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Abstract 

Despite being essential in determining absolute paleomagnetic field intensity (API) with high fidelity over Earth 
science research topics, API determination still suffers little quantitative success. This is due to common nonideal 
magnetic behaviors in experiments using natural rocks caused by physiochemical changes in the magnetic minerals 
contained. Although linking rock-magnetic parameters to API results may be fundamental, negligible effort has been 
made using the Tsunakawa–Shaw (TS) API method despite its potentially high experimental success rate in overcom‑
ing nonideal magnetic effects. Here, we explore the relationships between rock-magnetic parameters retrieved using 
relatively rapid and widely pre-conducted measurements and TS API results from late Cenozoic basaltic rocks. We 
selected rock-magnetic parameters quantified from strong-field high-temperature thermomagnetic curves, magnetic 
hysteresis loops, and back-field isothermal remanent magnetization demagnetizations. We provide new data pairs 
of rock-magnetic parameters and TS API results for 41 basaltic rock samples from 8 sites (cooling units) in Northeast 
China. Then, by compiling them with published data of similar quality, we compiled 133 pairs of rock-magnetic and TS 
API data at the sample level (38 sites). Using this data compilation, the following topics of interest were identified: 
Magnetic coercivity (Bc) and remanence coercivity (Bcr) among the hysteresis parameters, and the thermomagnetic 
parameter ITC|m| (an index of thermal change quantifying an average of the differences in saturation magnetization 
at a full temperature range of during a single heating–cooling run) allow meaningful and efficient discrimination 
between data subsets divided by “success” or “failure” in the API results. We propose sample preselection criteria 
for the TS experiment: a minimal set of Bc ≥ 13 mT (or Bcr ≥ 26 mT) and ITC|m|≤ 0.15. Moreover, extended consideration 
based on the preselection criteria may allow the screening of potentially biased specimen/sample-level API estimates 
in the site-averaged determination of such a site with a large within-site API dispersion.
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Graphical Abstract

Introduction
The intensity of the ancient Earth’s magnetic field (com-
monly called “paleointensity”) is a crucial factor for 
understanding the geodynamo evolution (particularly 
during the early Earth’s history) (Tarduno et  al. 2015; 
Zhang et  al. 2022), deep interior evolution (Bono et  al. 
2019; Zhou et  al. 2022), and its links with surface cli-
mate, environment, and possibly other integral parts of 
the Earth’s system (Courtillot et  al. 2007; Knudsen and 
Riisager 2009; Lee and Kodama 2009; Kitaba et al. 2012, 
2017; Suter et al. 2014; Cooper et al. 2021). The absolute 
estimate of paleointensity (i.e., absolute paleointensity, 
API) can be used in the numerical dating of volcanic 
activities, archeological artefacts, and remains (Pérez-
Rodríguez et  al. 2019; Nitta et  al. 2020; Genevey et  al. 
2021). API can be obtained from the natural remanent 
magnetization (NRM) retained by the acquisition mecha-
nism of thermoremanent magnetization (TRM) (Nagata 
1953; Nagata et  al. 1963) in materials such as burnt 
archeological artefacts, volcanic rocks, and other igneous 
rocks. The Thellier method, made in blocking tempera-
ture space, was proposed by Thellier and Thellier (1959) 
for determining APIs. Subsequently, several modifica-
tions of the method (hereafter referred to as Thellier-type 
methods) have been suggested and applied (Coe 1967; 

Coe et al. 1978; Prévot et al. 1985; Aitken et al. 1988; Riis-
ager and Riisager 2001; Yu et  al. 2004; Wang and Kent 
2013). Thellier-type methods are widely applied. How-
ever, owing to the frequent failures in API determination 
considering the high fidelity of the Thellier-type methods, 
various alternative methods have been developed and 
improved, for example, the Tsunakawa–Shaw (Yamamoto 
et al. 2003), Microwave (Hill and Shaw 2000), Triaxe (Le 
Goff and Gallet 2004), and Multi-specimen (Dekkers and 
Böhnel 2006) methods. Such API determination remains 
complicated because it is a time-consuming experimental 
procedure, exhibits complicated (nonideal) behaviors in 
the resultant data, and is highly dependent on the mate-
rials used (their magnetic properties that govern TRM 
acquisition), leading to failure in high-fidelity determi-
nation. Moreover, an array of determination criteria 
using multiple statistics (see Paterson et al. 2014 for the 
types and definitions) has been applied and has become 
increasingly stringent in the analysis of individual API 
results to avoid erroneous API data and identify more 
reliable API data (Kissel and Laj 2004; Leonhardt et  al. 
2004; Paterson et  al. 2014; Cromwell et  al. 2015; Tauxe 
et al. 2016; Sánchez-Moreno et al. 2020).

Efforts have been made to evaluate the relationships 
between the API results and fundamental rock-magnetic 
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properties that were mainly retrieved from separate pre-
conducted measurements for the efficient preselection 
of samples for high-fidelity API determination (Calvo 
et al. 2002; Carvallo et al. 2006; Wang and Kent 2013; Di 
Chiara et al. 2017; Paterson et al. 2017; Jeong et al. 2021; 
Pérez-Rodríguez et  al. 2022; Fukuma 2023). These pre-
conducted measurements, hysteresis measurements of 
saturation (Ms) and remanent (Mrs) magnetizations, and 
coercivity (Bc), combined with back-field demagnetiza-
tion of saturation remanence measurement (allowing 
determination of remanence coercivity Bcr) (Calvo et al. 
2002; Carvallo et al. 2006; Wang and Kent 2013; Chiara 
et al. 2017; Paterson et al. 2017; Jeong et al. 2021; Fukuma 
2023), thermal change in magnetic susceptibility (k) or 
hysteresis data from before to after heating (Haag et  al. 
1995; Tanaka and Kono 2002; Smirnov and Tarduno 
2003; Mochizuki et  al. 2004; Wang and Kent 2013; Kim 
et al. 2018; Jeong et al. 2021), and thermomagnetic analy-
sis that monitors thermal variation in k or induced satu-
ration magnetization (Ms) (Haag et al. 1995; Tanaka et al. 
2007; Pérez-Rodríguez et  al. 2022) are the most exten-
sively used and investigated because of the measure-
ment speed and minimal specimen amounts needed. A 
comparison of the ratio combinations retrieved from the 
hysteresis data, that is, Mrs/Ms (squareness) and Bcr/Bc 
(Day et al. 1977), is known to be sensitive to the magnetic 

domain state, although it is influenced by other factors 
such as magnetic interactions, mineralogy, and thermal 
fluctuations (Paterson et  al. 2017; Roberts et  al. 2018a). 
Paterson et al. (2017) suggested a measure of relative bulk 
domain stability (BDS), the BDS value, calculated using 
Mrs/Ms and Bcr/Bc data. Thermal changes in k or hyster-
esis parameters and differences between the heating and 
cooling curves from the thermomagnetic analysis can 
indicate the thermal stability of magnetic carriers in a 
specimen. These investigations have primarily been per-
formed together with applying Thellier-type API deter-
mination. Unfortunately, no quantitative relationship 
between the proxies of rock-magnetic properties and 
API results has been well established as a determinative 
preselection tool for API data fidelity.

Over the past two decades, applications of the Tsu-
nakawa–Shaw (TS) API method have gradually increased. 
The TS method is the most advanced version of the Shaw 
method (Shaw 1974). It determines an API in the coer-
civity space by performing progressive altering field (AF) 
demagnetization (AFD) for each of the natural remanent 
magnetization and laboratory-induced remanent mag-
netizations of a specimen, with the implementation of 
anhysteretic remanent magnetization (ARM) correction 
(Rolph and Shaw 1985), double heating test (Tsunakawa 
and Shaw 1994), and low-temperature demagnetization 

Fig. 1  Schematic map showing the distribution of Cenozoic volcanics in Northeast (NE) China and locations of sampling sites of Cenozoic basalt 
rocks. The sampling campaign was conducted through a 2014–2016 Korean-Chinese cooperative project of Baekdusan (Changbaishan) volcano. 
Distributions of the volcanic rocks, faults, and graben boundaries are from Liu et al. (2001). CVF Changbaishan volcanic field, LVF Longgang volcanic 
field, JVF Jingbohu volcanic field, YVF Yitong volcanic field, Tan-Lu F. Tan-Lu fault, Fu-Mi F. Fushun-Mishan fault, Yi-Yi F. Yitong-Yilan fault
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before each progressive AFD (Yamamoto et al. 2003). It 
has achieved successful determinations in historical lava 
rocks, burnt archeological materials, and geologically 
ancient volcanic and granitic rocks, even with nonideal 
magnetic behaviors (non-single-domain-dominated) 
(Yamamoto et al. 2003; Mochizuki et al. 2004, 2006, 2011, 
2013, 2021; Oishi et al. 2005; Yamamoto and Tsunakawa 
2005; Yamamoto and Hoshi 2008; Tsunakawa et al. 2009; 
Ahn et  al. 2016; Kato et  al. 2018; Kitahara et  al. 2018, 
2021; Yamamoto and Yamaoka 2018; Ahn and Yamamoto 
2019; Okayama et al. 2019; Singer et al. 2019; Yoshimura 
et al. 2020; Lloyd et al. 2021), and in materials with arti-
ficially laboratory-aged TRM (Yamamoto et  al. 2022). 
Empirically, in these TS API determinations for NRMs of 
historical volcanic rocks and laboratory-aged TRMs, no 
significant determination bias due to cooling rate effects 
has been identified. For the applicability and usability of 
the TS method, exploring and evaluating potential links 
between the API results and rock-magnetic properties 
retrieved from separate rapid measurements is required 
for time-saving in laborious experiments and enhancing 
API data fidelity.

These TS API studies have provided data on rock-
magnetic properties such as strong-field high-tempera-
ture thermomagnetic (Ms-T) curves and hysteresis data 
(Yamamoto et  al. 2003, 2015; Mochizuki et  al. 2004, 
2006, 2011, 2013; Yamamoto and Tsunakawa 2005; Ahn 
et  al. 2016; Kitahara et  al. 2018, 2021; Yamamoto and 
Yamaoka 2018; Ahn and Yamamoto 2019; Yoshimura 
et  al. 2020). Notably, thermomagnetic curve data were 
previously used to roughly assess the thermal stability 

of magnetization by visual inspection, identify magnetic 
minerals as remanence carriers, and detect the occur-
rence of hump-shaped behaviors in the heating curve. 
The “hump” can indicate the presence of titanomagh-
emite, which is a low-temperature by-product after the 
initial emplacement of volcanic rock bodies (Grommé 
et  al. 1969; Marshall and Cox 1971; Özdemir and Dun-
lop 1985) and is suspected to cause unwanted effects 
by acquisition of chemical remanence that replaces or 
overprints the primary TRM, i.e., failure in or errone-
ous API determination (Yamamoto and Tsunakawa 2005; 
Gee et  al. 2010; Paterson et  al. 2010). However, quanti-
fying rock-magnetic properties, particularly the thermal 
stability from thermomagnetic curves, and ascertain-
ing its association with TS API results require further 
investigation.

This study explored the quantifiable relationships 
between (rapidly obtainable) rock-magnetic parameters 
and TS API results, and criteria with rock-magnetic 
parameters for efficient sample preselection using in the 
TS method. First, we conducted rock-magnetic experi-
ments and API determinations by the TS method on 
late Cenozoic basalt samples from Northeast (NE) China 
volcanic fields. We present new paired data from the TS 
API, Ms-T curves, and magnetic hysteresis experiments. 
Second, we compiled a large-volume dataset from new 
and previously published data of the same quality for late 
Cenozoic basalts bearing titanomagnetite. Here, we use 
BDS, Mrs/Ms, Bcr/Bc, Bcr, and Bc data, and parameter data 
quantified from thermomagnetic curves, that is, ITC50 
and ITC|m| (“Ms-T curves and ITC parameters” section), 

Table 1  Brief information on the sampled sites and associated age constraints of the Northeast (NE) China volcanic field analyzed in 
this study

CVF, LVF, and JVF represent the Changbaishan (Baekdusan), Longgang, and Jingpohu volcanic fields, respectively

Site name Name of basalt/volcanic field Sampling locality Age info

Area name Lat. (° N) Lon. (° E)

14175 Naitoushan Basalt/CVF Naitoushan 42.33219 128.14203 Miocene (Liu 1983, 1987, 1988; Chun and Cheong 2020)

14192 Toudao Basalt/CVF Yaoshui 42.52450 128.05640  ~ 2.8 ~ 1.9 Ma (Wei et al. 2007),
 ~ 2.5 Ma (sample B5102 of the same outcrop in Lee et al. 2021)

14181 Toudao Basalt/CVF Baomacun 42.41610 128.04347 same as those of site 14192

14182 Toudao Basalt/CVF Jinjiangcun 41.97798 127.55910 same as those of site 14192 (the same site as where the sample 
B4182 was collected in Lee et al. 2021)

14183 Baishan Basalt/CVF Jinjiangcun 41.98098 127.56295  ~ 1.4 ~ 0.9 Ma (Wei et al. 2007),
 ~ 1.1 Ma (the Baishan Basalt sample B5104 in Lee et al. 2021)

14201 Longgang Basalt/LVF Longgang 42.49373 126.47533  ~ 1.2 Ma (basanite at Dalongwan area in Liu 1987),
 ~ 0.9 Ma (unpublished direct K–Ar data, credit by Dr. Y. S. Lee)

14222 Jingpohu Basalt/JVF Jingpohu 44.07695 128.99215 Late Pleistocene to Holocene around Xingshan area (Liu et al. 1989; 
Yan and Zhao 2008),
 ~ 0.12 Ma (unpublished direct K–Ar data, credit by Dr. Y. S. Lee)

14226 Jingpohu Basalt/JVF Jingpohu 44.06550 128.94912 Late Pleistocene to Holocene (Liu et al. 1989; Yan and Zhao 2008),
 ~ 0.08 Ma (unpublished direct K–Ar data, credit by Dr. Y. S. Lee)



Page 5 of 29Ahn et al. Earth, Planets and Space            (2024) 76:9 	

which are measures of thermally induced magnetic 
change during a heating–cooling cycle (thermal stability). 
These parameters are called ‘ease-of-use’ rock-magnetic 
parameters. Using the compiled dataset, we found mean-
ingful relationships between the rock-magnetic param-
eters and individual acceptance (success or failure) of the 
associated TS API estimates. These relationships repre-
sent a guideline for effective, time-saving sample prese-
lection before the API experiment and high fidelity of 
the API estimate after the API experiment using the TS 
method.

Materials
Cenozoic basalts of NE China volcanic fields
There are several Cenozoic volcanic fields (Changbais-
han volcanic field [CVF], Longgang volcanic field [LVF], 
Jingpohu volcanic field [JVF], and Yitong volcanic field; 
Fig. 1) in NE China where basaltic products (calc-alkaline 
and alkali basalts) are widely distributed between the Late 
Cretaceous and Late Quaternary, mainly concentrated in 
the Miocene and Quaternary (Wang et al. 1988; Liu 1987; 
Liu et al. 2001; Wei et al. 2013). We sampled 56 oriented 
block samples of basaltic rocks from 8 sites (≈cooling 
units) in the CVF, LVF, and JVF (Fig. 1); the sampling was 
conducted through a 2014–2016 Korean-Chinese coop-
erative research project studying the Baekdusan (Chang-
baishan) volcano and its surrounding volcanic fields. 
Sites 14175, 14192, 14181, 14182, and 14183 belong to 
the CVF, site 14201 belongs to the LVF, and sites 14222 
and 14226 belong to the JVF. Brief information on the 
sampling sites and associated age constraints is summa-
rized in Table 1.

Several oriented cylindrical specimens and several 
nonoriented tiny fragment specimens were prepared 
from each of the collected block samples and used to 
determine paleomagnetic directions, API estimates, MsT 
curves, and measurements of the magnetic hysteresis 
parameters. The context regarding paleomagnetic direc-
tions is briefly addressed in this study (“API determina-
tion results” section) because of minimal interest.

Cenozoic basalts with previously published data
This study used previously published data (TS API and 
rock-magnetic data) for the late Cenozoic basalts of the 
Ethiopian Afar and Baengnyeong Island (South Korea) 
from Ahn et  al. (2016) and Ahn and Yamamoto (2019), 
respectively. The geological background and samples 
from these two areas are briefly introduced.

Many piles of basaltic lavas with Plio-Pleistocene ages 
are found in the Afar Depression, which lies at the East 
African triple junction of the Red Sea, Gulf of Aden, 
and Ethiopian rifts. Geologically recent tectonic activi-
ties have exposed thick sequences of basaltic lava piles 

along high cliffs formed by normal faulting. Ahn et  al. 
(2016) introduced good exposures of a thick basaltic 
lava sequence ~ 350  m tall along high cliffs in the Dobi 
area, Ethiopian Afar (11.84°N, 41.67°E) and collected 
112 oriented block samples from 29 successive lava 
flows (each likely corresponding to a cooling unit) for 
paleomagnetic investigation. The ages of the collected 
basaltic samples were estimated to be in the early Matuy-
ama reversed chron, covering the early Olduvai normal 
subchron, ~ 2.4–1.9 Ma.

Baengnyeong Island (37.92°N, 124.67°E; 45 km2), the 
subject region of Ahn and Yamamoto (2019), is located off 
the furthest northwest point of South Korea. Most of the 
island surface is occupied by Proterozoic metasedimentary 
rocks (slate, phyllite, and quartzite), and in the northeast-
ern part of the island, covering ~ 4 km2, intrusive and extru-
sive basaltic rocks called the Jinchon Basalt are exposed, 
which is the subject of the paleomagnetic study. The Jin-
chon Basalt rocks are products of late Cenozoic alkali mag-
matism, likely caused by dramatic changes in stress regimes 
under the interplay between the India and Eurasia collision 
and the subduction of the Pacific Plate beneath the eastern 
margin of Eurasia (Choi et al. 2006). Ahn and Yamamoto 
(2019) collected seven oriented block samples from each 
of two exposure sites (B1 and B2) along the northeast coast 
for paleomagnetic investigation. The ages of the samples 
were in the Early Pliocene, at approximately 4‒5 Ma.

Methods
NE China basalts
Magnetic hysteresis parameters, BDS, and first‑order reversal 
curves (FORCs)
The hysteresis parameter data were acquired from the 
hysteresis loop and back-field measurements with a tiny 
fragment of tens of milligrams at room temperature in 
ambient air using a Princeton Measurements Corpo-
ration (PMC) MicroMag 3900 Vibrating Sample Mag-
netometer (VSM) at the Korea Institute of Geoscience 
and Mineral Resources (KIGAM). Each hysteresis loop 
was measured by applying magnetic fields up to 1.0 T, 
and the measured data were corrected for paramagnetic 
and diamagnetic contributions using a high‐field slope 
correction. This enabled the determination of Ms, Mrs, 
and Bc. Bcr was determined from the back-field demag-
netization of the saturation remanent magnetization. 
Then, the hysteresis ratio combinations Mrs/Ms and Bcr/
Bc were calculated. The hysteresis ratio combinations 
were used to calculate the BDS value as follows (Paterson 
et al. 2017):

BDS = − 0.3900
{

log10(X) − 0.6062
}

+ 0.6353
{

log10(Y) + 1.2018
}
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where X represents Bcr/Bc data and Y represents Mrs/Ms 
data. All the acquired data are provided in Additional 
file 1: Table S1. The Bcr, Bc, Bcr/Bc, Mrs/Ms, and BDS val-
ues were used to explore possible relationships with the 
TS API results. These hysteresis parameters are associ-
ated with an effective bulk magnetic domain state that 
may control the thermal change of remanence capacity, 
thus, “BDS” (Paterson et al. 2017).

For a limited number of samples, FORC diagrams were 
constructed at room temperature, processing data with 
FORCinel (Harrison and Feinberg 2008) to more defini-
tively diagnose the magnetic domain states (Roberts et al. 
2014, 2018b). The measurement and processing param-
eters are provided in Additional file 2: Figure S1.

Ms‑T curves and ITC parameters
Thermomagnetic curve data were acquired from Ms-T 
analysis with a tiny fragment of tens of milligrams in a 
vacuum environment (1–10 Pa) using a Natsuhara Giken 
NMB-89 magnetic balance at the Marine Core Research 
Institute (MaCRI), Kochi University. During analysis, the 
specimen was heated from ~ 20 to 580  °C (or 610  °C or 
700 °C) and then cooled to 50 °C, with an average heat-
ing/cooling rate of ~ 15 °C/min in a constant applied field 
of 0.3 T (or 0.5 T). The running time for a single cycle 
was ~ 1.5 h. The measured thermomagnetic curve data, 
displaying temperature variation in saturation magneti-
zation (Ms vs. T) during the heating–cooling cycle, were 
reprocessed by a spline smoothing fitting to each of the 
heating and cooling run data to place data points at every 
1  °C interval between 50 °C and 580  °C (or 610  °C or 
700 °C).

Two different indices of thermal change, herein called 
ITC50 and ITC|m|, were prepared to quantify the change 
in Ms after the heating–cooling run using the repro-
cessed data. The ITC50 value was calculated as follows:

where m50 and M50 are the induced current values in pro-
portional response to the Ms values on the cooling and 
heating curves at 50 °C, respectively. The ITC|m| value is 
given by:

where mi and Mi are the values corresponding to the 
induced saturation magnetizations on the cooling and 
heating curves at the same i-th temperature, which 
ranges from 50 to 580  °C (or 610  °C or 700  °C) at 1  °C 
intervals; N is the number of the total data pairs of the 
feedback current values, proportional to the strong-field 
magnetization; and M50 is the current (induced satura-
tion magnetization) value on the heating curve at 50 °C. 

ITC50 = (m50 − M50)/M50

ITC|m| =

∑N

i=1
|(mi −Mi)|/(NM50)

These indices were designed similar to the alteration 
indices introduced by Hrouda et  al. (2002) and Hrouda 
(2003). The calculated ITC data are presented in Addi-
tional file 1: Table S1 and were used to explore the rela-
tionships with the TS API results.

API determination
All API experiments were performed at the MaCRI, 
Kochi University.

For cylindrical specimens cored from basaltic rock 
samples, all of which had associated hysteresis and ther-
momagnetic curve data, each API experiment using the 
TS method was conducted following a procedure simi-
lar to that of most TS-based paleointensity studies (Ahn 
and Yamamoto 2019). Remanence measurements, AFD 
treatments, and ARM acquisition were performed using 
a DSPIN automated system (Natsuhara Giken). AFD 
treatments were performed with 38 (or 34) steps in the 
peak AFs from 2 to 180 (or 140) mT. Three ARMs for 
each specimen were imparted by a direct current (DC) 
bias field of 50 μT with peak AFs of 180 mT, in which the 
bias field directions were (sub-)parallel to the character-
istic directions of NRM or the laboratory-induced TRM 
directions. To impart the laboratory TRMs, the speci-
mens were heated to 580 °C in a vacuum (mostly < 50 
Pa), maintained for 15 min (for the first TRM acquisi-
tion, TRM1) and 60 min (for the second TRM acquisi-
tion, TRM2), and then cooled to room temperature 
for ~ 3 h, using a TDS-1 thermal demagnetizer with a 
built-in DC field coil (Natsuhara Giken). The DC field 
was mainly set to 50 μT (occasionally 10, 25, or 30 μT). A 
low-temperature demagnetization was conducted before 
starting the progressive AFD treatment of the remanent 
magnetization.

The TS API experimental result per specimen was eval-
uated using a minimal set of the following determination 
criteria [similar to those described in Ahn and Yama-
moto (2019)], and an API value was estimated by deter-
mining the slope of the linear segment defined for the 
NRM-TRM1* diagram when the ARM correction was 
validated by the unity slope of the linear segment of the 
TRM1–TRM2* diagram:

1.	 A primary NRM component should be isolated 
by progressive AFD on the Zijderveld diagram 
(anchored MADanc < 10°, where MAD represents the 
maximum angular deviation; that is, a measure of 
precision when the best-fit line for the selected com-
ponent is determined).

2.	 On the NRM-ARM1* diagram, a single linear seg-
ment for slope calculation should be recognized 
within the coercivity range defining the primary 
NRM component. The segment should have at least 
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30% in NRM fraction [we used the statistic FRAC 
suggested by Shaar and Tauxe (2013)]: FRAC​N ≥ 0.30; 
the earlier TS API determinations of Ahn et al. (2016) 
used the NRM fraction statistic equivalent to that 
designed by Coe et al. (1978). The associated correla-
tion coefficient should not be < 0.995 (rN ≥ 0.995).

3.	 On the TRM1-TRM2* diagram, a single linear seg-
ment should be recognized with FRAC​T ≥ 0.30 and 
rT ≥ 0.995. The linear segment slope is unity within 
experimental errors with 1.05 ≥ slopeT ≥ 0.95 to vali-
date the ARM correction.

No criterion based on other independent measure-
ments, such as hysteresis measurements and thermomag-
netic analyses, was included at this level of acceptance 
evaluation, later referred to as ‘success’ or ‘failure’. The 
determined specimen-level API values were used in con-
sideration of sample- and site-level API determinations, 
which discuss their relationships with rock-magnetic 
parameters.

Additionally, only a minimal set of cylindrical speci-
mens (retrieved from  eight block samples from three 
sites: 14181-B, 14181-E, 14181-F, 14181-G, 14222-B, 
14222-D, 14226-C, and 14226-E) were subjected to 
Thellier-type API experiment by applying the experimen-
tal protocol of Coe et al. (1967) (also called ‘Coe-Thellier’’ 
API experiment/method/protocol), for comparison with 
correlating TS API estimates. However, because these 
Coe-Thellier API experiments and results were not of 
major interest, descriptions of the method and results 
have been restricted to Additional file 3: Additional infor-
mation note.

Preparing previously published data and an extended data 
compilation
In addition to the new NE China basalt data, we collected 
previously published specimen level, magnetic hysteresis, 
Ms-T curve, and TS API data for late Cenozoic basalts 
from Ahn et  al. (2016) (Ethiopian Afar) and Ahn and 
Yamamoto (2019) (Baengnyeong Island) to use a larger 
amount of data in analyses. All measurements, includ-
ing the magnetic hysteresis parameters (and BDS), Ms-T 
curves, and TS API determinations for the previously 
published data, were conducted at MaCRI, Kochi Univer-
sity. The individual experimental procedures were similar 
to those for the NE China basalts, as summarized below.

The magnetic hysteresis parameters (and BDS) for the 
previously published data were measured using a PMC 
MicroMag 3900 VSM with set operational values simi-
lar to those for NE China basalts. Only the maximum 
applied field varied: 1.8 T and 0.5 T for the Ethiopian 

Afar and Baengnyeong Island basalts, respectively. The 
determination of Ms, Mrs, Bc, and Bcr and the calculation 
of BDS were the same as those for the NE China basalts. 
The hysteresis data were generally measured once for 
each block sample, except for a few in which up to four 
specimens were measured per sample.

All Ms-T curve measurements for the previous data 
were performed using a Natsuhara Giken NMB-89 mag-
netic balance identical to that used for the NE China 
basalts. The Ms-T curves for the Ethiopian Afar were 
obtained by heating to 700  °C with an average heat rate 
of ~ 10  °C/min in a constant DC field of 0.5 T under a 
vacuum (1‒10 Pa). The Ms-T curves for the Baengnyeong 
Island basalts were obtained under almost the same 
experimental conditions but under ambient air. The data 
processing and calculations for ITC50 and ITC|m| from 
each of the Ms-T curves were the same as those for the 
NE China basalts. An Ms-T curve per block sample was 
obtained. However, the curve data from the block sam-
ples revealing the ‘hump-shaped’ behavior during heating 
(“Type U” of Ms-T curve behavior category in Ahn et al. 
2016; 15 samples) were excluded because of the presence 
of titanomaghemite.

Most TS API determination experiments for the previ-
ous data were performed with the same instruments and 
almost identical conditions to those for the NE China 
basalts; one differing condition was the maximum heat 
temperature in the TRM acquisitions, which was set to 
610  °C. On the other hand, only four of the Ethiopian 
Afar TS experiments were performed using a Natsuhara 
Giken SMD-88 spinner magnetometer and Natsuhara 
Giken DEM-8601C AF demagnetizer equipped with a 
coil for ARM acquisition for remanence measurements 
and demagnetizations. In these cases, each progres-
sive demagnetization comprised 17 AF steps up to 140 
mT. A total of 127 specimen-level TS experimental data 
(belonging to 30 sites) were individually evaluated using 
the same criteria for specimen-level API determination 
acceptance as those for the NE China basalts. Our analy-
ses adopted previous acceptance interpretations and API 
estimates (where accepted) at the specimen level.

Due to the occasional presence of multiple specimen-
level data for a single sample, we prepared a ‘sample-level’ 
data compilation comprising the hysteresis, Ms-T, and 
TS API data from the new and previous ‘specimen-level’ 
data. Multiple specimen-level data points for a single 
sample were averaged to obtain the sample-level data 
for the given sample. Only three sample-level data pairs 
could be prepared for samples from sites B1 and B2 in 
Ahn and Yamamoto (2019) because of the loss of Ms-T 
measurement data.
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Fig. 2  Summary of results of the magnetic hysteresis properties from Vibrating Sample Magnetometer measurements of the NE China basalts. 
a Hysteresis loops (raw and corrected) and back-field curve for a representative sample (14222-F). The determined Bc, Bcr, Bcr/Bc, and Mrs/Ms 
values are given. b Biplot of Mrs/Ms vs. Bcr/Bc (the so-called Day plot) in logarithmic space for the NE China basalt samples. Each circle symbol 
corresponds to the result from each block sample. The circles with the same color represent the results of samples from the same site. The diamond 
or cross symbol inscribed in each circle symbol indicates the “success” or “failure” Tsunakawa–Shaw (TS) absolute paleomagnetic field intensity (API) 
determination (Table 3), respectively. The theoretical curves for the mixtures of single-domain (SD) and multi-domain (MD) particles (three gray 
long-dashed lines) and SD and SP (10 nm in size) particles (two gray solid lines). The boundaries for the SD and pseudo-SD (PSD) regions suggested 
by Dunlop (2002a, b), and the bulk domain stability (BDS) trend line (pink solid line) with labels of some BDS values (diamond symbols) suggested 
by Paterson et al. (2017) are also shown. For the five data points with the sample labeling, the corresponding First-order reversal curve diagrams are 
provided in Additional file 2: Figure S1
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Results
New data from NE China basalts
Rock‑magnetic results
Forty-one tiny specimens (one specimen per sample) 
underwent hysteresis loop and back-field-curve meas-
urements. Figure  2a shows hysteresis loops, back-field 
curves, and the determined Bc, Bcr, Bcr/Bc, and Mrs/
Ms values. These specimen-level values were consid-
ered equivalent to the sample-level values. Bc, Bcr, Bcr/
Bc, Mrs/Ms, and associated BDS values ranged from 
5.5–51 mT, 12–79 mT, 1.3–2.6, 0.10–0.51, and 0.21–0.77, 
respectively; the data and their fundamental statistics 
are presented in Additional file 1: Table S1 and Table 2, 
respectively. A biplot of the hysteresis combination 
ratios, Bcr/Bc and Mrs/Ms (‘Day plot;’ Day et al. 1977), for 
41 data and the BDS trend line (Paterson et al. 2017) are 
shown in Fig. 2b. In the Day plot, the data are plotted in 
the single-domain (SD) region, pseudo-SD (PSD) region, 
or the left-side region outside the PSD region; the major-
ity are also aligned along or near the SD + multi-domain 
(MD) mixing lines, as suggested by Dunlop (2002a, b). 
The data distribution within a site is well-clustered or 
dispersed, differing between sites. In addition to the Day 
plot results, FORC diagrams were generated for sam-
ples 14175-F, 14181-G, 14182-B, 14183-C, and 14222-F 
(Additional file 2: Figure S1). The FORC diagrams of sam-
ples 14222-F and 14181-G indicated an SD-like behavior 
consistent with the interpretation of the bulk domain 
state using the Day plot. The PSD behavior in the Day 
plot for sample 14182-B can be attributed to a mixture 
of SD and vortex (PSD)/MD particles. Sample 14183-
C, indicating PSD or SD + MD mixing by the Day plot 
results, represents the predominance of fine vortex parti-
cles in the FORC diagram. The FORC diagram of sample 
14175-F indicates coarse vortex/MD particles, whereas 
the associated Day plot result suggests a PSD or SD + MD 
mixing behavior.

Forty-four tiny specimens (generally one specimen per 
sample, except for three samples) underwent Ms-T analy-
sis (under a vacuum). Figure 3 shows the heating–cooling 
curves for the 15 sample examples. The heating curves 
showed a predominant magnetic mineral phase(s) with 
variable Curie temperatures (Tcs; ~ 100 °C to 580 °C) from 
sample to sample, presumably associated with titano-
magnetite with variable degrees of Ti substitution. Based 
on the Tc of the predominant mineral phase, the analyzed 
samples can be classified into Category I, with ≥ 400 °C 
in Tc of the predominant phase (107 in total), and Cate-
gory II, which involves the others (26 in total) (Additional 
file  4: Table  S2). ITC50 and ITC|m| were calculated for 
each Ms-T curve (Fig. 3). Each specimen-level value was 
regarded as its sample-level representative value; how-
ever, for three samples, two were averaged as a sample-
level value. These resultant sample-level ITC50 and ITC|m| 
values ranged from near zero–3.2 and near zero–1.2, 
respectively. The absolute ITC50s (hereafter, |ITC50|) and 
ITC|m| values were used to explore the relationships with 
the paleointensity results (“Results from the extended 
data compilation” section). The sample-level indices and 
individual fundamental statistics are listed in Additional 
file 1: Table S1 and Table 2, respectively.

API determination results
Before describing the API experimental results, we 
briefly introduce the results of the NRM demagnetiza-
tion behavior obtained from the NRM AFD step in the 
Tsunakawa−Shaw (TS) experiments. The results of one 
representative specimen from each site are shown in 
Additional file 5: Figure S2. Each demagnetization result 
generally displayed one or two directional remanence 
components. The low AF level (secondary) remanence 
component was removed by the pre-treatment with low-
temperature demagnetization and/or by up to 4–26 mT 
AF. Generally, it represented a small portion of the total 

Table 2  Summary of statistics of individual rock-magnetic parameters obtained in the NE China basalt samples

n number of sample-level data, Min. and Max. minimum and maximum values, respectively, Q1 and Q3 first and third quartile values, respectively, Std. standard 
deviation

Bcr Bc Bcr/Bc Mrs/Ms BDS l ITC50 l ITClml

n 41 41 41 41 41 41 41

Min 11.74 5.47 1.267 0.104 0.213 0.016 0.013

Max 79.05 51.09 2.606 0.510 0.769 3.172 1.212

Mean 31.21 18.22 1.785 0.273 0.523 0.357 0.187

Median 22.81 12.54 1.801 0.246 0.514 0.152 0.120

Q1 15.05 8.96 1.511 0.191 0.441 0.086 0.080

Q3 47.42 27.53 2.012 0.335 0.594 0.417 0.260

Std 18.77 11.65 0.325 0.116 0.138 0.539 0.199
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Fig. 3  Examples of strong-field high-temperature curves (Ms-T curves) between the room temperature and 700 °C. Red and blue lines for each 
result indicate heating and cooling curves, respectively. The indices of thermal change, ITC50 and ITC|m|, are also given
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NRM. However, the specimens from sites 14175, 14182, 
and 14201 showed a relatively large proportion of the 
low AF level component. Furthermore, a few specimens 
encountered difficulty in characteristic remanent mag-
netization (ChRM) isolation owing to a strong overlap of 
the two remanence components (not shown), particularly 
at site 14201. The high-AF level remanence component 
for most specimens was well defined (i.e., small MAD 
values) and directed toward the origin (Additional file 5: 
Figure S2) and was thereby considered as ChRM. The 
ChRM directions isolated from multiple specimens per 
site were similar and yielded a site-mean direction with 
high precision (not shown). Thus, specimen-level ChRMs 
are recognized individually as primary (paleomagnetic) 
remanence components. However, for site 14201 the 
ChRM directions could be grouped into two: ~ 190° in 
declination and ~ −50° in inclination, and ~ 350° in decli-
nation and ~ −55° in inclination (not shown).

Forty-two specimens underwent the TS API deter-
mination protocol. One specimen was taken from each 
sample, except for sample 14181-E (two specimens), and 
four to seven samples were collected from each site. The 
results for the three specimens with passed or failed API 
determination are shown in Fig.  4. Individual interpre-
tations of the experimental results are summarized in 
Table  3. Successful specimens generally exhibited com-
mon characteristics with well-defined straight lines on 
the NRM-TRM1* diagrams and a uni-vector compo-
nent directed to the origin on the Zijderveld orthogonal 
plots (Fig.  4a). Conversely, the failed specimens showed 
convex upward or downward and high-level interval-
scattered NRM-TRM1* diagrams with or without a 
nonunity slope and/or convex upward TRM1-TRM2* 
diagrams (Fig. 4b and c). Twenty-seven specimens (~ 66% 
of the total) allowed for successful API determination, 
ranging from 6.3 to 66.2 μT. Three or more specimen-
level API determinations were obtained from five sites 
(14181, 14182, 14192, 14222, and 14226), enabling them 
to be taken adequately for their site averages. Calculated 
site averages ranged from 7.4 to 61.3  μT (correspond-
ing to 1.2 × 1022–10.1 × 1022 Am2 in virtual axial dipole 
moment), with the standard deviations ranging from 
5.7 to 40.4% of the respective average (Additional file 6: 
Table S3).

Association between rock‑magnetic parameters and API 
results
We briefly document several characteristics of the rela-
tionships between rock-magnetic parameters and TS API 
results from the NE China basalts. The NE China results 
likely indicate that the samples bearing SD-like particles, 
even those mixed with vortex/PSD particles, perform 
successfully in TS determination; however, those with 
only a vortex (PSD) or mixtures of vortex and MD parti-
cles fail. Moreover, the samples with ‘intermediate’ values 
in Mrs/Ms (~ 0.1 to 0.3) or BDS (~ 0.2 to 0.6) show consid-
erable contrast in the performance of TS determinations. 
The site 14222 samples that involved Ti–rich titanomag-
netites with SD-like behavior and good thermal stability 
had high success rates in specimen-level TS experiments 
and good within-site consistency of the TS APIs. The site 
14226 samples bearing Ti–rich titanomagnetites with 
varying domain states and thermal alterations could 
allow a high success rate of specimen-level determina-
tions and good within-site consistency. All samples from 
site 14175 that were thermally unstable failed to suc-
cessfully determine TS API. The site 14181 samples with 
SD-like to coarser particles and few thermal alterations 
performed very well in the API determinations at the 
specimen level, but resulted in unwantedly scattered API 
values between the specimens.

Results from the extended data compilation
Our extended data compilation (made from the new 
NE China and two previously reported late Cenozoic 
basalt data) comprised 133 sample-level data pairs 
(acquired from the specimen-level datasets of 153 hys-
teresis parameter, 136 Ms-T parameter, and 168 TS API 
data), including Bc, Bcr, Bcr/Bc, Mrs/Ms, BDS, |ITC50|, and 
ITC|m| parameter data, and TS API data with success 
or failure acceptance. This data compilation is suitably 
large; therefore, the relationships between rock-magnetic 
and TS API data are expected to be observable. Of the 
133 data pairs, 90 (68%) represented successful TS API 
results. The individual sample-level parameter values and 
their fundamental statistics are listed in Additional file 4: 
Table S2 and Table 4, respectively. Using this data compi-
lation, we compare the hysteresis and Ms-T parameters 
(“Comparisons between hysteresis and thermomagnetic 

(See figure on next page.)
Fig. 4  Examples of specimen-level TS API results. a Specimen 14222-F-14 (successful in API determination), b Specimen 14175-F-1BL (failed in API 
determination), and c Specimen 14183-C-1A4 (failed in API determination). As the result of a single API experiment result, NRM vs. TRM1* diagram 
(left panel) and TRM1 vs. TRM2* diagram (right panel) are shown, where black symbols show selected data intervals for determining the linear 
segments (associated to API determination). Inset of a Zijderveld diagram on each NRM vs. TRM1* diagram shows the altering field demagnetization 
result of NRM, where filled (open) symbols indicate projection onto the horizontal (vertical) plane. Statistical values used in the API determination 
are also given



Page 12 of 29Ahn et al. Earth, Planets and Space            (2024) 76:9 

Fig. 4  (See legend on previous page.)
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curve parameters” section) and the distributions of two 
data subsets for individual rock-magnetic parameters 
subdivided by the ‘success’ and ‘failure’ acceptance in 
TS API determination (“Comparisons of distributions in 
rock-magnetic parameter between ‘successful’ and ‘failed’ 
TS API data” section).

Comparisons between hysteresis and thermomagnetic curve 
parameters
To date, Mrs/Ms and BDS have been the most meaning-
fully addressed in the literature reporting Thellier-type 
API determinations with similar purposes to this study. 
When considering our data compilation, the success or 
failure in TS determination does not appear to correlate 
strongly with either Mrs/Ms or BDS (Fig. 5). This consid-
eration will also be addressed quantitatively in “Com-
parisons of distributions in rock-magnetic parameter 
between ‘successful’ and ‘failed’ TS API data” section. 
This preliminary observation highlights the fundamental 
need to explore possible links between other rock-mag-
netic parameters and TS API results.

Furthermore, we must check whether the Ms-T param-
eters are worth considering as an alternative because 
these hysteresis parameters are influenced by the mag-
netic domain state and other factors (magnetic interac-
tions, mineralogy, thermal fluctuations) (Paterson et  al. 
2017; Roberts et al. 2018a). Figure 6 shows the biplots of 
ITCs (|ITC50|, ITC|m|) vs. hysteresis parameters (Bc, Bcr, 
Bcr/Bc, Mrs/Ms, and BDS), with the correlation coefficient 
R and p value for each biplot. The |ITC50| and ITC|m| 
values had little or weak correlations with any hysteresis 
parameters at the 95% confidence level. This indicates 
that |ITC50| and ITC|m| are predominantly influenced 
by other major factors (potentially thermally induced 

magnetic changes) that differ from those acting on the 
hysteresis parameters.

Comparisons of distributions in rock‑magnetic parameter 
between ‘successful’ and ‘failed’ TS API data
Figures 7 and 8 compare box plots, frequency histograms, 
histograms of relative frequencies in %, and cumulative 
distributions in relative % between the “success” and “fail-
ure” data subsets for individual hysteresis parameters and 
individual thermomagnetic curve parameters, respec-
tively. Additionally, Welch’s t-test was used for quantifi-
able comparisons between subsets. The t-statistics and p 
values for each parameter are listed in Table 5.

For the cases with hysteresis parameters, Bcr, Bc, Mrs/
Ms, and BDS (Fig. 7a, b, d, and e) allow us to recognize 
differences in mean and distribution between the two 
“success” and “failure” data subsets through Welch’s t-test 
at a 95% confidence level. However, Bcr/Bc failed to differ-
entiate between subsets (Fig. 7c; Table 5). The differentia-
tion is more visible in Bcr and Bc than in Mrs/Ms or BDS, 
displaying characteristics such as higher Bcr, Bc, Mrs/Ms, 
and BDS values and more successful results in TS API 
determination.

For the ITC cases, both |ITC50| and ITC|m| appeared to 
have lower values in |ITC50| and ITC|m| with more suc-
cessful TS API results (Fig.  8). However, Welch’s t-test 
results strongly suggest that only ITC|m| can discriminate 
between the ‘success’ and ‘failure’ data subsets at the 95% 
confidence level.

Comparison between inter‑sample dispersion of API 
determinations and rock‑magnetic parameters for sites
In paleointensity studies, multiple specimens or samples 
in a site/cooling unit undergo API determination; in turn, 
these multiple API determinations require within-site 

Table 4  Summary of statistics of the respective sample-level rock-magnetic parameters and TS API estimates in the expended data 
compilation

n number of sample-level data, Min. and Max. minimum and maximum values, respectively, Q1 and Q3 first and third quartile values, respectively, Std. standard 
deviation

“-” denotes “not applicable.” See “Results from the extended data compilation”, and “Exploring ‘ease-of-use’ rock-magnetic parameters for the sample preselection 
criteria” sections for details

Bcr (mT) Bc (mT) Bcr/Bc Mrs/Ms BDS |ITC50| ITC|m| TS API (μT; 
success)

TS API 
(failure)

n 133 133 133 133 133 133 133 90 43

Min 8.00 3.74 1.267 0.082 0.122 0.002 0.007 3.3 –

Max 124.70 87.42 3.332 0.510 0.769 3.172 1.212 66.2 –

Mean 39.27 21.19 1.937 0.224 0.455 0.219 0.131 24.9 –

Median 36.33 18.36 1.930 0.204 0.454 0.135 0.096 19.8 –

Q1 20.99 11.24 1.732 0.161 0.365 0.064 0.066 12.0 –

Q3 52.71 27.49 2.138 0.254 0.525 0.247 0.155 32.7 –

Std 21.48 13.44 0.324 0.094 0.131 0.332 0.130 17.1 –
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consistency to ensure their reliability and fidelity. How-
ever, paleomagnetists have often experienced considera-
ble within-site dispersion of API determinations between 
specimens/samples, which is problematic. In our data 
compilation, the majority of sites with three or more 
specimen/sample-level TS API estimates (16 of 21 sites) 
had reasonably small dispersions of API estimates (< 20% 
in % of the standard deviation of the respective site aver-
age) (Additional file 7: Table S4). Conversely, sites 14181, 
DB15, DB12, DB(-1)B, and DB(-6) showed large within-
site standard deviations (> 20%).

We explored the relationships between the within-
site standard deviation (in % of the site average) and site 
average and its standard deviation (in % of the site aver-
age) for the different rock-magnetic parameters of Bc, 

Bcr, Mrs/Ms, BDS, and ITC|m|. Figure  9 shows the rela-
tionships with the correlation coefficients and p values. 
Most respective site averages and standard deviations of 
the parameters had no significant correlation with the 
within-site TS API standard deviations. Alternatively, the 
Bc standard deviations in % had a weak but statistically 
significant correlation with the within-site API standard 
deviations in % (positive correlation with R = 0.508 and 
p = 0.026). Bc individuals within the five sites with large 
within-site API standard deviations (> 20%) ranged from 
12 to 51 mT (Additional file  4: Table  S2), exhibiting no 
distribution bias.

Furthermore, as a referential comparison consider-
ing the API determination fidelity, we further explored 
whether the average and standard deviation (in %) of 

Fig. 5  Day plot (in logarithmic space) for all data (N = 133) of the Data Compilation prepared in this study. Each circle symbol corresponds 
to the result from each block sample. The diamond and cross symbols indicate data with “success” and “failure” TS API determination (Table 3), 
respectively. The gray long-dashed lines, gray solid lines, boundary lines of x = 2, x = 5, and y = 0.5, and pink solid line with pink diamond symbols are 
the same as those in Fig. 2b
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Fig. 6  Biplots of Ms-T curve parameter (ITC50, ITC|m|) vs. hysteresis parameter (Bcr, Bc, Bcr/Bc, Mrs/Ms, BDS) with variable combinations. Correlation 
coefficient value and p value for the two variables of each biplot are shown. All biplots show little or very weak correlations
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the rock-magnetic parameters individually had no sig-
nificant relationship with the TS API estimates at the 
site level (Fig. 10). Consequently, all the parameter statis-
tics, except for the ITC|m| within-site standard deviation, 
indicated no meaningful correlation with the TS API site 
averages (low R and p > 0.05). The apparent (positive) cor-
relation between the ITC|m| standard deviations and API 
site averages (R = 0.491 and p = 0.038) depended on the 
single data point for site 14226 with the highest ITC|m| 
standard deviation (119%) and the highest API site-aver-
age (61.3 μT) values; considering the single data exclu-
sion, the correlations become statistically insignificant. 
This result rules out that our TS API estimates can be 
biased depending on the magnetic properties of the sam-
ple in general.

Discussion
Exploring ‘ease‑of‑use’ rock‑magnetic parameters 
for the sample preselection criteria
‘Hysteresis’ parameters
Di Chiara et  al. (2017) and Fukuma (2023) documented 
the threshold value of Mrs/Ms < 0.2 to reject, in advance, 
samples that potentially result in failure in Thellier-type 
API determination, based on their dataset from histori-
cal lava flows and scoriae, and Paleoproterozoic mafic 
sills, respectively. Conversely, Carvallo et al. (2006) docu-
mented that the hysteresis parameters do not appear to 
correlate with the success or failure of the Thellier-type 
API results in a large dataset for igneous rocks. Further-
more, Santos and Tauxe (2019) showed that hysteresis 
parameters have little relationship with the reliability of 
API results, although samples with higher Mrs/Ms tend to 
result in better API determinations in Thellier-type appli-
cations and vice versa. Paterson et al. (2017) introduced a 
BDS threshold value of 0.10 (corresponding to approxi-
mately 3.4 for Bcr/Bc and 0.08 for Mrs/Ms), where samples 
with a BDS < 0.10 are less likely to yield meaningful API 
determinations.

Let us consider the threshold values of the individual 
parameters for discriminating the “success” and “fail-
ure” TS results in our data compilation. The previ-
ously suggested threshold value of 0.1 in BDS cannot 
play a role because all BDS values are > 0.1. However, 
it may ensure the minimum magnetic domain stability 

for the API experiments of all data compilation sam-
ples. A threshold value of 0.2 in Mrs/Ms allows a ~ 75% 
(54 of 72) ratio of the “success” samples to the total 
screened (hereafter called ‘success rate’) and ~ 40% (36 
of 90) ratio of the “success” samples abandoned by the 
criterion to the “success” total (Fig.  11a), indicating 
an increasing success rate but a relatively large loss of 
“success” samples. When adopting 20% at maximum in 
the “success” samples loss rate, up to ~ 73% in the suc-
cess rate is permitted by a threshold of 0.16 in Mrs/Ms 
(Fig.  11a). Conversely, using a threshold value in Bcr 
or Bc yields a success rate > 80% and a relatively small 
loss of the “success” samples (< 30%); considering 20% 
as the maximum “success” samples loss, we can set 26 
mT in Bcr and 13 mT in Bc as a threshold of the mini-
mum value (Fig.  11b and c). The highest success rate 
was observed for middle Bcr and Bc threshold values 
(Fig.  11b, c), which is related to the significant reduc-
tion in increasing rate in the cumulative distribution 
of the “failed” results (Fig. 7a, b). Consequently, Bcr or 
Bc can be used as more efficient parameters for sam-
ple preselection for TS API determination than BDS or 
Mrs/Ms.

Alternatively, FORC analysis, which has been increas-
ingly developed in recent years, has the potential as an 
alternative discrimination tool for the “success” (good) 
or “failure” (bad) samples. The problem in BDS and 
Mrs/Ms is the considerable overlap of the two data dis-
tributions in their intermediate ranges (approximately 
0.2 < BDS < 0.6, 0.1 < Mrs/Ms < 0.3). Based on our NE 
China cases, although it is from the limited number of 
data, the FORC analysis may make discernibly different 
domain states between samples, even with intermediate 
BDS or Mrs/Ms values (“Association between rock-mag-
netic parameters and API results” section). Accord-
ingly, we encourage a future challenge using FORC 
analysis, as mentioned by Paterson et al. (2017).

‘Thermomagnetic’ parameters
As mentioned previously, the ITC parameters are likely 
influenced by other factors (thermal magnetic alterations 
associated with the change in the remanence capacity 
by experimental heating) that do not govern the behav-
ior of the hysteresis parameters. Hence, this allows us to 

Fig. 7  Comparisons of distributions in the respective hysteresis parameters, Bcr (a), Bc (b), Bcr/Bc (c), Mrs/Ms (d), and BDS (e), between the TS API 
“success” and “failure” data subsets. The box plot, frequency histogram, relative frequency histogram, and cumulative distribution are shown for each 
parameter. In the box plot, the boxes denote the interquartile ranges (IQRs), the whiskers denote the 95% (≈1.5 × IQR) ranges, the solid lines 
in the boxes are the median values, and the blue diamond symbols represent values that lie outside the 95% ranges. In the frequency histogram, 
distribution of the “failure” data subset is omitted for presentation clarity. For reference, distribution of all data of the Data Compilation is plotted 
in the frequency diagram

(See figure on next page.)
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Fig. 7  (See legend on previous page.)
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consider them as another discrimination (i.e., preselec-
tion) tool in addition to the hysteresis parameters.

Previous studies have acknowledged several informa-
tive documentation using thermal changes in various 
rock-magnetic properties in a qualitative or quasi-
quantitative manner to detect and filter out potentially 
erroneous (particularly low values) Thellier-type API 
determinations (to ensure or enhance the fidelity of 
API data). Nonetheless, using quantified parameters 
based on Ms-T curves to discuss relations to API results 
is rare, even in previous literature with Thellier-type 
API determinations; therefore, there is little parameter 
with a threshold available for reference. Several studies 
that used quantified parameters are briefly reviewed. 
Tanaka et  al. (2007) used a measure of the difference 
between the starting and final Ms or k values in % of 
the starting value in either Ms-T or k-T curves with the 
criterion of < 15% for sample preselection for Thellier-
type experiments. Qin et  al. (2011) proposed a ratio 
using Mrs, the Mrs after a high temperature (480  °C) 
normalized by the initial Mrs at room temperature of 

the pristine sample (Mrs480
o

c/Mrs25
o

c), with the criterion 
of 0.9 ≤ Mrs480

o
C/Mrs25

o
C ≤ 1.1 to improve the reliability 

of Thellier-type API determinations. Tanaka and Kono 
(2002) and Kim et al. (2018) suggested a measure of the 
k difference (% of the pristine value) between the final 
values after each heating step during a Thellier-type 
experiment and the pristine value before the experi-
ment, with the criterion that k differences throughout 
the experiment should be < 20%. These measures shared 
a common feature: only the initial and final values dur-
ing the heating process were used in the calculation.

ITC|m| is a potential preselection criterion because 
it shows the tendency of more successful API results 
with decreasing ITC|m| values and a positive Welch’s 
t-test (“Comparisons of distributions in rock-magnetic 
parameter between ‘successful’ and ‘failed’ TS API data” 
section). When considering a threshold value of 0.15 in 
ITC|m| slightly lower than 20% in the “success” samples 
loss, it permits ~ 76% in the success rate on our data 
compilation (Fig.  11d). Notably, the ITC|m| threshold 
value of 0.15 is similar to those of the other previously 

Fig. 8  Comparisons of distributions in the respective Ms-T parameters, ITC50 (a) and ITC|m| (b), between the TS API “success” and “failure” data subsets. 
See Fig. 7 for detailed descriptions of these diagrams

Table 5  Summary of the Welch’s t-test results of the TS API ‘success’ and ‘failure’ data subsets for the respective rock-magnetic 
parameters

P < 0.05 indicates that the two datasets do not share the same mean, whereas p ≥ 0.05 (in italic) indicates that it cannot discard sharing the same mean between the 
two datasets

Bcr Bc Bcr/Bc Mrs/Ms BDS l ITC50 l ITClml

t-statistic 4.1058 3.3377 −0.4374 2.9685 2.5690 −1.7983 −2.4247

p value (two-tailed) 0.0001 0.0013 0.6627 0.0037 0.0119 0.0752 0.0171
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Fig. 9  Comparisons between TS API within-site standard deviation (%) and site-average (a) and within-site standard deviation (%) (b) of respective 
rock-magnetic parameters (Bcr, Bc, Mrs/Ms, BDS, and ITC|m|). For each biplot of comparison, the correlation coefficient R and p value with a fit 
linear regression line (black line) are given. Light-blue, green, and orange circles indicate data points from Ethiopian Afar basalts (Ahn et al. 2016), 
Baengnyeong Island basalts (Ahn and Yamamoto 2019), and NE China volcanic field basalts (this study), respectively
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documented parameters for thermal changes in Thellier-
type experiments (Tanaka and Kono 2002; Tanaka et al. 
2007; Qin et al. 2011; Kim et al. 2018). ITC|m| offers bet-
ter performance in preselection efficiency than Mrs/Ms or 
BDS but appears to be less sensitive than Bcr or Bc effi-
ciency (Fig. 11).

Suggestion of the preselection criteria
Each hysteresis parameter Bc or Bcr and the Ms-T param-
eter ITC|m| can be used as a single efficient preselection 
criterion, revealing better efficiencies in Bc and Bcr than 
ITC|m|. Furthermore, a combination of one hysteresis 
(Bc or Bcr) parameter and the other Ms-T curve (ITC|m|) 
parameters can be used as a more efficient tool for prese-
lection, given that there is no correlation between the 
hysteresis and Ms-T parameters. We consider two param-
eter combinations with the above-discussed thresh-
old values as the preselection criteria, that is, Bcr ≥ 26 
mT and ITC|m|≤ 0.15, and Bc ≥ 13 mT and ITC|m|≤ 0.15 
(Fig. 12). One combined set of criteria, Bcr ≥ 26 mT and 
ITC|m|≤ 0.15, allows ~ 86% (65 of 76) in success rate in % 
of the screened “success” total, with ~ 28% (25 of 90) in 
the “success” samples loss rate (Fig. 12a). The other com-
bined set, Bc ≥ 13 mT and ITC|m|≤ 0.15, allows ~ 85% (63 
of 74) in the success rate and ~ 30% (27 of 90) in the “suc-
cess” samples loss rate (Fig. 12b). We recommend a mini-
mal set of Bc ≥ 13 mT and ITC|m|≤ 0.15, or of Bcr ≥ 26 mT 
and ITC|m|≤ 0.15 as preselection criteria.

Within‑site dispersion of TS API estimates considering 
rock‑magnetic parameters
Generally, the API determination for a site with high 
fidelity is achieved by averaging the API results from 
multiple samples/specimens. As stated in “Comparison 
between inter-sample dispersion of API determinations 
and rock-magnetic parameters for sites” section, the 
successful specimen-level TS API estimates in our data 
compilation allowed reasonably good within-site con-
sistency in API averaging for most of the analyzed sites. 
We confirmed that unwanted, considerable API biases in 
site-averaged determination and within-site dispersion 
relying on inherent sample magnetic properties are less 
possible (Figs. 9 and 10).

Fig. 10  Comparisons between site-average TS API and site-average 
(a) and within-site standard deviation (%) (b) of respective 
rock-magnetic parameters (Bcr, Bc, Mrs/Ms, BDS, and ITC|m|). For each 
biplot of comparison, the correlation coefficient R and p value 
with a fit linear regression line (black line) are given. Representation 
of the data point colors is the same as that in Fig. 9

▸
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However, for the sites  14181, DB15, DB12, DB(-1)B, 
and DB(-6), the individual TS API standard deviations 
were larger than 20% of the respective site averages, 
which is problematic in providing high-fidelity API site 
averages. At these sites, only the average of the whole API 
estimates is not believed to be an adequate API deter-
mination for a site. Specifically, we considered whether 
potentially biased TS API estimates within a site can be 
determined using rock-magnetic parameters. From the 
possible positive relationship between Bc and API within-
site standard deviations (in %, Fig. 9), we suspect a pos-
sible Bc relevance to individual TS API estimates in the 
specimens of these sites. When considering this and our 
preselection criteria, the API estimates with Bc < 13 mT 
might be biased by potential rock-magnetic artefacts. 
Therefore, the high API estimate (16.6 μT) of sample 
DB15-2 (12.8 mT in Bc), the high API estimate (45.1 μT) 
of sample DB(-1)-3 (12.1 mT in Bc), and the low API esti-
mate (25.9 μT) of sample DB(-6)-3 (12.1 mT in Bc) might 
be biased (Additional file  4: Table  S2). Then,  exclusion 
of these APIs in the site average determinations allows 
that DB15, DB(-1)B, and DB(-6) would yield API aver-
ages (~ 11  μT, ~ 24  μT, and ~ 37  μT, respectively) with 
better within-site consistency  (cf.  those listed in Addi-
tional file 7: Table S4). Extending another consideration 
relating to our preselection criteria, the low API estimate 
(21.0 μT) of sample DB12-2 with ITC|m|> 0.15 (Additional 
file 4: Table S2) might be less faithful. Nonetheless, even 
these extended consideration does not allow the selection 
of the most likely estimates among the highly dispersed 
TS APIs for site 14181. Currently, the determined  site-
averaged API of site 14181 must be discarded  due to 
being considered less faithful.

Conclusions
The TS experiment, which is becoming the most 
advanced and promising API determination technique, 
requires a systematic effort to link rock-magnetic param-
eters to TS API results to improve the quantitative 

Fig. 11  Variations in ratio of the number of “success” TS API results 
of the samples preselected by the respective criterion to the total 
preselected (“success rate”) and in the number of “success” results 
abandoned by the criterion to the total of “success” results/samples 
(“rate of the success samples loss”) with different threshold values 
in the criterion for Mrs/Ms (a), Bcr (b), Bc (c), and ITC|m| (d). In each 
diagram, the horizontal line of 0.2 in rate of the success samples loss 
and vertical line of the respective rock-magnetic parameter value 
at 0.2 in rate of the success samples loss are given

▸
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success of API determination and API fidelity, as Thellier-
type experiments have been most widely applied to date. 
Here, we explored the relationships between rock-mag-
netic parameters and TS API results (success or failure in 
determination and within-site consistency) using volumi-
nous pairs (133 sample-level pairs from 38 different sites/
cooling units) of sample-level rock-magnetic parameters 
and TS API data from late Cenozoic basaltic rocks. We 
addressed Bc, Bcr, Bcr/Bc, Mrs/Ms, and BDS values, and 
|ITC50| and ITC|m| values quantified from hysteresis 
measurements and thermomagnetic analysis with meas-
urement rapidity and ubiquitous use.

Comparison of the hysteresis parameters to the API 
determination success or failure revealed that BDS and 
Mrs/Ms values more frequently addressed in previous 
literature were slightly higher for samples with “success” 
TS API results. Compared with BDS and Mrs/Ms, Bc and 
Bcr allowed more effective discrimination in distribution 
between “success” and “failure” samples; samples with 
lower Bc or Bcr displayed a higher failure rate of TS API 
determination. Comparison of the ITC parameters to 
the API determination success or failure revealed a vis-
ible relationship between ITC|m| and TS API success or 
failure. The success/failure discrimination by ITC|m| was 
more efficient than that by BDS or Mrs/Ms but less effi-
cient than that by Bc or Bcr. We interpret that Bcr, Bc, 
and ITC|m| were individually available as parameters 
for the sample preselection criterion, with thresholds of 
Bcr ≥ 26 mT, Bc ≥ 13 mT, and ITC|m|≤ 0.15, respectively. 
Moreover, the hysteresis (Bc or Bcr) and thermal change 

(ITC|m|) parameters could be complementarily utilized, 
given the negligible relationship between them. This may 
be because ITC|m| is likely more sensitive to thermally 
induced magnetic changes. Hence, we suggest a minimal 
set of Bc ≥ 13 mT (or Bcr ≥ 26 mT) and ITC|m|≤ 0.15 as the 
sample preselection criteria for quantitative success.

We also confirmed that the sample/specimen-level 
TS API estimates adopted through the TS experiment 
acceptance criteria and their derived site-average API 
values were generally  unbiased or less biased  by poten-
tial rock-magnetic artefacts. However, samples from sites 
with large within-site API dispersions might be associ-
ated with unwanted biases in individual TS API determi-
nation. Extended consideration based on our proposed 
preselection criteria might allow for the selection of more 
accurate API estimates from highly dispersed estimates 
within such a problematic site. However, if more faithful, 
unbiased API individuals cannot be salvaged, it should 
remain inconclusive in determining the site-averaged TS 
API.

In conclusion, the rapid-check rock-magnetic param-
eters implemented in this study can guarantee efficient 
acquisition and high fidelity of TS API data. Furthermore, 
we expect that the Bc (or Bcr) and ITC|m| parameters will 
also apply to Thellier-type experiments as efficient prese-
lection criteria.

Abbreviations
AF(D)	� Alternating field (demagnetization)
API	� Absolute paleomagnetic field intensity

Fig. 12  Comparisons of combinations of one hysteresis (Bc or Bcr) and the other Ms-T curve (ITC|m|) parameters between the TS API “success” 
and “failure” data subsets. (a and b) Biplots of Bcr vs. ITC|m| and Bc vs. ITC|m|, respectively, with the consideration of when a minimal set comprising 
two different rock-magnetic parameters is adopted as the “sample priority selection criteria;” the proposed threshold values (Bcr ≥ 26 mT 
and ITC|m|≤ 0.15, and Bc ≥ 13 mT, and ITC|m|≤ 0.15, respectively; “Exploring ‘ease-of-use’ rock-magnetic parameters for the sample preselection criteria” 
section) of the two variables in each biplot are indicated by black solid lines; the pale yellow shaded zone of each biplot represents the zone 
distributed by data meeting the respective minimal set of criteria
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parameters from hysteresis and Ms-T measurements of basalt samples 
from Northeast China (NE).

Additional file 2: Figure S1. First-order reversal curve (FORC) diagrams 
for the selected samples: 14,175-F, 14,181-G, 14,182-B, 14,183-C, and 
14,222-F. Measurements parameters were set to Bsat = 100 mT, Bc-max = 110 
mT, Bu-max = 50 mT, Bu-min = -50mT, averaging time = 200 ms, and 219 
FORCs. To generate the diagram, the smoothing factor (SF) was set to 6 or 
10 (output grid = 1). The associated plots of the Bcr/Bc and Mrs/Ms values in 
the Day plot are shown in Fig. 2b.

Additional file 3: Additional information note. Absolute paleomagnetic 
field intensity (API) determination using Coe’s version of the Thellier-type 
(Coe–Thellier) method in a vacuum. See Additional files 8–12 for context.
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and additional information for Data Compilation were prepared in this 
study. n_hys, number of specimens used in magnetic hysteresis-related 
measurements; n_Ms-T, number of specimens used in Ms-T curve; Env_Ms-
T, environment during Ms-T experiment (vac: vacuum); Tmax_Ms-T, peak 
temperature during Ms-T experiment; Magnetic Mineral Category, clas‑
sification based on the major magnetic mineral phase with Tc (Category 
I with no ≥ 400°C in Tc of the major phase, and Category II of the others); 
n_TS API, number of specimens applied to the Tsunakawa–Shaw (TS) API 
experiments; Success or Fail, “success” or “fail” in sample-level TS API result 
(if at least one successful result exists in a single sample, “success” is given). 
“*” denotes an average of the values from multiple results. “-” denotes “no 
data.”

Additional file 5: Figure S2. Zijderveld orthogonal plot and associ‑
ated intensity decay curve results obtained from the natural remanent 
magnetization (NRM) altering field (AF) demagnetization step during the 
TS experiment for representative specimens from eight sites of NE China 
volcanic field basalts. For each Zijderveld plot, filled and open circles 
indicate projections of data at temperature steps on the horizontal and 
vertical planes, respectively, and a characteristic remanence component 
(regarded as the primary remanence) determined in a high-AF level 
interval by principal component analysis is presented. Two “0” steps for a 
single demagnetization result indicate ‘before the pre-treatment of low-
temperature demagnetization (LTD)’ and ‘just after the LTD and before the 
AF demagnetization start’.

Additional file 6: Table S3. API site averages and associated standard 
deviations from the TS API results for NE China basalts. The site averages 
and standard deviations of the sample-level APIs are given only for each 
site where the number of sample-level API individuals is three or more. 
“-” denotes “not available”. “n/N” denotes the numbers of specimen-level 
and sample-level TS API estimates determined successfully within a site, 
respectively.

Additional file 7: Table S4. Site averages and standard deviations (% of 
the site average) of the respective rock-magnetic parameters (with the 
magnetic mineral category) and TS API for sites with sample-level TS API 
estimates. Calculations of the presented values were performed using 
sample-level data from the Data Compilation. The data with “#” for site 
B1 were calculated exceptionally using, even together, sample-level data 
that are incompletely paired due to the loss of Ms-T data. “-” denotes “not 
applicable”. The data are presented in Figs. 9 and 10.

Additional file 8: Figure S3. Representative specimen-level Coe–Thellier 
experiment (in a vacuum) For each specimen-level result, the Arai 
diagram (left) and Zijderveld orthogonal projection of the zero-field steps 
(NRMs) (right) in the specimen-coordinate systems are shown. In each 
Arai diagram, circles represent the pair of NRM and thermo-remanent 
magnetization (TRM) steps and triangles represent the partial TRM checks. 
Interpretations of the API determinations are provided in Supplementary 
Tables S3–S5 (see Sect. 4.1). For each orthogonal projection, the filled 
circles (open squares) show projections of the data at the temperature 
steps on the y–x (z–x) plane.

Additional file 9: Table S5. Summary of interpretations of the Coe–
Thellier API results with the CCRIT criteria (Tauxe et al. 2016) using the 
“Paleointensity.org” online application (Béguin et al. 2020). Additional file 3: 
Supplementary information note provides more details.

Additional file 10: Table S6. Summary of interpretations of the Coe–
Thellier API results with the RCRIT criteria (Sánchez-Moreno et al. 2020) 
using the “Paleointensity.org” online application (Béguin et al. 2020). Addi‑
tional file 3: Supplementary information note provides more details.

Additional file 11: Table S7. Summary of interpretations of the Coe–
Thellier API results with the modified PICRIT criteria (Paterson et al. 2014) 
using the “Paleointensity.org” online application (Béguin et al. 2020). Addi‑
tional file 3: Supplementary information note provides more details.

Additional file 12: Table S8. Comparison of API determinations between 
the TS and Coe–Thellier (vacuum) methods with variable acceptance 
criteria. The TS API value for each sample was obtained from the result of 
a single specimen belonging to the sample, except for sample 14,181-E, 
which yielded a sample-level API value by calculating the mean value 
from the two specimen-level results. Each sample-level Coe–Thellier API 
value with certain criteria was obtained by averaging all API values that 
were calculated to meet certain criteria for a single specimen-level result.
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