks clear around 200 s (S phase). 
Figure  11 displays the synthetic seismograms from all 
stations shown in Fig. 8 along to the epicentral distances. 
The difference between waveforms obtained by the two 
FDTDs is clear beyond about 500 km in this case.

Conclusions
We have described a simple and efficient finite-dif-
ference scheme, called the quasi-Cartesian FDTD to 
calculate seismic wave propagation for a sub-global 
(regional or larger) scale model represented by a par-
tial spherical shell of a 3-D heterogeneous global Earth 
structure. This scheme solves the elastodynamic equa-
tion in the quasi-Cartesian coordinate system similar 
to a local Cartesian system. We have demonstrated 
accuracy and validity of the present scheme and the 
feasibility to apply it to real large simulations via two 
numerical examples. The present scheme can be eas-
ily implemented using a 3-D Cartesian FDTD code of 

Fig. 9  Vertical cross sections of the structural model including the source a along A–A′ (south–north) and b B–B′ (west–east) lines in the right panel 
of Fig. 8. The color scale indicates P-wave velocity. A yellow star in each cross section indicates the source location
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Fig. 10  Comparison between synthetic waveforms by the quasi-Cartesian (red) and the Cartesian (green) FDTDs at three stations marked in the 
right panel of Fig. 8
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local-scale modeling by changing a very small part of 
the code. The quasi-Cartesian approach may be able to 
open a window for multiscale modeling ranging from 
global to local scales.
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