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Abstract 

Slow earthquakes are slow fault slip events. Quantifying and monitoring slow earthquake activity characteristics are 
important, because they may change before large earthquakes occur. Statistical seismicity models are useful for quan-
tifying seismicity characteristics. However, no standard statistical model exists for slow earthquake activity. This study 
used a high-quality catalog of low-frequency earthquakes (LFEs), a type of slow earthquake, in the Nankai subduction 
zone from April 2004 to August 2015 and conducted the first comparison of existing statistical LFE activity models 
to determine which model better describes LFE activity. Based on this comparison, this study proposes a new hybrid 
model that incorporates existing model features. The new model considers the LFE activity history in a manner similar 
to the epidemic-type aftershock sequence (ETAS) model and represents the LFE aftershock rate (subsequent LFE 
occurrence rate) with a small number of model parameters, as in the Omori–Utsu aftershock law for regular earth-
quakes. The results show that the proposed model outperforms other existing models. However, the new model 
cannot reproduce a feature of LFE activity: the sudden cessation of intense LFE bursts. This is because the new model 
superimposes multiple aftershock activities and predicts extremely high seismicity rates during and after the LFE 
bursts. I suggest that reproducing and successfully predicting the sudden cessation of intense LFE bursts is critical 
for the further improvement of statistical LFE activity models. In addition, the empirical equations formulated in this 
study for the LFE aftershock rates may be useful for future statistical and physical modeling of LFE activity.
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Graphical Abstract

Introduction
Slow earthquakes are a general term used to describe 
various spontaneous slow fault-slip events, such as low-
frequency earthquakes, tectonic tremors, very-low-
frequency earthquakes, and slow slip (Ide et  al. 2007; 
Ide and Beroza 2023). They are characterized by longer 
duration than regular (fast) earthquakes of comparable 
seismic moment. Slow earthquakes have been observed 
or inferred to occur at several subduction and transform 
plate boundaries (e.g., Dragert et  al. 2001; Obara 2002; 
McGuire et  al. 2005; Nadeau and Dolenc 2005; Kuna 
et al. 2019). In particular, very detailed slow earthquake 
activity has been revealed in subduction zones such as 
the Nankai Trough, Cascadia subduction zone, and the 
Hikurangi and Japan Trenches (Beroza and Ide 2011; 
Obara and Kato 2016; Wallace 2020; Nishikawa et  al. 
2019).

In subduction zones, slow earthquakes occur mainly 
on the immediate deep and/or shallow sides of megath-
rust earthquake sources. The relationship between slow 
and megathrust earthquakes has been actively stud-
ied (e.g., Obara and Kato 2016; Nishikawa et  al. 2023). 
Simulation studies have indicated that slow earthquake 
activity characteristics may change prior to megath-
rust earthquakes (e.g., Matsuzawa et  al. 2010; Luo and 
Liu 2019). Therefore, quantifying and monitoring slow 
earthquake activity characteristics are important for 
gaining insight into the imminence of future megathrust 
earthquakes.

Statistical seismicity models are useful for quantifying 
seismicity characteristics. For example, the epidemic-
type aftershock sequence (ETAS) model is widely used to 
quantify the characteristics of regular earthquake activity 
(Ogata 1988; Zhuang et  al. 2002; Kumazawa and Ogata 
2013; Nishikawa and Nishimura 2023). This model was 

also used as a standard model in an international earth-
quake forecasting experiment named the Collaboratory 
for the Study of Earthquake Predictability (Schorlemmer 
et al. 2018). In contrast to the regular earthquake activ-
ity, there is no standard statistical model for slow earth-
quake activity. Statistical modeling of low-frequency 
earthquakes (LFEs), a type of slow earthquake, has only 
recently begun. LFEs are characterized by low domi-
nant frequencies (1–10 Hz) compared to regular micro-
earthquakes of comparable seismic moment (Shelly et al. 
2007; Nishikawa et  al. 2023). Lengliné et  al. (2017) and 
Tan and Marsan (2020) proposed statistical LFE activity 
models similar to the ETAS model. In their models, the 
LFE occurrence rate was assumed to be the sum of the 
stationary background rate and the effect of past LFEs 
or external processes behind past LFEs inducing future 
LFEs.

Ide and Nomura (2022) proposed a statistical model for 
tectonic tremors (i.e., LFE swarms) (Shelly et  al. 2007). 
Their model is based on an approach different from that 
of Lengliné et al. (2017) and Tan and Marsan (2020). Ide 
and Nomura (2022) described the probability distribu-
tion of tremor interevent times using a mixture of log-
normal and Brownian passage-time (BPT) distributions 
and forecasted tremor interevent times. Furthermore, 
their model depends only on the time elapsed since the 
last event and does not depend on detailed tremor activ-
ity history.

Constructing a statistical model that successfully 
describes the LFE activity is important for better charac-
terization and forecasting. However, existing statistical LFE 
activity models (Lengliné et al. 2017; Tan and Marsan 2020; 
Ide and Nomura 2022) have never been compared, and it is 
unclear which model best describes LFE activity. This study 
applies the statistical LFE and ETAS models (Ogata 1988; 
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Lengliné et al. 2017; Ide and Nomura 2022) to LFE activ-
ity along the Nankai Trough and compare their perfor-
mances using Akaike’s information criterion (AIC; Akaike 
1974) (Sect. “Results”). Based on the model comparison, I 
propose a new model that incorporates existing model fea-
tures and discuss LFE activity occurrence patterns (Sect. 
“Discussion”).

Data and methods
LFE catalog and study regions
A high-quality catalog of LFEs along the Nankai Trough 
in southwest Japan created by Kato and Nakagawa (2020) 
(Fig.  1a) was used. In the Nankai Trough, the Philippine 
Sea Plate subducts under the Amurian Plate. This plate 
subduction causes diverse slow and fast earthquakes at 
the plate boundary (Obara and Kato 2016; Takemura et al. 
2023). Kato and Nakagawa (2020) detected LFEs along 
the Nankai Trough from April 2004 to August 2015 using 
a matched-filter technique, using LFEs in the Japan Mete-
orological Agency (JMA) catalog as templates. This catalog 
contained approximately 510,000 LFEs from M − 1.1 to M 
1.4 (Fig. 1b), which is approximately 23 times the number 
of LFEs in the JMA catalog over the same period.

When analyzing the LFE activity, it is necessary to deter-
mine the minimum magnitude of the LFEs to be analyzed. 
In regular earthquake activity analyses, the earthquake cat-
alog completeness is typically evaluated, and the complete-
ness magnitude is used as the minimum magnitude (e.g., 
Nishikawa and Nishimura 2023). However, no method 
currently exists for evaluating the completeness of an LFE 
catalog. Therefore, as a compromise, the goodness-of-fit 
test (GFT) method (Wiemer and Wyss 2000; Woessner and 
Wiemer 2005), which has been used to evaluate the com-
pleteness magnitude of regular earthquake catalogs, was 
applied to the LFE catalog, and the obtained magnitude 
was used as a reference to select the minimum magnitude. 
All LFEs in the Kato and Nakagawa (2020) catalog were 
used regardless of their source locations. See Woessner and 
Wiemer (2005) for details of the GFT method.

In the GFT method, the R value is a measure of the 
goodness-of-fit between the observed number of earth-
quakes and the number of earthquakes expected based on 
the Gutenberg–Richter relationship (Gutenberg and Rich-
ter 1944). Specifically, the R value is the absolute difference 
between the observed and expected number of events in 
magnitude bins and is given by

where Bi and Si are the observed and expected num-
ber of events in each magnitude bin ( Mi −�M/2 to 
Mi +�M/2 ), respectively, M is the magnitude for which 

(1)R(M) = 100 ·

{

1−

(

∑Mmax
Mi=M |Bi − Si|

∑

i Bi

)}

,

the R value is calculated, and Mmax is the catalog maxi-
mum magnitude. �M is the width of the magnitude bins 
and was set to �M = 0.1 in this analysis. A perfect fit 
between the observed and expected values yields R of 
100%. See Wiemer and Wyss (2000) for more details on R 
value calculation.

I searched for the smallest magnitude with an R > 95% 
(Fig. 1c). The resulting magnitude was M 0.4. Consider-
ing this estimate of the GFT method, LFEs with M 0.6 or 
greater were used, which is M 0.2 greater than the esti-
mate. This is because I prefer the minimum magnitude 
to be as conservative (or as large) as possible. However, 
if the minimum magnitude is too large, the number of 
LFEs will be too small for statistical analysis. In the fol-
lowing analyses, I used 3545 M 0.6 or larger LFEs from 
Kato and Nakagawa’s (2020) catalog. In the above analy-
sis, I followed Bostock et al. (2015) and assumed that the 
LFE magnitude–frequency distribution (especially for 
large events in the catalog) obeys the Gutenberg–Richter 
law. I further discuss this assumption and the influence of 
the minimum magnitude selection on my results in Sect. 
“Selection of the minimum magnitude”.

In the Nankai Trough, LFEs occur in band-like regions 
downdip of the megathrust seismogenic zones (Fig. 1a). 
These band-like regions were divided into subregions in a 
manner similar to that of Ide and Nomura (2022). In and 
around the band-like regions, rectangles of 0.2° in lati-
tude and longitude were placed at 0.1° intervals to create 
subregions (Fig. 1a). Each subregion was required to con-
tain at least 100 M ≥ 0.6 LFEs, and LFE activity in each 
subregion was analyzed. Consequently, 43 subregions 
were included in the analysis.

Statistical LFE activity models
Lengliné et al. (2017) model
Lengliné et  al. (2017) proposed a statistical LFE activ-
ity model similar to the ETAS model, see Sect. “ETAS 
model” for details on the ETAS model. Their model 
assumed the rate of LFE occurrence � at time t to be the 
sum of a stationary background rate µL and the effect of 
past LFEs or external processes behind the LFEs inducing 
future LFEs:

where ai ( ≥ 0 ) are parameters controlling the magnitude 
of the effect of the ith event inducing following events, ti 
is the occurrence time of the ith event, and g is the nor-
malized aftershock rate kernel. In this study, an event 
refers to the combined phenomenon of an LFE and pos-
sible external processes behind it. Lengliné et  al. (2017) 
interpreted the external process as a transient slip rate 

(2)�(t) = µL +
∑

ti<t
ai · g(t − ti),
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increase in the area surrounding LFE-generating asperi-
ties. In the above formulation, ai is equivalent to the 
number of events induced by the ith event.

The most significant difference between the above 
model and the ETAS model is that in the former, the 
shape of the normalized kernel g  is not assumed a pri-
ori but is determined based on the observed data. In 

Fig. 1  LFEs along the Nankai Trough. a LFE epicenters and 43 rectangular subregions used in this study. Red circles denote LFE epicenters 
from April 2004 to August 2015 (Kato and Nakagawa 2020). Blue rectangles and crosses indicate the subregions and their centers, respectively. 
The light green rectangles and crosses denote the subregion locations selected in Sect. “Subregion examples”. The dashed black line denotes 
the trench axis of the Nankai Trough. The orange areas indicate the Nankai Trough megathrust seismogenic zones (Obara and Kato 2016). The small 
inset map shows the location of the Nankai Trough. b LFE size-frequency distribution. The blue solid line indicates the number of events expected 
from Gutenberg–Richter’s relationship (Gutenberg and Richter 1944) (b = 3.40). c Goodness-of-fit value R for the goodness-of-fit test method 
(Wiemer and Wyss 2000; Woessner and Wiemer 2005). The arrow indicates the smallest magnitude with an R > 95% (M 0.4)
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contrast, the ETAS model assumes a simple power-law 
decay ( ∼ t−p ) for the aftershock rate kernel. Lengliné 
et al. (2017) used piecewise constant discretization for 
g :

where Tk is the time interval used for discretization and 
k ∈ [1 : N ] , with T1 = 0 (days) and TN = 10 (days). Fur-
thermore, when TN < t , g is assumed to be zero:

The aftershock rate kernel g is normalized to satisfy the 
following equation:

Lengliné et al. (2017) used approximately 30 piecewise 
constants to discretize the kernel g . They applied their 
model to LFE activity in the Mexican and Cascadia sub-
duction zones and on the San Andreas Fault.

The Lengliné et  al. (2017) model has the drawback 
of numerous parameters (usually hundreds or more), 
because the number of parameters ai increases with the 
number of events. This is a major disadvantage when 
compared to other models using AIC, because AIC sub-
stantially increases with the number of model parame-
ters, see Sect. “Model performance evaluation” for details 
on AIC. In my preliminary analyses, the original Lengliné 
et al. (2017) model had a much larger AIC than the Ide 
and Nomura (2022) and ETAS models, because it had too 
many model parameters. This suggests that the original 
Lengliné et al. (2017) model is generally inferior to other 
models. Therefore, in this study, the following model with 
significantly reduced model parameters was used:

The triggering effect magnitude (or aftershock rate 
amplitude) was assumed to be constant for all events (i.e., 
ai = a ). Tan and Marsan (2020) reduced the parameters 
of Lengliné et al. (2017) model in a similar manner. How-
ever, the model proposed by Tan and Marsan (2020) is a 
spatiotemporal LFE model, whereas the above model is 
purely temporal. I used the temporal model, because Ide 
and Nomura (2022), which is used for comparison, is a 
temporal model. Hereafter, the above model is referred to 
as the L-type model.

New parameters g ′k and kernel function g ′ were 
defined as follows:

(3)g
(

Tk < t < Tk+1

)

= gk ,

(4)g(TN < t) = 0.

(5)
∫ ∞

0
g(t)dt =

N−1
∑

k=1

gk ·
(

Tk+1 − Tk

)

= 1.

(6)�(t) = µL +
∑

ti<t
a · g(t − ti).

(7)g ′k ≡ a · gk ,

Using the new kernel function g ′ , Eq. 6 can be rewrit-
ten as

The likelihood L(θ |X) of this model is given by

where θ represents a set of the model parameters and 
X = {ti|0 ≤ ti ≤ T } are the data. I obtained the model 
parameters ( µL and g ′k ) that maximized the above likeli-
hood via the Powell method (Powell 1964). In this study, 
I used 15 piecewise constants ( g ′1 to g ′15 ) to discretize 
the aftershock rate kernels. I assigned g ′1 in the period 
from 0 to 10–4 days. I then divided the period from 10–4 
to 10 days into 14 divisions evenly spaced in logarithmic 
space and assigned g ′2 to g ′15 , respectively. In addition, 
Eq. 7 was used to obtain the parameter a , which indicates 
the number of events induced by a single event.

Lengliné et  al. (2017) apply their model to LFEs 
belonging to the same family. An LFE family is defined 
as a group of LFEs with similar waveforms. However, as 
Lengliné et al. (2017) acknowledge, there is no theoreti-
cal restriction that this model should only be applied 
to events belonging to the same LFE family. Therefore, 
in this study, the model was applied to all LFEs that 
occurred within the same subregion (see Sect. “LFE 
catalog and study regions”).

Ide and Nomura (2022) model
Ide and Nomura (2022) represented the probability 
distribution of inter-event times using a mixture of 
log-normal and BPT distributions, which correspond 
to short-term clustering and long-term recurrence of 
events, respectively. Ide and Nomura (2022) applied 
their model to deep tectonic tremors along the Nan-
kai Trough. Upon applying the Ide and Nomura (2022) 
model to LFE activity along the Nankai Trough, an 
additional log-normal distribution was added to the 
model. This is because, as discussed in Sect. “Subre-
gion examples”, short-term LFE clustering often dis-
plays two characteristic timescales (tens of seconds and 
a few hours). Kato and Nakgawa (2020) refer to this 
LFE activity feature as intermittency. Tan and Marsan 
(2020) also reported two characteristic timescales for 
short-term LFE clustering along the San Andreas Fault.

The model consists of two lognormal distributions 
(the first and second terms on the right-hand side) and 

(8)g ′
(

Tk < t < Tk+1

)

= g ′k .

(9)�(t) = µL +
∑

ti<t
g ′(t − ti).

(10)log L(θ |X) =
∑

0≤ti≤T

log�(ti)−
∫ T

0
�(t)dt,
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one BPT distribution (the third term on the right-hand 
side):

where �t is the interevent time, and f (�t) is the 
probability density function of �t , µ1 , µ2 , and µ3 
( µ1 < µ2 < µ3 ) are parameters representing characteris-
tic time scales of the log-normal and BPT distributions, 
σ1 and σ2 represent log(�t) variances of the first and sec-
ond log-normal distributions, respectively, σ3 controls 
the variation in LFE burst long-term recurrence periods, 
and φ1 and φ2 are parameters controlling the proportions 
of the first and second log-normal distribution. We call 
the above model the IN-type model.

An important feature of the IN-type model is that the 
probability density distribution f (�t) does not depend 
on detailed LFE activity history. This differs markedly 
from the L-type and ETAS models, which consider the 
superimposition of multiple LFE aftershock rates (see 
Eq. 6).

The likelihood L(θ |X) of the IN-type model is given by

where ti is the ith event occurrence time. Eight model 
parameters ( µ1 , µ2 , µ3 , σ1,σ2 , σ3 , φ1 , and φ2 ) were 
obtained that maximize the likelihood via Powell’s 
method (Powell 1964).

The event occurrence rate expected from the IN-type 
model (Ide and Nomura 2022) is given by

These equations were used to compare the expected 
LFE aftershock rates from the different models in Sect. 
“Results”.

(11)

f (�t) =
φ1√

2πσ1�t
exp

{

−
(

log(�t)− log(µ1)
)2

2σ 2
1

}

+
φ2√

2πσ2�t
exp

{

−
(

log(�t)− log(µ2)
)2

2σ 2
2

}

+ (1− φ1 − φ2)

√

µ3

2πσ 2
3�t3

exp

{

−
(�t − µ3)

2

2µ3σ
2
3�t

}

,

(12)log L(θ |X) =
n

∑

i=1

log
{

f (�ti)
}

,

(13)�ti ≡ ti − ti−1,

(14)h(�t) =
f (�t)

1− F(�t)
,

(15)F(�t) =
∫ �t

0
f
(

t ′
)

dt ′.

ETAS model
The ETAS model (Ogata 1988), which is similar to the 
L-type model (Lengliné et  al. 2017), assumes that the 
event occurrence rate is the sum of the stationary back-
ground rate and the effect of past events inducing future 
events. However, the aftershock rate kernel of the ETAS 
model differs from that of the L-type model, and the 
ETAS model assumes power-law decay a priori (Omori–
Utsu’s aftershock law; Utsu 1957; Utsu et al. 1995). In the 
ETAS model, the event occurrence rate � at time t is writ-
ten as follows:

where µE is the stationary background rate, the second 
term of the right-hand side is the aftershock rate sum-
mation controlled by four parameters ( α , c , K  , and p ), ti 
and Mi are the occurrence time and ith event magnitude, 
respectively, and Mc is the catalog minimum magnitude. 
As with the L-type model, the likelihood of the ETAS 
model L(θ |X) is given by Eq.  10. The ETAS parameters 
that maximized the likelihood were obtained using Pow-
ell’s method (Powell 1964).

Model performance evaluation
The L-type, IN-type, and ETAS models were compared 
based on AIC (Akaike 1974), which is defined as follows:

where k denotes the number of adjusted parameters. 
The L-type, IN-type, and ETAS models had 16, 8, and 5 
adjusted parameters, respectively. A model with a smaller 
AIC was considered to be significantly better than a 
model with a larger AIC when the AIC difference ( �AIC) 
between the models was 2 or greater.

Results
Subregion examples
This section presents examples of the analyses of the 
three selected subregions. The selected subregion loca-
tions are shown in Fig.  1a (light-green rectangles and 
crosses).

The first subregion is in the Bungo Channel (33.0°N, 
132.1°E; subregion #1). Figure 2a shows the magnitude–
time diagram of this subregion. The clear increase in 
the frequency of LFEs in 2010 corresponds to a period 
of a long-term slow-slip event (SSE) in the Bungo 
Channel (Takagi et al. 2019; Kato and Nakagawa 2020). 
Model parameter estimates and AICs for this subregion 

(16)�(t) = µE +
∑

ti<t

Keα(Mi−Mc)

(t − ti + c)p
,

(17)AIC = −2logL(θ |X)+ 2k ,
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Fig. 2  LFE activity in a subregion near the Bungo Channel (33.0°N, 132.1°E; subregion #1). a LFE magnitude–time diagram. b Interevent time 
histogram (orange bars). The blue curve indicates the interevent time distribution of the IN-type model. Vertical dashed lines denote the three 
characteristic time constants ( µ1 , µ2 , and µ3 ) of the IN-type model. c Aftershock rates (LFE occurrence rates after a single LFE) predicted 
by the L-type, IN-type, and ETAS models (red, blue, and green lines, respectively). The maximum likelihood estimate of the ETAS model p value is 1.1

Table 1  Model parameter estimates and AICs for the selected subregions

g′1 to g′15 of the L-type model are shown in Additional file 2: Table S1

Model Subregion Parameter AIC

µL a

#1 (Bungo Channel) 1.6 × 10–2 0.78 524

L-type #34 (Shima Peninsula) 6.8 × 10–3 0.83 317

#43 (Aichi Prefecture) 1.5 × 10–2 0.52 618

µ1 σ1 µ2 σ2 µ3 σ3 φ1 φ2

#1 (Bungo Channel) 9.5 × 10–4 1.5 0.23 1.5 72 1.0 0.24 0.58 499

IN-type #34 (Shima Peninsula) 1.6 × 10–3 1.3 0.18 1.6 174 0.5 0.17 0.69 282

#43 (Aichi Prefecture) 7.2 × 10–4 1.2 0.62 1.3 73 1.3 0.23 0.34 626

µE α c K p

#1 (Bungo Channel) 5.6 × 10–3 0.00 6.2 × 10–4 5.9 × 10–2 1.1 585

ETAS #34 (Shima Peninsula) 6.6 × 10–3 0.00 4.5 × 10–1 3.4 × 10–1 3.0 358

#43 (Aichi Prefecture) 1.1 × 10–2 0.00 1.6 × 10–4 4.0 × 10–2 1.0 638
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are shown in Table 1 (see subregion #1). Model param-
eter estimates and AICs for all 43 subregions are shown 
in Additional files 2, 3, 4, 5: Tables S1–S4 in Additional 
files. In this subregion, the AICs of the L-type, IN-type, 
and ETAS models were 524, 499, and 585, respectively 
(Table  1). The AIC of the IN-type model was signifi-
cantly lower than that of the other models, indicating 
that the IN-type model was superior to the other two 
models in this subregion.

Figure  2b shows a histogram of the interevent times 
for this subregion. There are maxima at approximately 
10–3, 10–1, and 101.5 days (approximately 30 days). This 
feature is difficult to reproduce using a model with only 
two characteristic timescales such as the original Ide 
and Nomura (2022) model. In contrast, the IN-type 
model (blue curve in Fig.  2b) had three characteristic 
time constants ( µ1 , µ2 , and µ3 ), and they were esti-
mated to be 9.5 × 10–4, 2.3 × 10–1, and 72 days, respec-
tively. Note that the AIC (= 540) for the original Ide and 
Nomura (2022) model was significantly greater than the 
AIC (= 499) of the IN-type model in this study, suggest-
ing that the model with the three time constants was 
significantly better.

Figure  2c shows the temporal variation in the after-
shock rate (LFE occurrence rate after a single LFE) for 
up to 10 days in this subregion, as predicted by the L-, 
IN-type, and ETAS models. For the ETAS model, the 
LFE aftershock rate after a single M 0.6 LFE was pre-
sented. However, because parameter α of the ETAS 
model was zero in almost all subregions, including this 
subregion (Table  1 and Additional file  4: Table  S3), it 
is safe to assume that the aftershock rate does not 
depend on the mainshock magnitude. In Fig.  2c, the 
aftershock rate of the ETAS model decays with a power 
law of p = 1.1 . For regular earthquake activity, p values 
typically range from 0.9 to 1.5 (Utsu et  al. 1995). It is 
intriguing that the p value estimated from LFE activity 
in this subregion is comparable to that of regular earth-
quake activity.

In contrast to the simple power-law decay of the ETAS 
model, the aftershock rates expected from the L- and IN-
type models exhibit more complex temporal variations. 
In the IN-type model, the aftershock rate decay stagnates 
between 1.0 × 10–2 and 2.0 × 10–1 days. This was because 
of the second log-normal distribution of the IN-type 
model (Fig.  2b). This feature was also observed in the 
aftershock rate of the L-type model (red line in Fig. 2b). 
As shown in Fig. 2c, the aftershock occurrence rate of the 
L-type model tended to be systematically lower than that 
of the IN-type model. This is because the L-type model 
includes the effect of the summation of multiple after-
shock rates (Eq. 6). This effect resulted in lower individ-
ual aftershock rates compared to the IN-type model.

In this subregion, the ETAS model was the most infe-
rior in terms of AIC. Considering that the only difference 
between the ETAS and L-type models is the functional 
form of the aftershock rate kernel (Eqs. 6 and 16), the dif-
ference in AIC between the L-type (AIC = 524) and ETAS 
models (AIC = 585) can be attributed to the difference in 
the functional form. This result suggests that the simple 
power-law decay assumed by the ETAS model is insuffi-
cient to describe the LFE aftershock rate.

The second example is a subregion near the Shima Pen-
insula (34.7N°, 136.5E°; subregion #34) (Figs.  1a and 3). 
In this subregion, the AICs of the L-type, IN-type, and 
ETAS models were 317, 282, and 358, respectively; the 
IN-type model had the lowest AIC and outperformed the 
other two models (Table 1). The AIC value of the ETAS 
model was the highest. Figure  3b shows a histogram of 
the interevent times in this subregion. The three charac-
teristic time constants of the IN-type model ( µ1 , µ2 , and 
µ3 ) (blue curve in Fig. 2b) were estimated to be 1.6 × 10–3, 
1.8 × 10–1, and 174 days, respectively.

Figure  3c shows the LFE aftershock rates for the 
L-type, IN-type, and ETAS model. The p value for the 
ETAS model is estimated as 3.0. This is substantially 
greater than the typical p value range for regular earth-
quake activity (0.9–1.5) (Utsu et al. 1995). Owing to this 
extremely high p value, the aftershock rate decayed rap-
idly from 1 × 10–1 to 10 days (from 2 to 3 × 10–4 events/
days). However, up to 1 × 10–1  days, the aftershock rate 
was almost constant owing to the large c value (= 0.45 d). 
A rapid decay from 1 × 10–1 to 10 days was also observed 
for the L- and IN-type models (red and blue lines, respec-
tively, in Fig. 3c).

The IN- and L-type model aftershock rates showed 
weaker decay between approximately 1.0 × 10–2 and 
2.0 × 10–1 days. This is similar to the results for the Bungo 
Channel subregion (Fig.  2c). The aftershock rates pre-
dicted by the IN- and L-type models showed a maximum 
value (approximately 80 events/days) of approximately 
3 × 10–4 days, in contrast to the ETAS model, which pre-
dicted an almost constant aftershock rate until approxi-
mately 1 × 10–1 days.

The third example is a subregion in the Aichi Prefecture 
(35.1°N, 137.4°E; subregion #43) (Figs. 1a and 4). In this 
subregion, the AICs values of the L-type, IN-type, and 
ETAS models were 618, 626, and 638, respectively, with 
the L-type model having the lowest AIC (Table 1). This 
result contrasts with the results of the first and second 
examples in the Bungo Channel and near Shima Penin-
sula, where the IN-type model performed best. However, 
the fact that the ETAS model had the highest AIC was 
common to all the three examples.

Figure 4b shows a histogram of the interevent times in 
this subregion. The three characteristic time constants of 
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the IN-type model ( µ1 , µ2 , and µ3 ) were estimated to be 
7.2 × 10–4, 6.2 × 10–1, and 73 days, respectively. Figure 4c 
shows the aftershock occurrence rates predicted using 
the L-type, IN-type, and ETAS models. The ETAS model 
p value was estimated at 1.0. This value is comparable to 
the typical p values for regular earthquake activity (Utsu 
et al. 1995). The aftershock rate decay of the L- and IN-
type models stagnated between approximately 3 × 10–2 
and 8 × 10–1  days. This feature is similar to that of the 
subregions in the Bungo Channel and near the Shima 
Peninsula.

LFE aftershock rates
The results for the three subregions in Sect. “Subregion 
examples” suggest that the LFE aftershock rates (Figs. 2c, 
3c, and 4c) cannot be described by a simple power-law 
decay and that there is decay stagnation (1.0 × 10–2 to 
2.0 × 10–1 days). This is a general feature of the LFE activ-
ity in the Nankai Trough. Figure  5 shows the L-type 

model median aftershock rates for all 43 subregions. 
This figure also shows that the decay of the aftershock 
rate stagnates between 1.0 × 10–2 and 2.0 × 10–1  days. 
The complex shape of the LFE aftershock rate probably 
explains why the ETAS model, which assumes a simple 
power-law decay a priori, is significantly inferior to the L- 
and IN-type models.

A similar shape for the LFE aftershock rate was sug-
gested in LFE analyses of the San Andreas Fault by 
Lengliné et al. (2017) and Tan and Marsan (2020). How-
ever, for LFEs in the Mexican and Cascadia subduction 
zones, Lengliné et al. (2017) reported a simple power law 
decay of p = 1.3. The prevalence of stagnation in the LFE 
aftershock rate decay (Fig. 5) for LFE activity worldwide 
remains unclear and should be studied in the future.

The physical mechanism of the observed aftershock 
rate decay stagnation (Fig.  5) is not clear. However, I 
suggest two hypotheses. One is that triggering between 
LFEs might involve a characteristic time scale of 

Fig. 3  LFE activity in a subregion near the Shima Peninsula (34.7°N, 136.5°E; subregion #34). a LFE magnitude–time diagram. b Interevent time 
histogram (orange bars). The blue curve indicates the interevent time distribution of the IN-type model. Vertical dashed lines denote the three 
characteristic time constants of IN-type model ( µ1 , µ2 , and µ3 ). c Aftershock rates predicted by the L-type, IN-type, and ETAS models (red, blue, 
and green lines, respectively). The maximum likelihood estimate of the ETAS model p value is 3.0
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10–2–2 × 10–1  days in its physical mechanism. However, 
such a characteristic time scale has not been reported 
for triggering between regular earthquakes, whose pri-
mal physical mechanism is considered to be stress trans-
fer (e.g., Ellsworth and Bulut 2018). Physical models of 
triggering between regular earthquakes (e.g., Dieterich 
1994) also do not suggest the existence of such a time 
scale. Therefore, the physical mechanism of event-to-
event triggering may be different for LFEs and regular 
earthquakes. Another possibility is that the processes 
behind the LFEs (e.g., slow slip in the region surrounding 
the LFE asperities) may be intermittent, with character-
istic time scales of 10–2–2 × 10–1  days (Kato and Naka-
gawa 2020). Although slow slips are usually modeled as 
smooth slow fault-slip events (e.g., Im et al. 2020), actual 
slow slips may be a series of rapid acceleration/decel-
eration events with a characteristic recurrence period of 
10–2–2 × 10–1 days.

Fig. 4  LFE activity in a subregion in Aichi Prefecture (subregion #43) (35.1°N, 137.4°E). a LFE magnitude–time diagram. b Interevent time histogram 
(orange bars). The blue curve indicates the interevent time distribution of the IN-type model. Vertical dashed lines denote the three characteristic 
time constants of the IN-type model ( µ1 , µ2 , and µ3 ). c Aftershock rates predicted by the L-type, IN-type, and ETAS models (red, blue, and green 
lines, respectively). The maximum likelihood estimate of the ETAS model p value is 1.0

Fig. 5  L-type model median aftershock rates. The solid red line 
shows the median aftershock rates of all 43 subregions. The dashed 
red line indicates the 25th and 75th percentiles. The dashed black line 
indicates a line with an Omori–Utsu p value of 1.0
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Spatial model parameter distribution
Figures  6, 7, 8 show the spatial parameter distributions 
for the L-type, IN-type, and ETAS models. It is difficult 
to compare parameter values of different models directly, 
because they depend on different model assumptions. 
However, common features were observed in the spatial 
parameter distributions of different models.

One common feature is the large change in LFE activity 
parameters between the east and west of Ise Bay (approx-
imately 136.8°E). In the L-type model (Fig.  6), both the 
background seismicity rate µL and the number of LFE 
aftershocks a differed between the east and west of Ise 
Bay. East of Ise Bay (Aichi Prefecture), the background 
seismicity rate was higher and the number of aftershocks 
was lower. In contrast, to the west of Ise Bay (near the 
Shima Peninsula), the background seismicity rate was 
low and the number of aftershocks was high. In the IN-
type model (Fig.  7), there was a marked contrast in µ3 , 
σ3 , and φ2 between the east and west of Ise Bay. East of 
Ise Bay, the long-term clustering time constant ( µ3 ) was 
short, and the second short-term clustering fraction ( φ2 ) 
was small. In contrast, west of Ise Bay, the long-term 
clustering time constant was longer, and the secondary 
short-term clustering proportion was greater. Similarly, 
the ETAS model (Fig. 8) also shows contrasts in µE , c , and 
p between the east and west of Ise Bay. These changes in 
the LFE activity characteristics may reflect changes in the 
interplate slip behavior at a spatial scale of approximately 
100 km around Ise Bay.

In addition, several parameters show contrasts between 
the Bungo Channel and western Shikoku (approximately 
132.4°E): µL in the L-type model; µ1 , µ3 , and φ1 in the IN-
type model; and µE , c , and p in the ETAS model. µL , µ3 , 
and µE are parameters associated with long-term recur-
rences of LFE bursts. These differences may be related 
to the occurrence of long-term SSEs in the Bungo Chan-
nel (Takagi et  al. 2019; Kato and Nakagawa 2020). µ1 , 
φ1 , c , and p are parameters related to LFE short-term 

clustering, suggesting that there are also differences in 
short-term LFE clustering features between the Bungo 
Channel and western Shikoku.

Model performance
Figure  9 shows the AIC difference ( �AIC) between the 
IN- and L-type models. The IN-type, L-type, and ETAS 
models were superior in 25, 13, and 1 of the 43 subre-
gions, respectively. The IN- and L-type models were 
superior in three of the remaining four subregions, with 
no significant differences between them. In the remain-
ing subregion, the ETAS and L-type models were supe-
rior, with no significant difference between them. These 
results indicate that although there were more subre-
gions in which the IN-type model performed better, the 
IN- and L-type model performances were competitive. 
In particular, the L-type model was superior to the IN-
type model in several subregions of Shikoku and east of 
Ise Bay.

Discussion
Hybrid model
In Sect. "Results", although the IN-type model is supe-
rior in more subregions, the IN- and L-type model per-
formances are competitive. Based on these results, this 
section examines whether the incorporation of both IN- 
and L-type model features results in a superior model. 
The IN-type model has the characteristic of using a small 
number of parameters to represent the LFE occurrence 
rate (Eqs.  11, 14, and 15). The L-type model considers 
the LFE activity history (Eq.  9). I propose a new model 
incorporating both features. Specifically, a model was 
developed in which the L-type aftershock rate kernel was 
represented by a small number of parameters, similar to 
the IN-type model.

In Figs.  2c, 3c, and 4c, the IN- and L-type model 
aftershock rates show a common feature: stagnation in 
the decay of the LFE aftershock rate at approximately 

Fig. 6  L-type model parameter spatial distributions. a, b Distributions of µL and a , respectively, see Sect. “Lengliné et al. (2017) model” for parameter 
details
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Fig. 7  IN-type model parameter spatial distributions. a–i Distributions of µ1 , σ1 , µ2,σ2 , µ3 , σ3 , φ1 , φ2 , and 1− φ1 − φ2 , respectively, see Sect. “Ide 
and Nomura (2022) model” for parameter details
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0.1  days. Therefore, a functional form similar to that of 
the IN-type model may represent the shape of the L-type 
model aftershock rate kernel well. Note that in the L-type 
model, the shape of the aftershock rate kernel is not 
assumed a priori, and it is not necessarily a trivial task to 
find a functional form with a small number of parameters 
that represents the L-type model aftershock rates well.

Based on these ideas, the following formulation was 
developed. First, the following equations for the after-
shock rate kernel gH (t) were assumed:

(18)gH (t) =
fH (t)

1− FH (t)
,

Fig. 8  ETAS model parameter spatial distributions. a–i Distributions of µE , α , c , K  , and p , respectively, see Sect. “ETAS model” for parameter details

Fig. 9  AIC differences ( � AIC) between the IN- and L-type models. 
Colored circles indicate regions where the IN- or L-type model AICs 
are less than the AICs of the other models. Colored squares indicate 
regions where the ETAS model AIC is less than the IN- and L-type 
model AICs
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These equations represent the LFE occurrence rate pre-
dicted by the IN-type model, excluding the long-term 
LFE recurrence effect (Eqs.  11, 14, and 15). Specifically, 
only short-term clustering with two time constants was 
considered. Using the above equations, the LFE occur-
rence rate can be written as

The above formulation is characterized by a small num-
ber of parameters (seven) to represent the LFE occur-
rence rate and consider the LFE activity history. I call 
this model a hybrid model. Seven model parameters were 
estimated ( µH , µ1H , µ2H , σ1H , σ2H , φ1H , and φ2H ) using 
the maximum likelihood method (Additional files 1, 6: 
Fig. S1 and: Table S5).

Figure 10 shows the aftershock rates expected from the 
hybrid model for the three subregions selected in Sect. 
“Subregion examples” (orange lines). The hybrid model 
aftershock rates also showed a stagnation of aftershock 
rate decay at approximately 0.1  days. The aftershock 
rates of the L-type and hybrid models are similar, as indi-
cated by the proximity between the red and orange lines 
in Fig.  10. This suggests that the functional form of the 
hybrid model aftershock rate kernel (Eqs. 18, 19, 20) well 
represents the shape of the aftershock rate kernel of the 
L-type model with fewer parameters.

The AIC was used to compare the model performance. 
Figure  11a shows the AIC differences (ΔAICs) between 
the hybrid and L-type models. In most subregions (41 of 
the 43 subregions), the ΔAIC was < −  2, indicating that 
the hybrid model was significantly superior to the L-type 
model. In the remaining two subregions, the L-type 
model performed significantly better than the hybrid 
model. This may be because in these subregions (subre-
gions #18 and #21), the LFE inter-event time histograms 
have a more complex shape than the other subregions 
and cannot be represented by a model with only two time 
constants for short-term clustering, such as the IN-type 
and hybrid models (see Additional file 1: Figs. S2 and S3).

(19)

fH (t) =
φ1H√
2πσ1Ht

exp

{

−
(

log(t)− log(µ1H )
)2

2σ 2
1H

}

+
φ2H√
2πσ2Ht

exp

{

−
(

log(t)− log(µ2H )
)2

2σ 2
2H

}

,

(20)FH (t) =
∫ t

0
fH
(

t ′
)

dt ′.

(21)�(t) = µH +
∑

ti<t
gH (t − ti).

Fig. 10  Aftershock rates predicted by the hybrid model. a–c 
Aftershock rates for subregions in the Bungo Channel (subregion #1; 
Fig. 2), near the Shima Peninsula (subregion #34; Fig. 3), and in Aichi 
Prefecture (subregion #43; Fig. 4)
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Figure  11b shows the AIC differences between the 
hybrid and IN-type models. The hybrid model was supe-
rior in 26 of the 43 subregions. The IN-type model was 
superior in 15 of the remaining subregions. There were 
no significant differences in performance between the 
remaining two subregions. Compared with the results 
in Sect. “Results”, the number of subregions in which the 
IN-type model performed the best decreased substan-
tially (from 25 to 15).

This analysis demonstrates that the hybrid model is 
superior to the L-type model. Furthermore, the hybrid 
model outperformed the IN-type model in many sub-
regions and could be considered the best model in this 
study. However, there were still subregions where the 
IN-type model performed better. This indicates that con-
sidering the LFE activity history in a manner similar to 
the L-type and ETAS models (Eqs. 9, 16, and 21) does not 
necessarily improve LFE forecasts. This point is discussed 
in detail in Sect. “Toward further model improvement”.

Toward further model improvement
Among the four models used in this study (L-type, IN-
type, ETAS, and hybrid), the hybrid model was superior 
in many regions (Fig. 11). However, there are regions in 
which the IN-type model outperforms the hybrid model. 
The hybrid model includes the summation of multiple 
LFE aftershock rates (Eq. 21). This contrasts with the IN-
type model, in which aftershock rates are not affected by 
detailed LFE activity history and are determined solely by 
the time elapsed since the last event (Eqs. 11, 14, and 15). 
Given this difference between the hybrid and IN-type 
models, in some subregions where the IN-type model 
outperformed the hybrid model, considering the effect of 
summing multiple LFE aftershock rates may worsen LFE 
forecasting.

To further understand the possible absence of the effect 
of summing multiple aftershock rates, the LFE activity 
was investigated in detail in the subregions where the 

IN-type model outperformed the hybrid model. As a 
result, it was discovered that, in those subregions, intense 
LFE bursts were often followed by sudden cessations in 
LFE activity. In models that apply the summation of mul-
tiple aftershock rates, such sudden cessations are difficult 
to reproduce, because the subsequent predicted seismic-
ity rate increases significantly after an intense burst.

Figure 12 shows an LFE burst in a subregion near the 
Shima Peninsula (subregion #34; Fig.  3). As shown in 
Fig. 12a, at approximately 3 days, eight LFEs occurred in 
5 h, and the hybrid model predicted a much higher seis-
micity rate than the IN-type model because of the sum-
mation of the LFE aftershock rates (Fig.  12b). Contrary 
to the hybrid model prediction, this burst stopped at 
approximately 3.3 days, resulting in a significant decrease 
in the likelihood of the hybrid model (Fig.  12c). This 
reduction in likelihood is the main reason the hybrid 
model is considered inferior to the IN-type model in this 
subregion.

Considering the above, I suggest that it is important to 
incorporate the sudden LFE burst cessations for better 
LFE activity statistical model development. Models such 
as the L-type, ETAS, and hybrid models, which simply 
apply the summation of multiple LFE aftershock rates, 
cannot reproduce these sudden cessations. New models 
are required that consider LFE activity history differently 
from these models and successfully predict LFE burst 
cessations.

The sudden cessations could be reproduced if I con-
sider a different variable ( ai ) for each LFE and change the 
amplitude of the LFE aftershock rates, as in the original 
Lengliné et al. (2017) model (Sect. “Lengliné et al. (2017) 
model”). However, such a model would be inferior in 
terms of AIC, because the number of model parameters 
would increase substantially. Therefore, when varying the 
amplitude of the LFE aftershock rates, it is necessary to 
model the variation with a small number of parameters.

Fig. 11  AIC differences ( � AIC) between the hybrid, IN-type, and L-type models. a � AIC between the hybrid and L-type models. b � AIC 
between the hybrid and IN-type models
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Fig. 12  Example of LFE activity in a subregion where the IN-type model outperforms the hybrid model. a LFE magnitude–time diagram 
and cumulative LFE counts in subregion #34. The date of zero is May 24, 2010. b LFE seismicity rates predicted by the IN-type and hybrid models. 
The lower panel is an enlarged view of the upper panel. c Change in the likelihood of the IN-type and hybrid models due to the occurrence of each 
event. Spike-shaped sections correspond to LFE occurrence times. Two successive spikes correspond to two successive LFEs, and the curves 
between them show how the model likelihood changes with the later LFE occurrence time. The actual change in likelihood due to the occurrence 
of the later LFE can be read from the value that the curves indicate immediately prior to the later spike. The upper left panel is an enlarged view 
of the lower panel
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In addition to the additive nature of the LFE after-
shock rates, there was another difference between the 
hybrid and IN-type models. The hybrid model assumes 
a stationary background seismicity rate (Eq. 21), whereas 
the IN-type model considers long-term LFE burst recur-
rences using a BPT distribution (Eq. 11). This difference 
may also cause a difference in the performance of the two 
models.

Transformed time sequence
The number of events �(t) predicted from a model from 
t0 to t is obtained by integrating the event occurrence rate 
�(t):

I use Eq. 22 to transform the occurrence time of the ith 
event ti into a transformed time τi ≡ �(ti) (Ogata 1988, 
1992).

If the model can predict events well, the transformed 
time sequence follows a standard Poisson process, and 
the plot of the cumulative event count against the trans-
formed time is expected to be linear with a slope of unity 
(Ogata 1988, 1992). Proximity to the straight line with 
a slope of unity is usually considered as an indicator of 
good fitting. However, in this study, the transformed time 
sequence did not seem to be suitable for visualizing the 
superiority of model performance.

The proximity to the line with a slope of unity does 
not necessarily indicate large likelihood or small AIC. 
For example, if a model repeatedly underestimates and 
overestimates the event occurrence rate over a short time 
period, then if the event occurrence rate is integrated 
over a long period, the predicted and observed number 
of events will be close and follow the straight line with 
a slope of unity. However, the model likelihood becomes 
small, and the AIC becomes large, because the event 
occurrence rate is underestimated or overestimated for 
each event. This phenomenon was often observed in this 
study: in Additional file 1: Fig. S4a, b, the L-type, ETAS, 
and hybrid models were closer to the straight line with 
a slope of unity than the IN-type model, but the IN-type 
model had the smallest AIC. This is because the L-type, 
ETAS, and hybrid models repeatedly underestimated 
the event occurrence rate when LFE clusters occurred 
and overestimated it when the clusters stopped. In other 
words, the L-type, ETAS, and hybrid models failed to 
predict the occurrence of individual events. These results 
are consistent with the point made in Sect. “Toward fur-
ther model improvement” that the L-type, ETAS, and 
hybrid models do not predict LFE cluster activity well.

(22)�(t) =
∫ t

t0

�(t ′)dt ′.

Selection of the minimum magnitude
Whether the LFE magnitude–frequency distribu-
tion (especially for large events in a catalog) follows the 
Gutenberg–Richter law (a power law distribution) or an 
exponential distribution is still under debate and incon-
clusive (Bostock et al. 2015; Chestler and Creager 2017). 
Hence, no method currently exists for evaluating the 
completeness of an LFE catalog.

In seismicity analysis, the use of incomplete catalogs 
makes it unclear whether the results obtained are true 
seismicity features or artifacts due to the incompleteness 
of the catalogs. In light of this, in this study, I followed 
Bostock et  al. (2015), assumed the Gutenberg–Richter 
law, and used as large a minimum magnitude as possible 
(M 0.6). This is as conservative an analysis as possible. 
My intention is to eliminate artifacts as much as possible 
and to discuss the true features of LFE activity, even if my 
analysis is limited to the activity of large LFEs.

However, the conservative approach of this study has 
the problem of ignoring the activity of many LFEs smaller 
than the minimum magnitude. Therefore, I conducted a 
reanalysis by changing the LFE minimum magnitude to 
M 0.4 and M 0.2. The number of events used in the anal-
ysis increased to 18,103 (5 times greater than the num-
ber of M 0.6 or larger LFEs) and 67,193 (19 times greater 
than the number of M 0.6 or larger LFEs), respectively. 
Because the number of LFEs increased substantially as 
the minimum magnitude was lowered, the computational 
cost of this study also increased substantially (on the 
order of the square of the number of LFEs). Therefore, 
the analysis could not be performed for the minimum 
magnitude below M 0.2.

As a result, I found two common features among the 
results for the minimum magnitudes of M 0.6, M 0.4, and 
M 0.2. The first is that the performance of the IN-type 
model and the L-type model are competitive, although 
the IN-type model performs better in more subregions 
(Figs. 9, 13a, b). The second is that the Hybrid model is 
generally superior to the L-type model (Figs. 11a, 13c, d).

In contrast, the comparisons between the hybrid and 
IN-type models (Figs.  11b, 13e, f ) showed an increase 
in subregions where the IN-type model outperformed 
the hybrid model for the minimum magnitude of M 
0.2. For the minimum magnitude of M 0.2, the perfor-
mance of the hybrid and IN-type models is comparable: 
the hybrid model was superior in 23 subregions, and 
the IN-type model was superior in 20 subregions. This 
may be because the effect of the summation of multiple 
aftershock rates assumed by the hybrid model does not 
describe the clustering of LFEs well, as suggested in Sect. 
“Toward further model improvement”. When the mini-
mum magnitude is small, the likelihood and AIC strongly 
reflect the ability to predict short-term LFE clustering, 
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because numerous small LFEs are concentrated over 
short time periods.

The selection of the optimal minimum magnitude for 
statistical analysis of LFE activity is an important future 
issue. It is desirable to use as many LFEs as possible in 
the analysis while ensuring the completeness of the LFE 
catalog. In future studies, it is important to develop a 
method to evaluate the completeness of LFE catalogs and 
to select an appropriate minimum magnitude.

Short‑term aftershock incompleteness
Overlooking small aftershocks due to intense after-
shock activity after large mainshocks is called 

short-term aftershock incompleteness (STAI) (e.g., 
Petrillo and Zhuang 2023). For regular earthquake 
activity, we can easily visually identify STAI in the 
magnitude–time diagram. In contrast, for LFE activity, 
STAI is not visually clear in the magnitude–time dia-
gram, because the distinction between mainshocks and 
aftershocks is unclear for LFE activity.

However, smaller LFEs may be overlooked during 
intense LFE bursts. To examine this possibility, for M 
0.4 and M 0.8 LFEs, I checked the elapsed time from 
the immediately preceding event to the occurrence of 
each LFE. In Additional file 1: Fig. S5, I showed the his-
tograms of the elapsed time. Counts were summed and 

Fig. 13  AIC differences ( � AIC) between the hybrid, IN-type, and L-type models for the minimum magnitudes of M 0.4 and M 0.2. a and b � AIC 
between the IN-type and L-type models for the minimum magnitudes of M 0.4 and M 0.2. c and d � AIC between the hybrid and L-type models 
for the minimum magnitudes of M 0.4 and M 0.2. e and f � AIC between the hybrid and IN-type models for the minimum magnitudes of M 0.4 
and M 0.2
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normalized for all 43 subregions. Note that the mini-
mum magnitude of M 0.4 was used in this analysis.

The results showed that M 0.4 LFEs had a smaller 
percentage of events occurring in less than 10−3  days 
(approximately 90  s or less) compared to M 0.8 LFEs. 
This is consistent with the hypothesis that during intense 
LFE bursts (i.e., periods characterized by very short inter-
event times), small LFEs may be overlooked.

Much is still not known about the temporal variations 
of the LFE catalog completeness and LFE magnitude–fre-
quency distribution. Further research on STAI for LFE 
activity is needed.

Factors not considered by the models used in this study
Some important LFE activity features are not consid-
ered in the models used in this study (L-type, IN-type, 
ETAS, and hybrid models). For example, the LFE activity 
exhibits a high tidal response (e.g., Royer et al. 2015). It 
is also known that LFE epicenters migrate diffusively on 
a timescale of approximately 10 days and a spatial scale 
of approximately 100  km; they also migrate diffusively 
or at a constant speed on a timescale of approximately 
30 min and a spatial scale of 15 km (Kato and Nakagawa 
2020). Statistical LFE activity models could be improved 
by considering these factors. However, as stated in Sect. 
“Introduction”, this study aims to compare existing sta-
tistical LFE activity models, identify which model better 
describes LFE activities, and create a new model based 
on this comparison. It is beyond the scope of this study to 
incorporate new factors that are not considered in exist-
ing models into each model. This is an important issue 
that should be addressed in future studies.

Conclusions
This study applied the existing statistical LFE activity 
models (L- and IN-type models) (Lengliné et  al. 2017; 
Ide and Nomura 2022) to LFEs along the Nankai Trough 
(Kato and Nakagawa 2020) and conducted the first com-
parison based on AIC (Sect. “Results”). The aftershock 
rate decay predicted by the L- and IN-type models stag-
nated near an elapsed time of 0.1  days. This is the pri-
mary reason why the ETAS model (Ogata 1988), which 
a priori assumes a simple power-law decay, does not per-
form well for LFE activity.

Although there were more subregions in which the IN-
type model performed better, the IN- and L-type model 
performances were competitive. Based on these results, 
a new hybrid model was created that incorporates the 
features of both models (Sect. “Discussion”). The hybrid 
model considers the LFE activity history in a manner 
similar to the L-type and ETAS models, and represents 
the LFE aftershock rate with a small number of param-
eters, similar to the IN-type model. The results showed 

that the hybrid model outperformed the L- and IN-type 
models in many subregions, and the hybrid model was 
considered to be the best currently available model.

However, I found that the hybrid model could not 
reproduce the sudden LFE burst cessations, because the 
model summed multiple LFE aftershock rates. In subre-
gions where such a cessation often occurs, the IN-type 
model, which does not consider the LFE activity history, 
outperformed the hybrid model. For better LFE activity 
forecasting, new models that consider LFE activity his-
tory differently from the hybrid model and successfully 
predict the abrupt LFE burst cessations are required.

Moreover, the empirical equations formulated in this 
study for LFE aftershock rates (Eqs.  18, 19, 20) may be 
useful for future investigations concerning statistical and 
physical modeling of LFE activity. Specifically, they could 
be an important observational fact that future physical 
LFE activity models should reproduce.
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