
Wang et al. Earth, Planets and Space          (2023) 75:154  
https://doi.org/10.1186/s40623-023-01912-6

EXPRESS LETTER Open Access

© The Author(s) 2023. Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

Earth, Planets and Space

Coastal tsunami prediction in Tohoku region, 
Japan, based on S‑net observations using 
artificial neural network
Yuchen Wang1,2*   , Kentaro Imai1, Takuya Miyashita3, Keisuke Ariyoshi1, Narumi Takahashi1,4 and Kenji Satake2 

Abstract 

We present a novel method for coastal tsunami prediction utilizing a denoising autoencoder (DAE) model, one 
of the deep learning algorithms. Our study focuses on the Tohoku coast, Japan, where dense offshore bottom pres-
sure gauges (OBPGs), called S-net, are installed. To train the model, we generated 800 hypothetical tsunami scenarios 
by employing stochastic earthquake models (M7.0–8.8). We used synthetic tsunami waveforms at 44 OBPGs as input 
and the waveforms at four coastal tide gauges as output. Subsequently, we evaluated the model’s performance 
using 200 additional hypothetical and two real tsunami events: the 2016 Fukushima earthquake and 2022 Tonga 
volcanic tsunamis. Our DAE model demonstrated high accuracy in predicting coastal tsunami waveforms for hypo-
thetical events, achieving an impressive quality index of approximately 90%. Furthermore, it accurately forecasted 
the maximum amplitude of the 2016 Fukushima tsunami, achieving a quality index of 91.4% at 15 min after the earth-
quake. However, the prediction of coastal waveforms for the 2022 Tonga volcanic tsunami was not satisfactory. We 
also assessed the impact of the forecast time window and found that it had limited effects on forecast accuracy. This 
suggests that our method is suitable for providing rapid forecasts soon after an earthquake occurs. Our research 
is the first application of an artificial neural network to tsunami prediction using real observations. In the future, we 
will use more tsunami scenarios for model training to enhance its robustness for different types of tsunamis.
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Graphical Abstract

Introduction
In the wake of the catastrophic 2004 Indian Ocean and 
2011 Tohoku tsunamis, offshore observational systems 
have been extensively installed to monitor earthquakes 
and tsunamis. These systems play a crucial role in provid-
ing direct information about tsunamis before they reach 
the coasts, enabling reliable and timely tsunami fore-
casting. For example, the Seafloor Observation Network 
for Earthquakes and Tsunamis along the Japan Trench 
(S-net) was launched in 2011 and completed in 2017 
(Aoi et al. 2019; Kanazawa 2013). Comprising 150 cable-
linked seismic and tsunami observatories, it is the world’s 
largest offshore observation network for earthquakes 
and tsunamis and covers a vast area of approximately 
1000  km × 300  km along the Pacific offshore of eastern 
Japan. S-net is divided into six subsystems, labeled S1 to 
S6, which are located off Chiba, off Ibaraki and Fukush-
ima, off Miyagi and Iwate, off northern Sanriku, off Hok-
kaido and Aomori, and outer rise along the Japan Trench, 
respectively (Aoi et al. 2019). The S-net offshore bottom 
pressure gauges (OBPGs) are highly sensitive that can 
detect tsunamis with amplitudes of less than 1 cm. They 

recorded the tsunamis of the 2016 Fukushima earthquake 
(Mw 7.4; Wang and Satake 2021), the 2016 offshore San-
riku earthquake (Mw 6.0; Kubota et  al. 2020), and the 
2022 Tonga volcanic eruption (Tanioka et al. 2022; Wang 
et al. 2023).

Several tsunami forecasting algorithms have been 
developed based on offshore tsunami observational 
systems. Tsushima et  al. (2009) proposed a near-field 
tsunami forecasting method using tsunami waveform 
inversion, called tsunami Forecasting based on Inver-
sion for initial sea-Surface Height (tFISH). This method 
inverts observed tsunami waveforms at OBPGs for the 
initial sea-surface height distribution and then forecasts 
the coastal tsunami waveforms through a linear super-
position of pre-computed Green’s functions. Maeda 
et al. (2015) used an optimal interpolation algorithm for 
tsunami early warning, which assimilates offshore wave-
forms to reconstruct the tsunami wavefield and forecast 
coastal tsunami heights. This method does not require 
information about the initial tsunami source, but it is 
susceptible to coseismic deformation beneath the OBPGs 
(Maeda 2016). In a word, these forecasting algorithms 
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that utilize offshore tsunami data serve as valuable com-
plements to the traditional early warning methods that 
rely on seismic wave observations.

Recently, deep learning algorithms have been applied 
to improve tsunami early warning systems. Mulia et  al. 
(2020) employed a deep neural network architecture 
to analyze a tsunami inundation database of megath-
rust earthquakes along the Japan Trench. Their results 
achieved comparable accuracy to conventional physics-
based simulations while reducing computational efforts 
by approximately 90%. Fauzi and Mizutani (2020) pro-
posed a novel method for forecasting spatiotemporal 
tsunami wavefields by utilizing a deep predictive cod-
ing network and data assimilation. They demonstrated 
the effectiveness of this approach in predicting the 2011 
Tohoku tsunami using synthetic waveforms at S-net sta-
tions. Liu et al. (2021) explored different machine learn-
ing approaches to forecast tsunami amplitudes at the 
Strait of Juan de Fuca, Canada, achieving very good pre-
dictions in a short time. Furthermore, Mulia et al. (2022) 
developed a connected neural networks-based method 
that utilizes S-net offshore observations to predict tsu-
nami inundation at seven coastal cities in Japan, achiev-
ing comparable accuracy to physics-based models with 
a 99% reduction in computational costs. Although these 
studies used synthetic waveforms, they demonstrated 
the potential of deep learning algorithms in improving 
the efficiency and accuracy of tsunami early warning 
systems.

In this study, we employed a deep learning algorithm 
based on the denoising autoencoder (DAE) model for 
the purpose of coastal tsunami prediction in the Tohoku 
region, Japan. Synthetic tsunami waveforms from hypo-
thetical events were employed to train the DAE model, 
while both synthetic waveforms and real observations 
(2016 Fukushima earthquake and 2022 Tonga volcanic 
tsunamis) were used for model testing. Notably, this 
research is the first to apply a deep learning algorithm 
to tsunami prediction using real offshore observations. 
Deep learning technique achieves accurate coastal tsu-
nami prediction without relying on prior information 
regarding the tsunami source or coseismic deformation.

Data
In this study, we used both synthetic and real data of 
S-net OBPGs. Synthetic data comprised tsunami wave-
forms simulated from 1,000 stochastic earthquake mod-
els (M7.0–8.8) offshore the Tohoku region, Japan. We 
randomly divided the data into two subsets: 80% for 
training our model and 20% for testing. On the other 
hand, real data used in this study were obtained from 
observations of two tsunamis, namely, the 2016 Fukush-
ima earthquake and 2022 Tonga volcanic tsunamis. The 

2016 Fukushima earthquake took place on November 22, 
2016, offshore the Tohoku region (Fig. 1). The earthquake 
was characterized as a normal faulting event (Adriano 
et al 2018). It led to a moderate tsunami, which was sub-
sequently detected by both tide gauges and OBPGs in 
Japan. This is the largest tsunami event since the instal-
lation of S-net. Fortunately, no casualties were reported 
because of its moderate magnitude. The 2022 Tonga vol-
canic tsunami was caused by the submarine eruption of 
the Hunga Tonga–Hunga Ha’apai volcano on January 15, 
2022. This event had a complex generating mechanism, 
posing difficulties in traditional tsunami early warning 
algorithms based on source inversion.

Real data
We selected 44 S-net stations from S2 and S3 groups 
(Fig.  1) as the input. These stations recorded sea level 
changes during the 2016 and 2022 tsunami events (Addi-
tional file  1: Figures  S1 and S2). The S-net data have a 
high sampling rate of 0.1 s, which we resampled to 10-s 
intervals to reduce computational costs. To emulate the 
real-time operation as closely as possible, we refrained 
from using a band-pass filter to process the raw data. 
Instead, we performed only polynomial interpolation 
to eliminate the tidal signal, following the methodology 
outlined by Mofjeld (1997). This operation can be eas-
ily executed in real time. Additionally, the seismic waves 
can interfere with the OBPG records, making it difficult 
to distinguish tsunami signals, especially at stations near 
the earthquake source area (Wang et al. 2020). Thus, we 
omitted the first 5  min of pressure waveforms for the 
2016 Fukushima tsunami data, during which the seis-
mic wave disturbance predominantly occurred (Mulia 
et al. 2022). Regarding the 2022 Tonga volcanic tsunami, 
which is a non-seismogenic event, the selection of time 
series was not based on the occurrence time of the earth-
quake. Instead, we selected OBPG records specifically 
from the period commencing at 13:00 (UTC) on Janu-
ary 15, 2022, corresponding to the time when the evident 
tsunami peak reached S-net stations, as noted by Wang 
et al. (2023).

Besides S-net stations, we selected four coastal stations 
in the Tohoku region, Kamaishi, Ofunato, Miyako, and 
Ayukawa (Fig. 1), to validate our approach through wave-
form comparison. We used real data from the 2016 Fuku-
shima earthquake and 2022 Tonga volcanic tsunamis. 
Tide gauge records for Kamaishi were acquired from the 
Japan Oceanographic Data Center with a sampling rate of 
30  s, while records for Ofunato were obtained from the 
Intergovernmental Oceanographic Commission with a 
sampling rate of 60 s. The Japan Meteorological Agency 
provided us with records for Miyako and Ayukawa, also 
with a sampling rate of 60  s. The data were processed 
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Fig. 1  Map of the study area, featuring offshore bottom pressure gauges (represented by red circles) and coastal tide gauges (represented 
by yellow triangles). The tsunami waveforms at offshore bottom pressure gauges are used as input data, and the waveforms at coastal tide gauges 
are output data. The focal mechanism for the 2016 Fukushima earthquake was derived from the Global Centroid Moment Tensor catalog. (https://​
www.​globa​lcmt.​org/)

https://www.globalcmt.org/
https://www.globalcmt.org/
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through polynomial fitting to eliminate tidal components 
in a similar manner to S-net data.

Synthetic data
We adopted a stochastic earthquake source model to 
compute synthetic tsunamis. The stochastic model facili-
tates the creation of possible source models, correlating 
with the slip distributions of historical subduction earth-
quakes based on by Goda et al. (2014). It is investigated 
that the spectral characteristics of slip distributions of 
historical earthquakes, inferred by inversion analyses, 
can be approximated using von Karman-type spectra and 
several parameters. When this standard spectral shape is 
employed with random phases, a two-dimensional slip 
distribution is randomly generated and positioned ran-
domly within the boundaries of a presumed fault plane. 
If the distribution satisfies specific constraints related to 
the properties of historical earthquakes, it is considered 
as one potential source within the region. Repeating this 
generation method can develop an arbitrary number of 
source models (Goda et al. 2016).

We employed 1000 stochastic models, located 
along the Japan Trench. The fault model covered a 
650  km × 250  km area consisting of 65 × 25 subfaults. 
Each subfault had a constant strike of 193° and constant 
rake of 90°. Dip angles varied from 8° to 16°, gradually 
steepening along the down-dip direction. With varying 
dip angles, the subfaults closest to the trench axis had a 
depth of 0  km, while the deepest subfaults had a depth 
of 54 km (Mai and Thingbaijam 2014). The hypothetical 
sources did not cover the entire size of the fault area, but 
were randomly located within the area (see Additional 
file  1: Figure S3). Because thrust faulting (reverse fault-
ing) is the dominant faulting mechanism at the interface 
between the subducting oceanic plate and the overriding 
continental plate, the stochastic model only considered 
thrust faulting earthquake (Goda et  al. 2016). The mag-
nitudes ranged from 7.0 to 8.8, with intervals of 0.2, and 
there were 100 scenarios for each magnitude. We plotted 
the locations of rectangular faults and the slip distribu-
tion of a hypothetical earthquake scenario in Additional 
file  1: Figure S3. The tsunami waveforms of 44 S-net 
stations and four coastal tide gauges were calculated in 
accordance with the locations of real observations. We 
subtracted the initial displacement at each station loca-
tion from the resulting tsunami waveforms to mimic 
pressure waveforms. This process introduced a constant 
offset in the pressure readings, which reflects the coseis-
mic deformation that occurred at stations inside the 
source region. This effect is one of the primary challenges 
in using tsunami data assimilation for early warning sys-
tems (Maeda 2016). Although synthetic tsunami wave-
forms are free from seismic wave disturbances, we still 

excluded the first 5  min after the earthquake for model 
training and testing.

Method
Tsunami simulation
For each stochastic model, we used Okada’s equations 
(Okada 1992) to calculate the deformation of the seafloor, 
with an assumption that the displacement of the sea sur-
face was the same as that of the seafloor. We then imple-
mented the linear long-wave equations to simulate the 
propagation of the tsunami, which was achieved by the 
JAGURS code (Baba et al. 2015).

We implemented a four-layer nested bathymetric grid 
system, beginning with a region-wide first layer featuring 
a grid size of 18 arc sec (~ 555 m), derived from the Gen-
eral Bathymetric Chart of the Ocean. The S-net OBPG 
waveforms were computed within this layer. The subse-
quent three layers were composed of finer grids with a 
grid size of 6 arc sec (~ 185 m), 2 arc sec (~ 60 m), and 
0.667 arc sec (~ 20  m), respectively, which covered the 
coastal tide gauges. The grids of these three layers were 
derived from the M7000 Digital Bathymetric Chart from 
the Japan Hydrographic Association. During numerical 
simulation, we adopted a time step of 0.25  s. Following 
this, we resampled the synthetic waveforms of the S-net 
OBPGs to a 10-s interval, while the synthetic waveforms 
of the coastal tide gauges were resampled to a 1-min 
interval.

Model training
DAE model comprises an encoder and a decoder, which 
work together to denoise or correct corrupted input data 
(Goodfellow et  al. 2016). The encoder maps the input 
data into a lower-dimensional representation, while the 
decoder maps the lower-dimensional representation back 
into the original input space. The goal of the model is to 
learn a compressed representation of the input data that 
captures the most important features, while minimizing 
the reconstruction error between the original input and 
the output of the decoder. DAE models have been suc-
cessfully used in various applications, including speech 
recognition, anomaly detection, and tsunami prediction 
(Liu et al. 2021).

The model takes as input tsunami waveforms recorded 
by OBPGs (i.e., S-net stations): x ∈ R

No×Lobs . In this 
equation, No denotes the number of OBPGs used and 
Lobs represents the length of input data, which is defined 
as the forecast time window (FTW). We examined the 
performance of different FTWs ranging from 5 to 35 min. 
For seismogenic tsunamis, the first 5-min waveform 
after the earthquake was excluded from analysis. The 
model output, represented by the prediction for tsu-
nami waveforms at coastal tide gauges, was denoted as 
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y ∈ R
Ntg×Lprd . Here, Ntg and Lprd refer to the number of 

coastal stations and the length of output data, respec-
tively. The waveforms were output up to 115  min after 
the beginning of the FTW (i.e., 120 min after the earth-
quake for seismogenic tsunamis).

We randomly selected 800 scenarios for model training 
out of 1000 hypothetical tsunamis. The training dataset 
can be represented as

A data point ( xi , yi ) contains tsunami waveforms at 
OBPGs and coastal tide gauges. Our forecast models will 
take the following form:

For each model parameter represented as θ ∈ R
Npar , 

the function f  maps the input to the output. The num-
ber of model parameters Npar is determined by the model 
itself, and the task of model training is to estimate the 
appropriate parameter θ through a supervised learn-
ing procedure. The mean absolute error was used as the 
training loss without any regularization. The estimation 
is achieved via a stochastic gradient descent algorithm 
Adam developed by Kingma and Ba (2015). For more 
details about the structure of the DAE model, refer to 
Zhou and Paffenroth (2017).

When training deep neural networks, it is a common 
practice to partition the training set into minibatches 
(Goodfellow et  al. 2016). A minibatch refers to a small 
subset of the training data (i.e., tsunami waveforms) that 
is used during each iteration of the training process to 
improve the computational and memory efficiency. We 
selected minibatches containing a maximum of 20 data 
points ( xi , yi ). In addition, we aimed to estimate the 
uncertainty in our forecasts. To achieve this, we trained 
an ensemble of autoencoders on the same training set, 
each with a randomly initialized set of weights. In deep 
learning, an epoch refers to an iteration through the 
entire training dataset during the training phase. Dur-
ing an epoch, the model processes each training example 
once and updates its parameters based on the computed 
gradients. The ensemble was trained for 400 epochs. 
The model training procedure was conducted using the 
PyTorch package and executed on the EIC supercom-
puter of Earthquake Research Institute.

Model testing
The remaining 200 hypothetical scenarios were used 
for model testing. The data format was consistent with 
the one of training dataset. Meanwhile, we included the 

(1)
X train = [x1, x2, x3, . . . , x800],Y train =

[
y1, y2, y3, . . . , y800

]
.

(2)f : R
No×Lobs

× R
Npar

→ R
Ntg×Lprd .

real events of the 2016 Fukushima earthquake and 2022 
Tonga volcanic tsunamis.

To forecast coastal tsunami waveforms, we employed 
an ensemble approach that utilizes the mean and vari-
ance of the output. Specifically, we used the sample mean 
of the autoencoder output as the prediction. The ensem-
ble output, which reflects the uncertainty in parameter 
estimation, served as an indicator of the forecast uncer-
tainty. The waveforms’ one-sigma range was calculated.

The maximum amplitude is very important to tsunami 
early warning. We determined the maximum amplitude 
for each coastal tide gauge across 202 testing events using 
the output time series and compared the results against 
observations. In 200 hypothetical scenarios, we utilized 
the synthetic waveforms generated by forward simulation 
for comparison. We quantitatively evaluated the perfor-
mance of our tsunami prediction using the quality index 
(QI) proposed by Tsushima et al. (2012):

Here, Oi and Pi are the maximum amplitudes of the 
observed and predicted tsunami waveforms, respectively. 
A value of 100% indicates complete accuracy in predic-
tion, but when predictions have significant deviations, 
it can result in negative values. We calculated QI for the 
202 testing events. In addition, we compared the QI of 
tsunami prediction among different FTWs for 200 hypo-
thetical scenarios and two real events.

Results
We first compared the observed and predicted waveforms 
of hypothetical events. The No. 461 event generated by 
an M7.8 earthquake was taken as an example (Fig. 2). The 
arrival time of the first peak at four coastal stations was 
approximately 30–40  min after the earthquake. During 
the later phase, some stations exhibited a slightly higher 
predicted amplitude than observations, but the differ-
ence was not deemed significant. Overall, the predicted 
waveforms closely matched the observed waveforms for 
both 10- and 25-min FTWs. Although there was a slight 
underestimation of the maximum amplitude at Ofunato, 
the observed waveform generally fell within the predicted 
waveform’s one-sigma range. No noticeable differences 
were observed between the two FTWs. Both 10- and 
25-min FTWs had a high QI of 97.6%.

Additionally, we compared the observed and predicted 
maximum amplitudes for all 200 hypothetical events 
as the scatter plots in Supplementary Material (Addi-
tional file  1: Figures  S4 and S5). The predicted maxi-
mum amplitude was calculated by taking the average of 
the maximum values within each ensemble. We found 

(3)QI =

[
1−

∑Ntg

i=1 (Oi − Pi)
2

∑Ntg

i=1 (Oi)
2

]
× 100%.
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no significant differences between the 10- and 25-min 
FTWs. Specifically, the discrepancies between the 
observed and predicted maximum amplitudes were 
smaller at Kamaishi and Miyako compared to Ofunato 
and Ayukawa. Considering the entire set of 200 hypo-
thetical events, the QI was 90.9% (89.1–92.7%, 0.99 

confidence interval) for a 10-min FTW and 90.8% (89.0–
92.6%, 0.99 confidence interval) for a 25-min FTW.

Regarding the 2016 Fukushima tsunami, the observed 
waveforms also generally fell within the one-sigma range 
of the predicted waveform at four coastal stations (Fig. 3). 
At Ofunato, the predicted waveform aligned well with the 

Fig. 2  a Wavefield of the No. 461 hypothetical tsunami at t = 0, 15, and 30 min. Yellow triangles represent coastal tide gauges. Dark green circles 
represent offshore bottom pressure gauges. b Observed (black) and predicted (green) waveforms of the No. 461 hypothetical tsunami at coastal 
tide gauges, considering forecast time windows of 10 min (left column) and 25 min (right column). As a hypothetical event, the observed 
waveforms were obtained by forward modeling. The range of one-sigma prediction is depicted by the light green color
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observations in a 10-min FTW, particularly in the follow-
ing phases after 60 min. However, there was an underes-
timation of the amplitude in a 25-min FTW. At Kamaishi, 
both 10- and 25-min FTWs exhibited a slight underesti-
mation of the tsunami amplitude. At Miyako, there was a 
significant underestimation of the amplitude in a 10-min 
FTW, but the predicted results improved in a 25-min 
FTW. At Ayukawa, the predicted waveform matched the 
observations quite well, although the predicted waveform 
contained more high-frequency components. The QI 
for the four stations was 91.4% and 92.4% for a 10- and 
25-min FTW, respectively.

However, the results of the 2022 Tonga volcanic tsu-
nami were unsatisfactory (Fig.  4). The tsunami was 
greatly overestimated at most coastal stations, and the 
predicted tsunami phases were not accurate (although 
this study primarily focuses on tsunami amplitude fore-
casting). Only at Ayukawa did the results show slight 
consistency. The QI was calculated as 50.2% for a 10-min 
FTW. In a 25-min FTW, the QI dropped to a negative 
value (− 25.6%), indicating an extremely poor forecasting 
performance.

Finally, we plotted the QI for various FTWs, rang-
ing from 5 to 35 min (Fig. 5). The QI for the hypotheti-
cal events remains consistently high, averaging around 
90% across different FTWs. Conversely, the QI for the 
2016 Fukushima tsunami varies across different FTWs, 

yet it consistently exceeds 75% in all cases and does not 
surpass the upper limit of the confidence interval estab-
lished by the hypothetical events. Due to its extremely 
poor performance, we refrained from plotting the QI for 
the 2022 Tonga volcanic tsunami, as it drops below zero 
in certain FTWs (detailed results are shown in Additional 
file 1: Table S1).

Discussion
The performance of the hypothetical events in the testing 
dataset demonstrated good accuracy in tsunami predic-
tion. The DAE model accurately predicted the maximum 
height, and it showed a good match between the pre-
dicted waveforms and observations (i.e., forward simu-
lation). Regarding the testing of real events, the model’s 
prediction performance was satisfactory for the 2016 
Fukushima tsunami, as the maximum height was mostly 
accurately predicted. Although there were some discrep-
ancies between the predicted and observed waveforms, 
we mainly focus on the maximum amplitude, as it is the 
most important criterion in tsunami early warning. These 
findings provide evidence of the potential application of 
a tsunami early warning system using an artificial neural 
network based on offshore tsunami observations in the 
Tohoku region of Japan. The discrepancies between the 
prediction and observation of the 2016 Fukushima tsu-
nami can be attributed to unexpected signals recorded by 

Fig. 3  Observed (black) and predicted (blue) waveforms of the 2016 Fukushima tsunami at coastal tide gauges, considering forecast time windows 
of 10 min (left column) and 25 min (right column). The range of one-sigma prediction is depicted by the light blue color
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OBPGs. Although the first 5 min after the earthquake has 
already been excluded, some unexpected signals that are 
not related to the tsunami arrival are still present in the 
input data. For example, S2N18 exhibits an anomalous 
decreasing trend in the first 20 min, and S2N11 displays 
an abrupt step in the waveform (Additional file 1: Figure 

S1). Kubota et al. (2020) suggested that these signals may 
result from mechanical issues of the observation system, 
as they are identical in the pair of pressure sensors (i.e., 
HP1WP, HP2WP) at each S-net station. The presence 
of such unexpected signals can introduce biases in the 
model testing results. Conversely, the tsunami scenarios 
generated with “clean” synthetic waveforms yield more 
accurate predictions compared to real events. Moreo-
ver, discrepancies may also arise from imperfect mod-
eling due to the limitations of bathymetry data (Wang 
and Satake 2021). This is an unavoidable challenge that 
is not unique to the approach presented here, but also 
affects other methods of tsunami early warning, such as 
tFISH (Tsushima et al. 2009) and tsunami data assimila-
tion (Maeda et al. 2015). Meanwhile, the 2016 Fukushima 
tsunami was generated by a normal faulting earthquake, 
which resulted in more subsidence in the initial sea-sur-
face deformation (Kubota et  al. 2021). This is different 
from the scenarios in the training dataset, which com-
prise thrust faulting earthquakes. This difference may 
limit the predictive capacity of the DAE model.

Nevertheless, the prediction of the 2022 Tonga volcanic 
tsunami was not successful, which can be attributed to its 
trans-oceanic natures. We conducted a synthetic experi-
ment of the 2010 Maule earthquake (Mw 8.8), using the 
source model of Yoshimoto et al. (2016) (please see Addi-
tional file 1: Text S1 for more information). We recorded 

Fig. 4  Observed (black) and predicted (red) waveforms of the 2022 Tonga volcanic tsunami at coastal tide gauges, considering forecast time 
windows of 10 min (left column) and 25 min (right column). The range of one-sigma prediction is depicted by the light red color

Fig. 5  Comparison of forecast accuracy (quality index) 
among different forecast time windows for 200 hypothetical 
tsunami events (black dots) and the tsunami of the 2016 Fukushima 
earthquake (blue diamonds)
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the synthetic waveforms of S-net OBPGs as the input 
(Additional file  1: Figure S6) and predicted the coastal 
waveforms with 10- and 25-min FTWs (Additional file 1: 
Figure S7). Unfortunately, the results were as poorly as the 
Tonga event. The DAE model in this study was trained 
using a dataset consisting exclusively of near-field tsu-
namis resulting from earthquakes in the Japan Trench. 
However, trans-oceanic tsunamis are influenced by com-
plicated effects such as dispersion, refraction, and diffrac-
tion during the propagation process, and the largest wave 
peaks often occur in the later phase (Additional file 1: Fig-
ure S6), which is different from the near-field tsunami that 
we use for training. This limited scope of training data 
may have hindered the model’s performance in accurately 
predicting trans-Pacific tsunamis. Besides, the OBPG 
records of the 2022 Tonga volcanic tsunami were affected 
by atmospheric variations (Tanioka et  al. 2022), lead-
ing to more potential bias in prediction. To improve the 
forecasting ability of the model for such events, additional 
scenarios of trans-oceanic tsunamis should be included in 
the training dataset. In fact, when considering trans-oce-
anic tsunamis reaching Japan (e.g., tsunamis triggered by 
large earthquakes in Chile), using tsunami observations 
near the source area as input rather than S-net OBPGs 
would yield more timely results become more efficient. 
The tsunami early warning could be issued much ear-
lier before it arrives in Japan. Conversely, in the event of 
a large earthquake in Japan, we could conduct tsunami 
predictions for distant locations around the Pacific Ocean 
using the DAE model based on S-net observations.

Furthermore, FTW did not have evident effects on 
the forecast performance. Even a relatively short FTW 
can achieve prediction accuracy similar to that of a long 
FTW. Therefore, our approach is suitable for provid-
ing rapid forecast on coastal tsunami heights. During 
real-time application, the early warning system can be 
triggered by the seismic wave, enabling a prompt fore-
cast to be generated shortly after an earthquake occurs. 
In contrast, successful tsunami prediction through data 
assimilation requires a significant amount of offshore 
data to reconstruct the tsunami wavefield. According to 
Wang and Satake (2021), a 35-min FTW is necessary to 
achieve satisfactory forecast results for the 2016 Fuku-
shima earthquake, and the accuracy of the assimilation 
increases with longer FTW.

As a limitation of this study, we acknowledge that we 
did not incorporate some tide gauges near the epicenter 
(e.g., Onahama) because the tsunami arrived too early 
to test the 35-min FTW. Besides, we lack high-precision 
bathymetry data for these stations. Our study mainly 
focuses on stations along the Sanriku coast, located 
north of the seismic source. Therefore, our selection of 
stations was not comprehensive enough. However, our 

purpose of the paper is not to study this tsunami event, 
but rather test the method of early warning based on 
S-net data using artificial neural network. We also note 
that the DAE model is not limited to regions with a dense 
offshore observation system. Liu et  al. (2021) showed 
that a single offshore station near the entrance of the 
Strait of Juan de Fuca, Canada, suffices the input data 
and then the waveform of stations inside the strait can be 
predicted. Moreover, to enhance the reliability of input 
data, we propose incorporating additional observational 
data besides OBPGs. For instance, real-time observa-
tions from the Global Navigation Satellite System could 
be considered, as suggested by Makinoshima et al. (2021) 
and Rim et al. (2022).

Conclusion
We successfully adopted a deep learning algorithm, the 
denoising autoencoder (DAE) model, to forecast tsuna-
mis in the Tohoku region, Japan. Using offshore tsunami 
waveforms as input, we predicted coastal tsunamis at 
Kamaishi, Ofunato, Miyako, and Ayukawa, achieving an 
impressive accuracy rate of approximately 90% for syn-
thetic tsunami waveforms generated by hypothetical 
earthquakes in the Japan Trench. The algorithm demon-
strated a satisfactory accuracy of over 75% for the 2016 
Fukushima tsunami 15  min after the earthquake (i.e., 
10-min forecast time window). However, the perfor-
mance of the 2022 Tonga volcanic tsunami was not satis-
factory due to the limitation of its training set. This study 
marks the first application of a deep learning algorithm in 
tsunami prediction using real offshore observations. Our 
future endeavors will involve training the model with 
trans-oceanic tsunami scenarios and expanding its capa-
bilities to encompass tsunamis of different sources.
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