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Abstract 

Construction of regional geomagnetic secular variation curves for the last several tens of thousands of years is impor-
tant for understanding the behavior of non-dipole fields and applications to geochronology. Around Japan, secular 
variation records of older than 10 ka was scarce, in particular for relative paleointensity (RPI). Here, we conducted 
a paleomagnetic study of a sediment core covering the last ~ 40 kyr taken from a small basin in the Nankai Trough. 
The core consists of homogenous hemipelagic sediments except for turbidites and volcanic ashes. The age model 
was constructed based on seven 14C datings and two volcanic ashes. Turbidites and volcanic ashes were excluded 
from the construction of secular variation curves because of geologically instantaneous deposition. It was revealed 
that the magnetization of this core is carried largely by detrital magnetic minerals, although magnetofossils are 
also contained. Bulk magnetic properties show some temporal changes in magnetic concentration and grain size, 
but still homogeneous enough for reliable RPI estimations except for turbidites and volcanic ashes. The resultant 
RPI shows no correlation with the normalizer, anhysteretic remanent magnetization, of the RPI estimations or with a 
proxy for a magnetic grain size and/or the proportion of magnetofossils to detrital magnetic minerals. The obtained 
RPI record shows a long-term increasing trend since ~ 40 ka, which coincides with global stack curves. On the other 
hand, there are some differences in shorter timescale variations, which may reflect non-dipole fields. This study dem-
onstrated that hemipelagic sediments in the Nankai Trough have potential for recovering high-quality RPI records 
when turbidites and volcanic ashes were excluded and are useful for accumulating records to construct a regional 
master curve.
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Graphical abstract

Main text
Introduction
Geomagnetic field variations have a very wide timescales 
from shorter than a second to millions of years or longer. 
Variations of longer than tens of years are considered to 
be originated from the Earth’s interior, and knowledge of 
secular variations is important for understanding geody-
namo processes in the core (Merrill et al. 1998). For the 
last 10 kyr, a large number of secular variation records 
were accumulated using archaeological materials, lake 
and marine sediments, and volcanic rocks, and global 
field models including non-dipole components were con-
structed (e.g., CALS10k, Korte et al. 2011). In addition to 
geomagnetic interests, regional reference curves of secu-
lar variations and predictions from global geomagnetic 
field models are useful also for geochronological applica-
tions, for example age estimations and inter-core corre-
lations of sediment cores (Kanamatsu et  al. 2017; Korte 
et al. 2019).

Efforts have been made to extend geomagnetic field 
models to older times, and a model for the last 100  ka 
was reported (GGF100k, Panovska et al. 2018). However, 
the spatial and temporal resolutions of this model is still 
limited because the number of available records is not 
enough for older than 10  ka and their site distribution 

is biased. Thus, further accumulation of regional paleo-
magnetic secular variation records of high enough reso-
lutions is still necessary. For this purpose, sediments with 
high enough sedimentation rates are required. Around 
Japan, which is the target region of this paper, such 
sediments occur in forearc basins and landward trench 
slopes. Sediments in these depositional environments 
were previously imagined to be unsuitable for relative 
paleointensity (RPI) studies because magnetic proper-
ties including magnetic concentration, grain size, and 
mineralogy potentially have large fluctuations compared 
with pelagic sediments of slow deposition. Furthermore, 
in sediments of these regions, turbidites can frequently 
be intercalated. Turbidite layers need to be detected and 
excluded when time variations of the geomagnetic field 
are considered because these layers are of geologically 
instantaneous deposition. However, it was sometimes not 
easy to detect them when they are fine grained and differ-
ence in appearance compared with sediments below and 
above is subtle. The potential rock magnetic inhomoge-
neity and the presence of turbidite layers are probably the 
main reasons why sediments in forearc basins and land-
ward trench slopes around Japan were seldom used for 
studies of secular variations, in particular of RPI. How-
ever, recent technological development including X-ray 
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CT scan and X-ray fluorescence (XRF) core scan for ana-
lyzing sediment cores have made it possible to efficiently 
identify and characterize turbidite layers (e.g., Rothwell 
et al. 2006; Van Daele et al. 2014; Okutsu et al. 2018; Hsi-
ung et al. 2021).

In this paper, we present the results of a paleo- and rock 
magnetic study of a sediment core covering the last ~ 40 
kyr, which was taken from the Nankai Trough. Geo-
magnetic secular variations older than 10  ka were little 
reported so far around Japan, in particular for variations 
in RPI. We show that the sediments have magnetic and 
sediment properties of homogeneous enough for reliable 
RPI estimations when turbidite and volcanic ash layers 
are excluded, and that reductive dissolution of magnetic 
minerals, which can be a problem in hemipelagic sedi-
ments with relatively large organic carbon inputs, has not 
occurred. Then, we present a RPI record as well as direc-
tional variations for the last 40 kyr.

Materials and age model
The sediment core PC04 used in this study was taken 
during R/V Hakuho-maru KH-17-2 cruise from the Nan-
kai Trough (Fig. 1). The position and water depth of the 
coring site are 33° 15.19’ʹ N, 136° 39.22’ʹ E and 2255  m. 
The site is located at a small hill in an ENE–WSW elon-
gated isolated basin between the accretionary prism and 
the forearc basin off Kumano. From the topographic 
features of the basin, it is expected that the basin does 
not receive sediment supply from the river–submarine 

canyon system and that it preserves most sedimentary 
records. Such a basin is called a terminal basin. We con-
sider that the deposition in terminal basins is mostly 
continuous without significant hiatuses eroded by turbid-
ites because turbidites in the depositional environment 
of terminal basins like the studied site are thought to be 
originated by surface sediment remobilization (Okutsu 
et al. 2018), which may not have capability of significant 
erosion.

The studied core consists mainly of hemipelagic mud 
and intercalates turbidites and volcanic ashes (Fig.  2). 
Sixteen fine-grained turbidite layers were identified 
based on visual core description, X-ray CT scan images, 
elemental profiles from an XRF core scanner, and physi-
cal properties including magnetic susceptibility (Okutsu 
et  al. 2018; Okutsu 2019). Two volcanic ash layers are 
intercalated at 1.48–1.53  m and 4.19–4.24  m in depth, 
which are identified as the Kikai-Akahoya (K-Ah) ash 
(median age 7253  cal  yr BP, Albert et  al. 2019) and the 
Sambe-Ukinuno (SUk) ash (median age 19,551 cal yr BP, 
Albert et al. 2018), respectively (Okutsu 2019). These tur-
bidite and volcanic ash layers were excluded in this study 
for the purpose of constructing a geomagnetic secular 
variation curve because they represent geologically infi-
nitely short period of time.

To construct the age model of the core, dating with 
radiocarbon (14C) was conducted using planktonic fora-
minifers extracted from seven horizons (Table  1 and 
Fig.  2). The measurements were carried out using a 
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Fig. 1  a Shaded relief map of the Nankai Trough and surrounding areas. Red box indicates the area of panel b. b Topographic contour map 
in the vicinity of the site of Core KH-17–2 PC04. Contour intervals are 200 m (bold) and 50 m (thin)
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single-stage accelerator mass spectrometer at Atmos-
phere and Ocean Research Institute (AORI), The Univer-
sity of Tokyo. 14C ages were converted to calendar ages 
based on the Marine20 calibration curve (Heaton et  al. 
2020) using the OxCal program version 4.4.2 (Bronk 
Ramsey 2009). We assumed zero year for the marine res-
ervoir effect (ΔR = 0). The median value of the calendar 
age was used to construct the age model shown in Fig. 3. 
The two ash layers mentioned above were also used as 
control points. Cumulative depth after excluding turbid-
ite and ash layers were used as the depth scale in Fig. 3 
and hereafter in this paper. Constant sedimentation rates 
were assumed between the dated horizons. Ages above 
(below) the uppermost (lowermost) dated horizon were 
extrapolated using the sedimentation rates of the adja-
cent dated intervals. The average sedimentation rate is 
approximately 18  cm/kyr, and the sedimentation rate 
increases upcore.

Discrete samples for rock- and paleomagnetic meas-
urements were taken continuously from half-split core 
surface using 7 cc plastic cubes. In total 306 discrete sam-
ples were obtained.

Methods
Paleomagnetic direction and relative paleointensity
Natural remanent magnetization (NRM) was measured 
for all samples using a pass-through cryogenic mag-
netometer (2G Enterprises Model 760R) in a shielded 
room at Marine Core Research Institute (MaCRI), Kochi 
University. Stepwise alternating-field (AF) demagnetiza-
tion of NRM was conducted at 15 steps, at 5 mT inter-
vals up to 60 mT and at 70 and 80 mT. Then, anhysteretic 
remanent magnetization (ARM) was imparted at a peak 
AF of 80 mT superimposed on a DC field of 0.1 mT. The 
ARM was AF demagnetized at the same steps as the AF 
demagnetization of NRM.

Characteristic remanent magnetization (ChRM) 
direction was determined using principal component 
analysis (PCA, Kirschvink 1980; Fig. 4). The demagnet-
ization interval having at least 5 steps with the smallest 
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Fig. 2  Simplified columnar section of Core PC04. Median values 
of calendar ages are presented at the horizons where dating with 14C 
was conducted

Table 1  Results of radiocarbon dating

Dated material 
(planktonic forams)

Core section Depth in section 
[cm]

Depth in core 
[m]

Measured 14C age 
[yr bp]

Calendar age [cal yr BP]

95% probabry Median

G. inflata 2 50 0.57 3384±39 3448–3804 3612

G. inflata 3 10 1.17 5338±36 5331–5656 5511

N. dutertrei 3 90 1.97 8460±73 8590–9094 8853

G. inflata 4 20 2.27 9287±48 9676–10,134 9906

N. dutertrei 4 90 2.97 12,233±44 13,409–13,757 13,574

N. dutertrei 5 95 4.02 16,610±53 18,890–19,399 19,138

N. dutertrei 6 60 4.67 18,929±54 21,767–22,250 22,014
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maximum angular deviation (MAD) was adopted. 
Samples with MAD > 15° were excluded from further 
analyses. Samples facing core-section boundaries were 
also excluded due to potential physical disturbance. 
RPI was estimated from NRM intensity normalized 
by ARM. RPI was calculated as a best-fitting slope in 
a diagram plotting a pair of NRM and ARM for each 
AF demagnetization step (Channell et al. 2002; Fig. 4). 
The demagnetization interval having at least 5 steps 
with the largest correlation coefficient was adopted.

Bulk magnetic properties
Magnetic susceptibility was measured using an 
AGICO KappaBridge MKF-1 susceptometer at AORI, 
The University of Tokyo. Magnetic susceptibility 
represents the concentration of magnetic minerals 
in sediments. Isothermal remanent magnetization 
(IRM) was imparted using a pulse magnetizer (Mag-
netic Measurements MMPM10) and measured using 
a spinner magnetometer (Natsuhara-Giken SMD-88) 
at MaCRI, Kochi University. First, IRM was imparted 
at 2.5  T, which is regarded as saturation IRM (SIRM) 
in this paper. Then, IRM of 0.3  T were successively 
imparted in the direction opposite to the initial IRM. 
S ratio (S-0.3 T) was calculated according to the defini-
tion of Bloemendal et  al. (1992). S-0.3  T represents the 
proportion of magnetic minerals with coercivity lower 
than 0.3  T, which provides information on magnetic 
mineralogy in the sediments. ARM before AF demag-
netization mentioned above was converted to ARM 
susceptibility (kARM), and the ratio of kARM to SIRM 

was calculated. kARM /SIRM is used as a magnetic 
grain-size proxy (Banarjee et al. 1981; King et al. 1982).

First‑order reversal curve (FORC) measurements
FORC diagrams have become widely used in rock- and 
paleomagnetic studies to characterize quantitatively 
magnetic mineral assemblages from information on the 
distribution of coercivity (Hc) and local interaction field 
(Hu) (Pike et  al. 1999; Roberts et  al. 2000; 2014; 2022; 
Egli 2021). We conducted FORC measurements using 
an alternating-gradient magnetometer (AGM, Princeton 
Measurements Corporation MicroMag 2900) at AORI, 
The University of Tokyo. Ten samples were selected from 
the sediments except for turbidites and volcanic ashes to 
cover variations of kARM/SIRM and S ratios. A total of 165 
FORCs were measured for each sample, with Hc between 
0 and 100 mT, Hu between − 50 and 50 mT, and a field 
spacing of approximately 1.3 mT. The maximum applied 
field was 1.0 T, and the averaging time for each measure-
ment point was 200  ms. FORCinel software (Harrison 
and Feinberg 2008) was used to produce FORC diagrams, 
and the VARIFORC algorithm of Egli (2013) was used to 
smooth the data with smoothing parameters of Sc0 = 4, 
Sb0 = 3, and Sc1 = Sb1 = 7.

Transmission electron microscopy
We conducted observation of magnetic grains using a 
transmission electron microscope (TEM) in order to 
directly observe magnetic grains carrying remanent 
magnetization, in particular to examine the presence of 
magnetofossils from the characteristic morphology and 
grain size confined within the single-domain (SD) range 
(e.g., Kopp and Kirchvink 2008). Magnetic minerals were 
extracted from two samples at 1.99 and 5.35 m in depth 
using a magnetic finger (Kirschvink et al. 1992; Yamazaki 
and Shimono 2013). A TEM (JEOL JEM-1400) at AORI, 
The University of Tokyo, operated at 120 kV, was used for 
the observation.

Grain‑size analyses
Grain-size analyses of bulk sediments were conducted 
using a laser diffraction grain size analyzer (Horiba 
LA-960) at the National Institute of Advanced Indus-
trial Science and Technology. Twenty-eight samples 
were selected at approximately the same depth intervals 
excluding turbidites and volcanic ashes. Small amounts 
of sediments were taken from the paleomagnetic discrete 
samples, and they were dispersed well using an ultra-
sonic bath before the measurement.
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Fig. 3  The age model of Core PC04. Blue dots are based on dating 
with 14C, and red dots are based on the identification of volcanic 
ashes: K-Ah: Kikai-Akahoya ash, SUk: Sanbe-Ukinuno ash. The depth 
scale is the cumulative depth after turbidite and volcanic ash layers 
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Results
Paleomagnetic direction and intensity
ChRM directions are well resolved on the Zijderveld dia-
grams presenting stepwise AF demagnetization of NRM 
(Fig. 4). MADs of most samples are less than 15° (Fig. 5). 
A soft secondary component of probably viscous rema-
nent magnetization origin was erased in the first few 
steps of the AF demagnetization. The PCA fitting was 
not anchored to the origin, but deviations from the origin 
were small in general. Figure 5 shows the resultant vari-
ations of inclination and declination with age. Declina-
tions are relative because the core was not azimuthally 
oriented. Here, the mean declination was aligned to zero. 
Directional variations in the depth scale before exclud-
ing turbidites and tephra layers are presented in Addi-
tional file 1: Fig. S1. The SUk tephra and some turbidites 
showed anomalous directions inconsistent with those 
above and below them.

The directional records of Core PC04 are com-
pared with the records from off Shikoku, Southwest 
Japan (Ohno et  al. 1993) and Lake Biwa, Central Japan 
(Hayashida et  al. 2007) (Fig.  6). All three records show 
inclinations shallower than that expected from the geo-
centric axial dipole field at each site. The inclination 
anomaly around Japan for the last 100 kyr is estimated 
to be −  2° to −  4° from the global geomagnetic field 
model for the last 100 kyr (Panovska et al. 2019), which 
explains only part of the observed shallow inclinations. 
Hence these inclination records may partly be influ-
enced by inclination shallowing in detrital remanent 
magnetization (DRM) acquisition processes (e.g., Grif-
fiths et  al. 1960). The variation patterns of declination 
and inclination agree in some time intervals, but there 
are differences in other intervals. Various factors may be 
responsible for the differences. The age control of Core 
PC04 is not good for older than ~ 20 kyr cal BP. In the 
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Fig. 6  Comparison of Core PC04 inclination and declination with those of nearby sites: off Shikoku at 32° 09’ N, 133° 54’ E (Ohno et al. 1993) 
and Lake Biwa at 35° 15’ N, 136° 03’ E (Hayashida et al. 2007). Red lines indicate the horizons of volcanic ashes identified commonly (K-Ah: 
Kikai-Akahoya ash, SUk: Sanbe-Ukinuno ash, AT: Aira-Tn ash). Red diamonds are the horizons of other ash layers identified only in the Lake Biwa core. 
Blue lines with GAD: inclinations calculated at individual sites based on the geocentric axial dipole field model. The age models of Ohno et al. (1993) 
and Hayashida et al. (2007) were recalculated with the methodology used for Core PC04
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core off Shikoku, turbidite layers might have been over-
looked because modern techniques for detecting tur-
bidites such as X-ray CT scan were not available at that 
time. DRM acquisition processes and lock-in depth in 
the freshwater sediments of Lake Biwa may be different 
from those of marine sediments (Tauxe et al. 2006). We 
consider that the absence of the AT tephra in our core 
does not necessarily indicate a hiatus. Instead, we infer 
that the tephra may be diluted by a turbidite and hence 
not easy to be detected. The horizon expected from the 
age model corresponds to the interval of frequent thin 
turbidites.

NRM-ARM demagnetization plots of Core PC04 for 
calculating RPIs show linear relationship in general 
except for the first few demagnetization steps (Fig.  4). 
RPI variations with age are presented in Fig. 5. See Addi-
tional file 1: Fig. S1 for RPI in the depth scale including 
tephras and turbidites. The age of the bottom of the core 
is estimated to be ~ 40 kyr cal BP, although it is not well 
constraint. It is inferred that the core does not reach 
the Laschamp excursion (41.4  ka, Channell et  al. 2017) 
because no directional flip is observed. Alternatively, 
shallow inclination near the bottom of the core with low 
RPI might be a manifestation of the Laschamp excursion. 

Reliability of the obtained RPI record and comparison 
with other records will be discussed later.

Magnetic and sediment properties
Changes in bulk magnetic properties with age after 
excluding tephras and turbidites are shown in Fig.  7. 
See Additional file 1: Fig. S2 for those in the depth scale 
including tephras and turbidites. Magnetic susceptibil-
ity of Core PC04 ranges from ~ 2 to ~ 6 × 10–4 SI exclud-
ing tephras and turbidites (Fig. 7a). The two tephras and 
some turbidites have much higher magnetic suscepti-
bility (Additional file  1: Fig. S2). kARM/SIRM changes 
between ~ 1.5 to 5 × 10–4 m/A (Fig. 7c). A lower ratio sug-
gests a larger average magnetic grain size (Banerjee et al. 
1981; King et al. 1982). The influence of tephras and tur-
bidites on kARM/SIRM is small in general, although some 
of them produce minor peaks or lows (Additional file 1: 
Fig. S2). This suggests that their magnetic grain sizes do 
not differ significantly from hemipelagic sediments above 
and below. Nonetheless, some turbidites accompany 
anomalously high RPIs (Additional file 1: Fig. S1). S-0.3 T 
of 0.95 or higher throughout the core indicates that the 
magnetization of this core is mainly carried by low-coer-
civity magnetic minerals like magnetite (Fig. 7d).

0.92 0.96 1.00

S -0.3T

0.92 0.96 1.00

SIRM/k (103 A/m)kARM/SIRM (10-4 m/A)

0

10

30

40

20

0

10

30

40

20

0

10

30

40

20

0 2 4 6 0 10 20 30

A
ge

 (
ky

r 
ca

l B
P

)

0

10

30

40

20

0 2 4 6 8

Magnetic susceptibility
(10-4 volumetric SI)

(a) (b) (c) (d)

0.0 0.1 0.2

ARM (A/m)

0.0 0.1 0.2
0

10

30

40

20

0.3

(e)

Fig. 7  Bulk magnetic properties of Core PC04. a Magnetic susceptibility (k), b anhysteretic remanent magnetization (ARM), c the ratio of ARM 
susceptibility (kARM) to saturation iso-thermal remanent magnetization (SIRM), d S ratio (S-0.3 T), and e the ratio of SIRM to k. Blue and red 
diamonds along the age axis indicate age-control points based on 14C dating and volcanic ashes, respectively. Black triangles show the locations 
of core-section boundaries
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These magnetic-property variations indicate that mag-
netic mineral dissolution by reduction diagenesis has 
not occurred in the studied sediments. It is well docu-
mented that reductive dissolution of magnetic miner-
als results in one order of magnitude or more drop in 
magnetic concentration, a coeval increase in average 
magnetic grain size, and a decrease in S-0.3  T to ~ 0.8 
(Yamazaki et al. 2003; Yamamoto et al. 2007; Korff et al. 
2016). The increase in average magnetic grain size is due 
to earlier loss of finer magnetic grains, and the decrease 
in S-0.3  T is due to that high-coercivity magnetic miner-
als like hematite is more resistive to reduction diagen-
esis than magnetite. The ratio of SIRM/k less than ~ 25 
indicates that greigite formation in anoxic environments 
has not occurred in the core (Fig.  7e). Sediments con-
taining greigite is known to have high SIRM/k, ~ 30 × 103 
A/m or higher (Oldfield et al. 2003; Liu et al. 2018; Chen 
et al. 2021). In early diagenesis processes, the growth of 
secondary greigite occurs when reduction further pro-
ceeds after magnetite dissolution at a certain depth below 
the iron-redox boundary (e.g., Roberts 2015). Thus, the 
absence of greigite estimated from SIRM/k is consistent 
with the observation that reductive dissolution of mag-
netite has not started in the studied core.

The magnetic properties presented in Fig.  7 show 
coeval changes; they are lower between ~ 13 to ~ 27 kyr 
cal BP except for an increase in magnetic susceptibility 
between ~ 17 to ~ 20 kyr cal BP. The low kARM/SIRM and 
S-0.3  T indicate that the average magnetic grain size and 
the proportion of high-coercivity magnetic component 
are larger in this time interval. The time interval roughly 
corresponds to the Marine Isotope Stage (MIS) 2, sug-
gesting a connection to global climatic changes. Then, 
the interval of higher values in the magnetic properties 
below it might correspond to MIS 3.

The FORC diagrams in the studied sediments show a 
ridge-like feature along Hu ≈ 0, which is superimposed 
on a broad component with a wide Hu distribution 
(Fig. 8). The former is called the central ridge, which indi-
cates the presence of non-interacting SD grains and is 
interpreted to be carried by intact chains of magnetofos-
sils (Chen et al. 2007; Yamazaki 2008; Egli et al. 2010; Li 
Jinhua et al. 2012; Roberts et al. 2012; Chang et al. 2014). 
The TEM observation supports the existence of magne-
tofossils (Fig.  9); magnetofossils are identified from the 
characteristic morphologies, these are hexagonal prism, 
bullet-shape, and equant octahedron, and SD sizes (tens 
of nanometers in magnetite). The broad component with 
a wide Hu distribution indicates the presence of signifi-
cant magnetostatic interactions, which is interpreted to 
be carried by interacting SD, vortex, and multi-domain 
(MD) grains of mainly detrital origin. Magnetofossils of 
collapsed chains and those originated from magnetotactic 

bacteria with multistranded magnetosome chains should 
have significant magnetostatic interactions, and hence 
also contribute to the broad component. The variations 
of the FORC distributions among the measured samples 
are consistent with magnetic grain-size changes esti-
mated from kARM/SIRM. The peaks in the FORC distri-
butions of samples with lower kARM/SIRM have lower 
Hc values around 10 mT, as exemplified by the sample 
at 17.5 kyr shown in Fig.  8b. The broad component of 
such samples shows a more MD-like feature; contours 
of the FORC distributions diverge toward the Hu axis. 
The extracted central-ridge component is relatively small 
compared with the ridge-free broad component (Fig. 8d–
f). We semi-quantitatively evaluated the proportion of 
the two components by integrating separately the FORC 
distributions of the two in the profiles along H c= 20 mT 
(Fig. 8g). The result indicates that the FORC proportion 
of the central-ridge component is about 5% or less, and 
this does not change significantly within the core. This 
suggests that the contribution of magnetofossils to the 
magnetization is minor compared with the detrital com-
ponent in the studied sediments.

The results of sediment grain-size analyses show that 
the observed grain-size distribution can be explained 
by two components assuming a log-normal distribution 
(Fig. 10a–c); the finer component has the median size of 
approximately 10 μm, and the median size of the coercer 
component ranges from ~ 50 to ~ 70 μm. The median size 
of the former is uniform throughout the core, whereas 
the size of the latter slightly increases with age (Fig. 10d). 
The finer component occupies ~ 70% in volume when all 
grains are assumed to have a spherical shape, and the 
proportion of the finer component slightly decreases with 
age (Fig. 10e). Sediment grain-size changes are decoupled 
from magnetic grain-size variations. Despite the average 
magnetic grain-size increase between ~ 13 to ~ 27 kyr cal 
BP, sediment grain size does not show any remarkable 
change in this time interval.

Discussion
In this study, we have examined magnetic and sedimen-
tological properties of Core PC04 to assess the reliability 
of the RPI record. Currently, possible influence on RPI 
of sediment magnetic-property variations associated 
with environmental changes (so-called “lithological con-
tamination”) is a serious problem of RPI estimations 
(Xuan and Channell 2008; Valet et  al. 2011; Yamazaki 
et  al. 2013). Inverse correlation between RPI and kARM/
SIRM is frequently reported in previous RPI studies 
using marine sediments (Hofmann and Fabian 2009; 
Sakuramoto et  al. 2017; Yamazaki et  al. 2013; Inoue 
et  al. 2021; Li Jiaxi  et al. 2022). Recent studies indicate 
that magnetofossils have lower RPI recording efficiency 
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than the detrital component (Gai et al. 2021; Inoue et al. 
2021; Li Jiaxi  et al. 2022; Yamazaki et  al. 2023). On the 
other hand, kARM/SIRM is a proxy for the proportion of 
magnetofossils to detrital magnetic minerals (Egli 2004; 
Yamazaki 2008; Zhang et al. 2022) as well as for magnetic 
grain size; kARM/SIRM increases with increasing propor-
tion of magnetofossils. Thus, changing proportion of 
magnetofossils to detrital magnetic minerals can cause 

the inverse correlation between RPI and kARM/SIRM. In 
the studied core, no correlation between RPI and kARM/
SIRM is observed (Fig.  11a). Our rock-magnetic analy-
ses show that the contribution of magnetofossils to the 
magnetization of the sediments is very small. It is thus 
expected that RPI acquisition efficiency of the sediments 
does not change throughout the core. In this core, kARM/
SIRM is considered to represent magnetic grain-size 
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Fig. 9  Transmission electron microscope (TEM) images of magnetofossils extracted from sediments at (a) 8.9 kry cal BP and (b) 28.4 kyr cal BP. scale 
bar: a 50 nm and b 100 nm
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changes rather than the proportion of magnetofossils to 
detrital magnetic minerals because of the minor contri-
bution of magnetofossils. In summary, it is considered 
that the lithological contamination to RPI is minimal in 
the studied core. In addition, obtained RPIs do not cor-
relate with the normalizer of the RPI estimations, that 
is ARM, either (Fig.  11b), which also supports the reli-
ability of our RPI record (Tauxe 1993). This implies that 
differences in the magnetizability of sediments due to 
the differences in magnetic mineral concentration are 
appropriately corrected by ARM. In Fig. 11, the data dis-
tribution can be divided into three groups, which cor-
respond to different age intervals. kARM/SIRM and kARM 
values younger than ~ 12 ka are high in general, whereas 
those between ~ 12 to 26 ka are low. They form clusters 
in Fig. 11 because the upcore transition from low to high 
are rapid (Fig. 7). The age of the transition roughly cor-
responds to the MIS 2/1 boundary. The RPI variation 
ranges in the two age intervals are similar. The low RPI 
interval older than ~ 26 ka tends to have medium kARM/
SIRM and kARM values.

In the studied core, there is no sign of magnetic min-
eral dissolution or secondary greigite formation associ-
ated with reduction diagenesis, which may erase and/
or overprint original paleomagnetic records. Sedi-
ments with high sedimentation rates are preferable 
for obtaining high-resolution paleomagnetic secular 
variation records. However, such sediments often have 
high organic-carbon contents and hence in anoxic envi-
ronments, where reduction diagenesis prevails (e.g., 
Yamazaki et  al. 2003; Roberts 2015; Korff et  al. 2016). 
It was revealed that sediment grain size is uniform 
throughout the core when turbidite and volcanic ash 
layers are excluded. This suggests that hydrodynamic 

conditions, which may influence DRM acquisition 
(Jezek and Gilder 2006), would not have changed signif-
icantly. Thus, hemipelagic sediments in terminal basins 
in the Nankai Trough region, which have relatively high 
sedimentation rates without reduction diagenesis, can 
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potentially be suitable materials for geomagnetic secu-
lar variation studies, although previously they were not 
used widely. Fluctuations of magnetic mineral concen-
tration, magnetic grain size, and mineralogy in this core 
are relatively small (Fig. 7), which meets the empirical 
criteria for reliable RPI estimation (Tauxe 1993).

The RPI record of Core PC04 is compared with the 
GLOPIS-75 stack covering the last 75 kyr (Laj et  al. 
2014) (Fig.  12). Both records show an increasing trend 
since ~ 40 ka. The apparent RPI decease after ~ 3 kyr cal 
BP in Core PC04 is most likely due to physical distur-
bance of the very surface sediments at the coring. The 
RPI increase since the Laschamp Excursion is commonly 
recognized also in the lower resolution global PRI stacks, 
Sint-2000 for the last 2 Myr. (Valet et al. 2005) and PISO-
1500 for the last 1.5 Myr. (Channell et al. 2009). On the 
other hand, some shorter time-scale changes do not agree 
between the two. A high from ~ 25 to ~ 22 kyr cal BP 
occurs only in Core PC04. However, the PISO-1500 stack 
also shows a rather strong paleointensity around 22  ka 
comparable to that during the last 10 ka, although the age 
resolution is limited. A high from ~ 33 to ~ 30 kyr cal BP 
exists only in the GLOPIS-75. These differences may sug-
gest existence of a non-dipole field in the Asian region. 
Alternatively, the GLOPIS-75 stack might be influenced 
by a non-dipole component; the GLOPIS-75 stack was 
established by stacking 24 RPI records from the North 
and South Atlantic Oceans, the Mediterranean, and the 
Indian Ocean, but the site distribution is still biased in 
the Atlantic region (Laj et al. 2004). Checking consistency 
of the PC04 RPI record with other records from nearby 
sites is hindered by the scarcity of RPI records for the last 
40 kyr near Japan except for Holocene. Hayashida et al. 
(2007) reported normalized intensity, NRM/ARM, from 
a sediment core in Lake Biwa, Central Japan. Although 
Hayashida et  al. (2007) mentioned that the magnetic 
properties of the core may not be suitable for RPI recon-
struction and avoided to use the term RPI, their record 
also shows a high between ~ 25 and ~ 22 kyr cal BP when 
their age model was recalculated using the methodology 
used for Core PC04.

Further accumulation of reliable regional RPI records 
with high enough resolution is required to discuss growth 
and decay of non-dipole components. This study demon-
strated that for this purpose hemipelagic sediments with 
relatively high sedimentation rates deposited in terminal 
basins between accretionary prisms and forearc basins 
have potential for recovering high-quality RPI records.

Conclusions
We have presented a RPI record since ~ 40 kyr cal BP 
obtained from a sediment core taken from the Nankai 
Trough. RPI in this period was little reported previously 

from the NE Asian region. Rock magnetic and sediment 
grain-size analyses revealed that when turbidite and vol-
canic ash layers are excluded the sediments are homo-
geneous enough for reliable RPI estimations. Reductive 
dissolution of magnetic minerals or growth of second-
ary greigite have not occurred in the studied core. The 
magnetic minerals in the sediments are mainly of detri-
tal origin, and the contribution of magnetofossils to the 
magnetization is small. The obtained RPI record shows 
no sign of lithological contamination. When the RPI 
record of Core PC04 is compared with that of the GLO-
PIS-75 stack, an increasing trend since ~ 40 kyr cal BP 
is commonly observed. On the other hand, there are 
some differences in shorter timescale variations; a high 
from ~ 25 to ~ 22 kyr cal BP occurs only in Core PC04, 
and a high from ~ 33 to ~ 30 kyr cal BP exists only in the 
GLOPIS-75. Non-dipole fields in the Asian and/or North 
Atlantic regions may be responsible for the differences.
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