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Abstract 

We consider a general case of a magnetotelluric (MT) study to reveal three‑dimensional (3D) distribution of the elec‑
trical conductivity within the Earth based on measurements of electromagnetic (EM) fields by a two‑dimensional (2D) 
array. Such an MT array observation can be regarded as a spatially discrete sampling of the MT responses (imped‑
ances), and each observation site can be regarded as a sampling point. This means that MT array measurements 
must follow the Nyquist–Shannon sampling theorem. This paper discusses how the sampling theorem is applied 
to MT array studies and what kind of consideration is required in the application on the basis of synthetic model 
calculations, with special attention to spatial resolutions. With an aid of the EM scattering theory and the sampling 
theorem, we can show that an observation array resolves some features of the MT impedance but does not others. 
We call the resolvable and unresolvable features the MT signal and noise, respectively. This study introduces the spa‑
tial Fourier transform of array MT data (impedances) which helps us investigating sampling effects of lateral hetero‑
geneity from a different angle (in the wavenumber domain). Shallow heterogeneities cause a sharp spatial change 
of impedance elements near structural boundaries. High wavenumber Fourier components are required to describe 
such a feature, which means the site spacing must be sufficiently short to be able to resolve such features. Other‑
wise, a set of array MT data will suffer from aliasing, which is one of the typical causes of MT distortion (MT geologic 
noise). Conversely, a signal due to a deep‑seated conductivity anomaly will have more reduced amplitude at higher 
wavenumbers, which means focused imaging of such an anomaly is generally difficult. Finally, it is suggested to prop‑
erly consider the sampling theorem in an observation array design, so as to have best performance in resolving MT 
signals.
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Graphical abstract

Introduction
Every geophysical exploration method usually conducts 
a sampling of physical quantities in the space domain. 
Sampled quantities are then translated into spatial distri-
bution of a physical property in the Earth. For example, a 
geomagnetic survey samples magnetic field components 
in the space domain which are then inverted to a distri-
bution of magnetization in the crust. Gravity measure-
ments are inverted to density distribution in a similar 
manner. In these potential methods, the general Nyquist–
Shannon sampling theorem is applied to argue the spatial 
resolution, the Nyquist wavenumber, etc. This paper con-
cerns how the sampling theorem is applied to the prac-
tice of the magnetotelluric (MT) method (e.g., Cagniard 
1953; Chave and Jones 2012).

The MT method is one of the geophysical methods 
to explore the Earth’s interior based on measurements 
of time variations of electromagnetic (EM) fields on the 
Earth’s surface or at seafloor. The MT response func-
tion (also called the MT impedance) is estimated at each 
observation site from time series of observed EM field var-
iations as a function of frequency (e.g., Chave and Jones 
2012). In the original derivation by Cagniard (1953), it 
was clearly demonstrated that the Earth’s electrical struc-
ture can be estimated using the frequency dependence 
of the MT impedance obtained at an observation site, if 
the Earth is horizontally stratified, or in other words, one 
dimensional (1D). Because 1D Earth exists only in con-
cept, an array of MT observations is necessary in general 

to reveal lateral variations in the MT impedance, so as to 
explore laterally heterogeneous Earth structures.

Time-changing electromagnetic fields follow Maxwell 
equations, which are written in the frequency domain as,

where r =




x
y
z



,ω,µ0 , and σ denote an arbitrary loca-

tion below the surface ( z > 0 ), the angular frequency of 
time variations, the magnetic permeability of the vac-
uum, and the electrical conductivity, respectively. Note 
that the displace current is ignored in Eq. (2).

Due to the linearity of Maxwell equations and bound-
ary conditions, the horizontal components of electric and 

magnetic fields measured at a certain location rh =

(
x
y

)
 

at the surface of the Earth ( z = 0 ) are supposed to have a 
linear relationship with each other,

where Eh and Hh are the horizontal electric and magnetic 
fields, respectively, both consisting of two horizontal 
components. Z is a complex-valued 2× 2 tensor called 
the MT impedance.

Now, a measurement at each observation site in the 
MT array is regarded as a sampling point of the MT 

(1)∇ × E(r,ω) = −iωµ0H(r,ω),

(2)∇ ×H(r,ω) = σ(r)E(r,ω),

(3)Eh(rh,ω) = Z(rh,ω)Hh(rh,ω),
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impedance, and therefore, it is suggested that the obser-
vation array has to be properly designed on the basis of 
the general sampling theorem. Further, additional consid-
eration is needed, because the spatial scale and time scale 
(frequency) of EM fields are related as will be discussed in 
later sections. Note that argument so far has been made 
by simply assuming all measured components completely 
satisfy Eq.  (3), which means noise is absent. This does 
not happen in reality: any measurement includes noise at 
least to some extent.

One of the main concerns of this paper is how to deal 
with signals and noises in the MT method according to 
the sampling theorem. However, we need more clarifica-
tion of the terminology of noise, because there are several 
different kinds of noise in MT practice including those in 
field observation, in data analysis and in inversion. One 
is the so-called measurement noise during observation, 
which is a contamination to original time-series data of 
electric and magnetic field variations. It could be caused 
by the measuring amplifier itself, by electrodes, by indus-
tries and railways, etc. (e.g., Ferguson 2012). In the inver-
sion stage, inaccuracies due to physical approximations, 
truncations, or limitation of grid discretization could also 
be referred to as modeling noise. Among many different 
types of noise, this paper pays attention to the so-called 
geologic noise and corresponding (geologic) signal.

In this context, we first need a clear definition of ‘signal’ 
and ‘noise’. Bahr (1991) tried to classify geologic noises 
in MT data into a number of types, but his definition of 
noise assumes the regional structure to be two dimen-
sional (2D). In this paper, we first propose a definition of 
both geologic signal and noise on the basis of the sam-
pling theorem, which is applicable to a general case of 3D 
heterogeneous Earth.

Signal and noise in MT and the sampling theorem
Here, we use the electromagnetic (EM) scattering theory 
(e.g., Hohmann, 1975; Chave & Smith 1994) to define sig-
nal and noise. The electric and magnetic fields, E and H, 
at an arbitrary position r in heterogeneous Earth can be 
formally expressed by integral equations as,

(4)E(r,ω) =




Ex(r,ω)
Ey(r,ω)
Ez(r,ω)



 = E0(z,ω)+
�

k

���

Vk

G
E(r, r

′

,ω, σ0)δσ (r
′

)E

�
r
′

,ω
�
dV ′,

(5)H(r,ω) =




Hx(r,ω)
Hy(r,ω)
Hz(r,ω)



 = H0(z,ω)+
�

k

���

Vk

G
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′

)E

�
r
′

,ω
�
dV ′,

where E0 and H0 are the primary EM fields for a one-
dimensional (1D) Earth σ0(z) which satisfy a condition 
of plane-wave approximation due to the incidence of an 
external EM field. GE and GH are the electric and mag-
netic Green’s tensor (e.g., Avdeev et  al. 1997) and Vk is 
the volume of each conductivity heterogeneity (anomaly) 
having conductivity contrast with respect to σ0(z) as

For simplicity, σ is assumed to be constant in each vol-
ume, Vj . The second terms of the right-hand side of Eqs. 
(4) and (5) are called the secondary (scattered) fields that 
are laterally heterogeneous.

Although Eqs. (4) and (5) hold for arbitrary ‘back-
ground’ 1D profile σ0(z) , we take a regional mean 1D pro-
file (Rung-Arunwan et al. 2017) that minimizes the lateral 
variance of δσ defined by Eq. (6). For a given MT obser-
vation array, it is derived by an area average of the electri-
cal conductivity at each depth slice either in a linear or in 
a logarithmic scaling, i.e.,

or

where �S denotes the area of the observation array. The 
averaged conductivity profile given either by Eq.  (7) or 
by Eq.  (8) is called the regional arithmetic or geometric 
mean 1D profile, respectively, which approximates σ0.

Let us consider a realistic observation where observed 
EM fields contain noise. In this case, horizontal compo-
nents of the electric and magnetic fields measured at a 

location rh =

(
x
y

)
 at the Earth surface ( z = 0 ), denoted 

as Eobs
h  and Hobs

h  , can be formally written as,

and

(6)δσ (r) = σ(r)− σ0(z).

(7)σA(z) =
1

�S

∫∫

�S
σ
(
x, y, z

)
dxdy,

(8)logσG(z) =
1

�S

∫∫

�S
logσ

(
x, y, z

)
dxdy,

(9)E
obs
h (rh,ω) = E

h(rh,ω)+ em(rh,ω)
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The first terms of right-hand side of Eqs. (9) and (10) 
are composed of horizontal components of EM fields 
given either by Eq.  (4) or by Eq.  (5). The second terms 
are those originated from a different (often very local-
ized) source and, therefore, can be expressed neither by 
Eq.  (4) nor by Eq.  (5), which we call the measurement 
noise.

Next, we consider an MT array observation in which 
the impedance is estimated at each of discrete sampling 
points (observation sites). Here we assume a square 
array for simplicity with the length of one side L which 
we call the array size, and the number of sites on one 
side N  (Fig. 1). Then, the site spacing is given by

(10)H
obs
h (rh,ω) = Hh(rh,ω)+ hm(rh,ω).

(11)�L =
L

N
,

which allows us to define the Nyquist wavenumber as

It is well known that the resolution of wavenumber 
is given by 1/L . In this manner, we can directly apply 
the Nyquist–Shannon sampling theorem to the MT 
measurement.

The impedance, Zobs , at j th observation site rj =
(
xj
yj

)
 

located at the Earth surface ( zj = 0 ) relates the measured 
EM fields in Eqs. (9) and (10) as,

Here, δ represents contributions from measurement 
noises that do not follow the linear relation. Because 
measurement noises are involved in measured EM fields, 
the MT impedance has to be estimated statistically. 

(12)kN =
1

2�L
=

N

2L
.

(13)E
obs
h

(
rj ,ω

)
= Zobs

(
rj ,ω

)
H

obs
h

(
rj ,ω

)
+ δ

(
rj ,ω

)
.

Fig. 1 Configuration of a synthetic MT observation array, consisting of N × N  square cells in each of which an MT observation site (black cross) 
is located. The cell size is �L×�L and the length of one side of the array is given by L(= N ×�L) , which is called the array size
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We assume the effect of measurement noise in the 
impedance can be eliminated by a modern approach of 
statistical estimation (e.g., Gamble et al. 1979; Chave and 
Thomson 2004) and can be involved in the estimation 
error for impedance elements. Thus, Zobs can be regarded 
as an approximation of the impedance, Z , that relates 
horizontal EM fields without the effect of measurement 
noise as,

In this paper, Z
(
rj ,ω

)
 is called the sampled impedance 

at rj.
On the basis of the Nyquist–Shannon sampling 

theorem, we can separate the scattered fields in Eqs. (4) 
and (5) into two parts: one whose spatial variations are 
resolvable by the given observation array and the other 
unresolvable. Here we call these resolvable EM field 
as MT signals. Significant effects from heterogeneities 
near the Earth surface with wavenumbers higher than 
the Nyquist and, therefore, not resolvable by the given 
observation array are defined as MT geologic noise, 
which are also called distortion. Ignoring measurement 
noise, the horizontal EM fields Eh and Hh sampled at a 
site rj = (xj , yj) in the observation array can be formally 
written as,

and

 where E0
h are H0

h are vectors consisting of two horizontal 
components of the primary fields in Eqs. (4) and (5) at the 
surface ( z = 0 ), eS and hS denote signals of the scattered 
horizontal electric and magnetic fields, and eN and hN 
denote their noises, respectively.

In the MT method, the EM fields without effects of dis-
tortion (geologic noise) are often called the regional (also 
undistorted) EM fields, which consists of the primary 
field and signal of the secondary fields, i.e.,

and

where the superscript R in the left-hand side denote the 
regional fields. Then, we can define the regional (undis-
torted) impedance, ZR , as,

(14)Eh

(
rj ,ω

)
= Z

(
rj ,ω

)
Hh

(
rj ,ω

)
.

(15)Eh

(
rj ,ω

)
= E

0
h(ω)+ eS

(
rj ,ω

)
+ eN

(
rj ,ω

)

(16)Hh

(
rj ,ω

)
= H

0
h(ω)+ hS

(
rj ,ω

)
+ hN

(
rj ,ω

)

(17)E
R
h

(
rj ,ω

)
= E

0
h(ω)+ eS

(
rj ,ω

)

(18)H
R
h

(
rj ,ω

)
= H

0
h(ω)+ hS

(
rj ,ω

)
,

(19)E
R
h

(
rj ,ω

)
= ZR

(
rj ,ω

)
H

R
h

(
rj ,ω

)
.

Revealing the electrical conductivity structure respon-
sible for ZR is the main concern of the MT method, 
which obviously needs to remove the effects of geologic 
noises eN and hN contaminated in the observed EM fields 
(Eqs. 15 and 16).

MT impedance elements in the spatial 
wavenumber domain
In this section, we examine features of EM fields and the 
MT impedance in the spatial wavenumber domain. The 
integral Eqs. (4) and (5) can be transformed to the spatial 
wavenumber domain at the Earth’s surface (z = 0) as,

where ̂ denotes the spatial Fourier transform and 
kxandky are spatial wavenumbers in x- and y-directions, 
respectively. δk Ê and δkĤ denote the Fourier transform 
of the secondary electric and magnetic fields (the second 
terms of Eqs. 4 and 5) due to k-th conductivity heteroge-
neity. For example, Êx

(
kx, ky,ω

)
 can be written as,

By an analogy from a time-series analysis, we call the 
term with both wavenumbers equal to zero as the DC 
component and the rests as the AC components. These 
two equations indicate that the DC component provides 
the primary field and the AC components correspond 
to the secondary fields. Although it is possible to obtain 
the MT impedance in the spatial wavenumber domain 
from Eqs. (20) and (21) at the surface, it is not practical 
because all measurements have to be simultaneously car-
ried out.

Therefore, we introduce the Fourier transform of 
the MT impedance to relate spatial distribution of the 
observed MT impedances to their spectra in the spatial 
wavenumber domain and to examine sampling effects 
(signal–noise relations) of the MT impedance. If all four 

(20)
Ê
(
kx, ky,ω

)
=




Êx

(
kx, ky,ω

)

Êy
(
kx, ky,ω

)

Êz
(
kx, ky,ω

)



 = Ê0(0, 0,ω)

+

∑

k

δk Ê
(
kx, ky,ω

)
,

(21)

Ĥ
(
kx, ky,ω

)
=




Ĥx

(
kx, ky,ω

)

Ĥy
(
kx, ky,ω

)

Ĥz
(
kx, ky,ω

)





= Ĥ0(0, 0,ω)+
∑

k

δkĤ
(
kx, ky,ω

)
,

(22)
Êx

(
kx, ky,ω

)
=

∞∫

−∞

∞∫

−∞

Ex(x, y,ω)

exp[−2π i(kxx + kyy)]dxdy.
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elements of the MT impedance at a certain frequency are 
known as a continuous function of position on the Earth’s 
surface in a sufficiently large area, we can obtain the spa-
tial Fourier transform of each element as,

where Zij is a (i, j)′ th element of the MT impedance.
If MT measurements are conducted at discrete sites 

distributed in a square array as shown in Fig. 1, we will 
have the discrete Fourier transform instead of Eq. (23) as,

where lx and ly are integer between −N/2 and N/2 . The 
wavenumbers in x- and y-directions are given by lx/L and 
ly/L , respectively, both of which have discrete values 
between −kN and kN (Eq. 12) with an increment of wave 
number resolution, 1/L . In the following sections, we call 
the dimensionless wave numbers lx and ly as the DLWNs. 
Ẑij is the complex Fourier transform of Zij , and we 
examine features of signals and noises based on 
wavenumber dependence of the amplitude spectrum, ∣∣∣Ẑij

(
lx
L ,

ly
L ,ω

)∣∣∣.

Synthetic MT measurements in the spatial 
wavenumber domain assuming a checkerboard 
anomaly
In this section, we carry out numerical calculations 
for several synthetic models to examine features of the 
resulting MT impedances in the spatial wavenumber 
domain. The model space occupies 16  km × 16  km lat-
erally and 300  km vertically, which was divided into 
64×64×40 cubic cells. This model corresponds to the 
case of L = 16 km and N = 64 (see Fig. 1). EM induction 
equation was solved using a 3D forward code of WSIN-
V3DMT (Siripunvaraporn, et  al. 2005; Siripunvaraporn 
& Egbert 2009) at frequencies f = 100, 10, 1, 0.1, and 
0.01  Hz, where f = ω/2π . Forward solutions provide 
us all components of electric and magnetic fields in 
response to two independent source fields and, therefore, 
4 elements of the MT impedances at all grid points on 
the surface, as a function of frequency. Using these syn-
thetic data at all grid points, one can calculate the spa-
tial Fourier transform of the MT impedance from DC 

(23)
Ẑij

(
kx, ky,ω

)
=

∞∫

−∞

∞∫

−∞

Zij(x, y,ω)

exp[−2π i(kxx + kyy)]dxdy,

(24)
Ẑij

(
lx
L
,
ly
L
,ω

)
=

1
N 2

N−1∑

nx=0

N−1∑

ny=0
Zij(

nxL
N

,
nyL
N

,ω)

exp
[
−2π i(

nxlx
N

+
nyly
N

)

]
,

( lx = ly = 0 ) to the Nyquist DLWN ( lx = ly = 32 ), which 
we call the full spectrum hereafter.

We examine features of synthetic MT data based on the 
spatial Fourier transform using checkerboard anomaly as 
a typical and simple example of 3D laterally heterogene-
ous Earth model which produces quasi-sinusoidal spa-
tial variation of the impedance. We consider following 
3 cases, in each of which the top of a checkboard with 
thickness of 0.1, 1.5, or 6.0 km is assumed at a depth of 
0 (at the surface), 2 or 8 km, respectively (Fig. 2). Differ-
ent checkerboard patterns are obtained by dividing each 
board into 2K × 2K (K = 1, 2, . . . , 16) square-shaped 
anomalies of alternating contrast of 1 order of magnitude 
in a uniform half-space of 0.01 S/m (Fig.  2). The sym-
metry of the model allows us to expect the impedance 
spectra with a fundamental mode at a spatial DLWN of 
lx = ±ly = K  and its major higher harmonics also along 
lx = ±ly . Thus, we can examine major spectral structure 
only along an axis lx = ly for lx ≥ 0 . This simplicity of 
wavenumber domain characteristics is the main reason 
for using checkerboard models in the present synthetic 
study.

Features of full wavenumber spectra of MT impedances 
due to a checkerboard anomaly
The MT impedances were calculated from synthetic 
model with a checkerboard anomaly K = 2 . Figure  3 
shows spatial distributions of the amplitude of imped-
ance elements, Zxx and Zxy , at a frequency of 0.1 Hz for 
a checkerboard anomaly embedded at a depth of 2  km 
(those of Zyx and Zyy are not shown because of the sym-
metry). Figure 4 shows spatial variation of the amplitude 
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Fig. 2 A plan view (right) of 3D checkerboard model in case of K = 2 
used in the synthetic test. Checkerboard heterogeneity composed 
of 0.033 S/m (dark gray) and 0.0033 S/m (light gray) is embedded 
in the 0.01 S/m uniform half‑space at a depth of 0, 2, or 8 km 
as shown in a side view (left) of the model. The right panel also shows 
an example of an observation array in case of N = 16 . Each sampled 
site location is denoted by a cross which is randomly located 
(Rung‑arunwan et al. 2017) within each grid cell divided by dotted 
lines
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of Zxy along a line y = 2 (km) for a checkerboard anom-
aly at each of three different depths (0, 2 or 8  km). We 
can see a sharp change of the impedance amplitude at 
the boundary of conductivity contrast when the checker-
board is exposed on the surface, but the spatial change 
becomes smaller and smoother with increasing depth. In 
the cases of the checkerboard depth of 2  km (Fig.  3), a 
clear checkerboard pattern can be seen in both elements, 
although the amplitude of Zxx is smaller than that of Zxy 
by nearly one order of magnitude or more. These imped-
ances in the space domain are transformed to the spa-
tial DLWN domain (Fig. 5). In the following, we mostly 
examine features of wavenumber spectra of the major 
element, which is denoted as Zxy(lx) by making the fre-
quency dependence implicit for simplicity.

Figure  6a shows the amplitude of full (wavenum-
ber) spectra of Zxy(lx) between zero ( lx = 0) and the 
Nyquist DLWN ( lx = N/2 ) for five different frequen-
cies, and Fig.  6b shows its lower DLWN part ( lx ≤ 10 ) 
for more detailed inspection of features. We can clearly 
see spectral peaks at the fundamental DLWN ( lx = 2) 
and its higher harmonics up to lx = 6 , but the amplitude 
tends to decrease with increasing DLWN. This tendency 
reflects the gradual change in the impedance amplitude 
around the boundary between each of checker patterns 
(Figs. 3 and 4).

In Figs. 7a and b, we compare the ratio of amplitudes 
at different DLWNs to DC amplitude ( 

∣∣Zxy(lx)
∣∣/
∣∣Zxy(0)

∣∣ ). 
This normalization by DC amplitude allows us to see the 
wavenumber dependence more clearly, by canceling the √
f  dependence of the impedance amplitude. For the fun-

damental mode ( lx = 2 ), the value tends to be smaller at 
higher frequencies. This suggests that signals from con-
ductivity anomalies attenuate more at higher frequencies 
through 2 km thick overburden with a cut-off frequency 
around 10  Hz. Figure  8a and b shows a similar plot for 
a case of the largest checker pattern ( K = 1 ) at the larg-
est depth (8  km) examined in this study. We can see a 
rapid attenuation of signal ( lx = 1 ) amplitude at higher 
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Fig. 3 Synthetic MT datasets showing spatial distributions of Zxy 
(top) and Zxx (bottom) elements of the MT impedance at a frequency 
of 0.1 Hz due to a checkerboard anomaly of K = 2 buried at a depth 
of 2 km
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frequencies. In this case, the cut-off frequency is esti-
mated to be around 0.1− 1 Hz. Considering the depend-
ence of the field penetration depth (induction scale 
length) given by Eq. (A4) in Appendix A on frequency, we 
can roughly estimate the ratio of the cut-off frequencies 
to be 1/16 , which is consistent with the estimations given 
above.

Further, we examine how full spatial wavenumber 
spectra of the MT impedances depend on the anomaly 
depth. Here, a checkerboard anomaly of K = 2 is consid-
ered again, which is embedded at different depths, 0, 2, 
or 8 km. Resulting full spectra are shown in Figs. 9a and 
b. When the anomaly is exposed on the surface, spec-
tral peaks can be clearly recognized at the fundamen-
tal DLWN ( lx = 2 ) and odd higher harmonic DLWNs 
up to the highest ( lx = 30 ) with gradually decreasing 
amplitude with increasing DLWN. All these higher har-
monics can be ascribed to the sharp change in the MT 
impedance at the boundary of conductivity contrast in 
the space domain (Fig. 4). Peaks of even higher harmon-
ics are also recognizable up to lx = 16 or so, which are 
supposed to reflect the asymmetry of impedance change 
due to a contrast in x- and y-directions (see Fig. 3). When 

the checkerboard is embedded at 2 km depth, the funda-
mental mode amplitude is similar to that of the previous 
case but higher harmonics can be traced only up to lx = 6 
with much lower amplitude. When the checkerboard is 
buried as deep as 8 km, we can see only a peak at the fun-
damental DLWN with amplitude lower than the previous 
cases by more than 2 orders of magnitude. This indicates 
that such a checkerboard anomaly buried at 8 km depth 
is hardly resolvable unless the noise level is extremely 
low.

Figures  10a and b show full wavenumber spectra at a 
frequency of 0.1 Hz from 4 different checkerboard anom-
alies ( K = 1, 2, 4, and 8 ) embedded at a depth of 2  km. 
A peak at the fundamental DLWN can be recognized in 
each spectrum and the peak amplitude decreases with 
increasing K  (smaller checker patterns). Peaks can be 
traced up to 2 or 3 higher harmonics for K = 1 and 2 , but 
not for other two cases. These features simply imply that 
anomalies with the larger size (the larger induction num-
ber) are better resolved.

Features of sampled wavenumber spectra of MT 
impedances due to a checkerboard anomaly
In the previous section, we examined major features of 
full wavenumber spectra, which is obtained from MT 
data sampled at every grid point. However, such a dense 
observation array in which each site locates exactly at 
each grid point is not available in actual practice of MT 
observations. Then, more realistic site distribution is 
considered for the synthetic sampled dataset, which con-
sists of N × N  sites distributed randomly (Rung-Arun-
wan et al. 2017) as shown in Fig. 2. From ‘sampled’ MT 
measurements, we also calculate the discrete Fourier 
transform between DLWNs 0 ( lx = 0) and the Nyquist 
(lx = N/2 ) which we call the sampled spectrum hereafter.

First, we use a checkerboard K = 2 embedded at a 
depth of 2 km. Figures 11a and b show sampled spectra 
with different sampling intervals ( N = 32, 16, 8 and 4 ) 
together with full spectra (see Figs. 6a and b) at 0.1 Hz. 
The peak amplitudes at the fundamental DLWN are 
obtained rather accurately (close to that of the full spec-
trum), but it is biased upward a little for the smallest 
sampling number ( N = 4). At other DLWNs, spectral 
amplitudes are mostly estimated to be higher than the 
full spectrum amplitude. In other words, sampled spectra 
tend to more white for larger sampling intervals, which 
can be regarded as a typical feature of sampling effect. 
This feature explains the difficulty of imaging sharp 
structural boundaries of deep structures in MT inversion 
(Zhang et al. 2012).

Next, we sample the MT impedance for the same 
checkerboard ( K = 2) but exposed on the ground sur-
face. As shown in Figs. 7a and b., the full spectra of the 
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calculated impedance with a sharp change at the exposed 
boundary consists of components from the lowest to 
highest DLWNs. Therefore, a strong aliasing effect from 
higher DLWN components appears in sampled spectra 
as shown in Figs.  12a and b. Estimated amplitude val-
ues deviate further from that of the full spectrum for 
smaller sampling numbers ( N  ). In particular, even the 
peak amplitude at the fundamental DLWN is estimated 
inaccurately. Inaccurate estimation of the peak ampli-
tude eventually results in a false imaging of the under-
ground structure. This example shows MT distortion 
can be caused by such a structure. Although this is not a 
typical example of MT distortion, we can learn from this 
result that careful treatment is required when there is an 
exposed structural boundary in the study area.

MT distortion is typically caused by anomalies which 
is smaller than the site spacing. Figures 13a and b show 
full and sampled ( N = 8 ) spectra of the MT impedances 
at 0.1  Hz from small checkerboard anomalies ( K = 8 
and 16 ) exposed on the surface. In both cases of sampled 
spectra, the Nyquist DLWN ( lx = N/2 ) is smaller than 
the fundamental DLWNs ( lx = K  ) indicated by arrows. 
As a result, the noise level of sampled spectra becomes 
higher than that of full spectra by 2 orders of magnitude. 
This is another simple example of aliasing effect (MT 
distortion).

Synthetic experiment of sampling effects of MT data 
with galvanic distortion
We further examine the sampling effects of distorted 
MT data. Here, we consider the case of purely galvanic 
distortion (see Appendix A). We use a simple paramet-
ric model of galvanic distortion (Rung-Arunwan et  al. 
2017), in which values of 4 independent parameters to 
describe the distortion operator C in Eq. (36) are given 
by random numbers with a normal distribution. Inten-
sity of galvanic distortion is controlled by the standard 
deviation ( sd ) of the assumed normal distribution. We 
tried three different levels of sd = 0.02, 0.1, and 0.5 , 
which correspond to negligible, light and heavy dis-
tortions (Rung-Arunwan et  al. 2017), respectively. The 
same sets of the sampled MT impedances as those in 
the previous sections are used as undistorted MT data 
ZR in Eq. (36) to generate a set of the distorted MT 
impedances CZR.

Figures  14a and b compare features of full spectrum 
and those of sampled spectra obtained from the undis-
torted and distorted impedances at 0.1  Hz, using a 
checkerboard anomaly ( K = 2 ) embedded at a depth 
of 2 km. We can recognize spectral peaks at the funda-
mental DLWN in full and sampled spectra in cases with-
out or with negligible (sd = 0.02) distortion. The spectral 
peak is masked by ‘nearly white noise’ in cases of heavier 
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distortion, and the ‘noise level’ increases with increasing 
sd of galvanic distortion parameters. From this example, 
we recognize that ‘MT geologic noise’ is an appropriate 
terminology for galvanic distortion.

Next, we examine effects of sampling interval, using 
distorted MT data ( sd = 0.1 ) from the same checker-
board anomaly ( K = 2, d = 2 km). We tested four cases 
of sampling number N = 4, 8, 16, and 32 , and result-
ing wavenumber spectra are shown in Figs.  15a and b 
together with the full spectrum for comparison. For the 
case of N = 32 , we can recognize a peak at the funda-
mental DLWN with amplitude similar to the full spec-
trum. However, the peak is totally masked by noise for 
the cases of smaller values of N .

Spatial DC components
The primary MT impedance Z0(ω) relates the horizontal 
components of the primary EM fields (Eqs. 4 and 5) as,

From Eqs. (20) and (21), we obtain another impedance 
relation for the primary fields in the spatial wavenumber 
domain as,

(25)E0(ω) = Z0(ω)H0(ω).

(26)Ê0(0,ω) = Ẑ0(0,ω)Ĥ0(0,ω).

The regional mean 1D profile σ0(z) can be determined 
by inverting Ẑ0(0,ω) . Again, it is not practical to estimate 
Ẑ0(0,ω) from Ê0(0,ω) and Ĥ0(0,ω) , and, therefore, we 
use the DC component of the Fourier transform of the 
MT impedance as a substitution for Ẑ0(0,ω) in Eq. (26).

Here, we pay attention to the amplitude of DC com-
ponents of the MT impedances at a frequency of 0.1 Hz 
obtained in previous sections. Interestingly, if imped-
ances are not affected by galvanic distortion, the DC 
amplitudes of sampled spectra are nearly the same as 
that of the full spectra (see Fig.  6a), irrespective of the 
anomaly depth (Fig.  9a), the anomaly size (Fig.  10a), or 
the site spacing (Figs. 11b and 12b). We can estimate sim-
ilar amplitude for a case of weak or negligible distortion 
(Figs. 14b and 15b) as well, but the estimated DC ampli-
tude is significantly biased upward if the impedance is 
heavily distorted (Figs. 14a and b).

Figures 16 a and b show the frequency dependence of 
sampled ( N = 8 ) amplitude spectra of undistorted (UD) 
impedance Zxy at a spatial DLWN lx = 0 and distorted 
( sd = 0.02, 0.1, and 0.5 ) impedances Zxy at lx = 2 , for a 
checkerboard anomaly ( K = 2 ) embedded at a depth of 
2 km. Obviously, the DC amplitudes are accurately esti-
mated even for the case of severe distortion. The AC 
amplitudes, which mean the peak amplitudes at lx = 2 , 
are also accurate if distortion is not severe ( sd = 0.02 and 
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0.1 ). However, significant discrepancy appears at 100 Hz 
between the AC amplitudes of the undistorted and dis-
torted impedances (undistorted amplitude is much 
smaller than distorted ones). This feature suggests that 
the MT signal from 2  km deep anomaly is too weak to 
be detected at this frequency (or higher) because of the 
strong attenuation already shown in Fig. 7.

Overall, we have seen that estimates of the DC ampli-
tude are more stable and accurate than AC amplitude 
estimates. When distortion is severe, DC amplitude esti-
mates are slightly biased which may affect the reliability 
of the regional mean 1D profile. Rung-Arunwan et  al., 
(2016; 2017) pointed out that the rotational invariant MT 
impedance defined by ssq (Szarka and Menvielle 1997) of 
impedance elements,

will give less biased estimate of the DC amplitude, instead 
of either of off-diagonal elements given by Eq. (24). A typ-
ical example of use of the regional mean 1D profile in 3D 
inversion can be found in Rung-Arunwan et al. (2022).

(27)Zssq =

√
Zxx

2 + Zxy
2 + Zyx

2 + Zyy
2/2,

Discussion
It is generally difficult to handle aliased data. In case 
of a digital sampling in the time domain, this problem 
is solved by a use of an anti-aliasing filter. In the MT 
practice, there have been proposed several methods to 
correct the aliasing effects. For example, the electromag-
netic array profiling (EMAP) is known as a field proce-
dure that utilizes spatial filtering technique to avoid the 
spatial aliasing by a continuous sampling of the electric 
field (Torres-Verdin & Bostick 1992; Esparza & Gomez-
Trevino 1996), which may be analogous to an anti-alias-
ing filter. However, its application is limited (Singer 1992) 
and not suitable for 3-D exploration. The Network-MT 
method by Uyeshima et al. (2001) reduces the influence 
of geologic noises by measuring the electric field with a 
large electrode separation, but its application is practi-
cally limited to areas where a network of metallic tele-
phone lines is available (Hata et al. 2015). Bahr (1988) and 
Groom & Bailey (1989) proposed a scheme to correct the 
MT geologic noise assuming the distortion to be purely 
galvanic and the regional structure to be 2-D. Recently, 
full 3D inversion code with estimation of galvanic distor-
tion tensor has been developed (Avdeeva et al. 2015; Usui 
2015), but it is still a partial solution because site gains 
cannot be treated as a free parameter.

The spatial spectral features shown in Figs.  14 and 15 
tell us how difficult the accurate detection of MT signals 
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is when the MT impedances are heavily distorted. If 
distortion is inductive, the effect is expressed by a com-
plex-valued tensor with frequency dependence (Utada 
& Munekane 2000), so that its removal becomes far 
more difficult than the case of purely galvanic distortion 
(Singer 1992). The presence of inductive distortion also 
violates the condition for the use of the MT phase ten-
sor (Caldwell et al. 2004; Rung-Arunwan et al. 2022). In 
this context, a proper array design becomes an important 
issue as will be discussed below.

As shown in "Signal and noise in MT and the sam-
pling theorem" section, configuration of an MT array 
(the array size L and site spacing �L ) has to be designed 
by considering the necessary resolutions both in the 
space ( �L ) and spatial wavenumber ( 1/L ) domains 
according to the sampling theorem. Moreover, addi-
tional consideration is needed in designing an MT 
array because the frequency and the spatial scale of EM 
induction are related. In the following example, we try 
to determine the frequency band of an MT array meas-
urement so as to resolve all possible signals but not to 
be unnecessarily affected by geologic noises.

Let us denote the highest and lowest frequencies of 
the MT observation band as fmax and fmin , respectively. 
First, we consider the lowest frequency, fmin , whose 
measure can be derived from a relation between the 
array size L and the maximum sounding depth required 
for resolving deep targets. The array size provides the 
maximum resolvable scale of the target structure to be 
L . Such a target structure embedded at a depth similar 
to its size is resolvable, if corresponding field penetra-
tion depth (induction scale length) at fmin is sufficiently 
greater than the maximum resolvable scale. This condi-
tion can be written as,

where �0 is the inductive scale length (skin depth) for σ0 
given by Eq. (35) in Appendix A and εmin is a number suf-
ficiently smaller than unity. One can tune the value of 
fmin by choosing a value of εmin . Equation (28) indicates 
that fmin can be lower for a larger observation array and 
vice versa. It should also be noted that this equation casts 
an upper bound of fmin of the observation band, instead 
of its lower bound.

In designing an MT array configuration, on the other 
hand, we must choose the observation frequency range 
so that any distorter ( dk < 2�L ) will not cause induc-
tive distortion even at the highest frequency fmax of the 
observation band (Singer 1992). This condition can be 
simply written as,

(28)
L

�0(f = f min)
= L

√
π fminµ0σ0 ∼ εmin,

where Mk and �k are the induction number (Eq.  34 in 
Appendix A) and the induction scale length (Eq.  35 in 
Appendix A) of the corresponding distorter k , respec-
tively, and εmax is another small number. Thus, we obtain 
a measure of fmax with which one can expect a set of MT 
data free from being affected by inductive distortion as,

Distortion is significant only when the conductivity 
contrast is large, and in such a case |δσk | in Eq. (30) can 
be replaced by max[σk , σ0].

Figure  17 shows the relation between fmax and �L 
for typical values of max[σk , σ0] , assuming εmax

2 ∼ 0.1 . 
If we assume the same value for εmin

2 , the proper fre-
quency band for the array study will be bounded by 
fmax and fmin as,

Equation  (31) suggests that the frequency range 
bounded by upper bounds of fmax and fmin may not be 
very wide, if considerations above were strictly applied. 
For example, the ratio fmax/fmin rarely exceeds 1000 even 
if the observation array consists of a large number of 
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Eq. (30) for a case of εmax

2 ∼ 0.1
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sites, as the ratio σ0/max[σk , σ0] is at most 1. However, 
we should note that Eq.  (28) gives the upper bound for 
fmin rather than the lower bound, so that essentially no 
limitation is casted on fmin . However, fmin constrains the 
duration time trec of data recording which is chosen to be 
sufficiently longer than the longest period 1/ fmin ( trec ≫ 
1/ fmin).

In practice, MT observations are often made in a wide 
band (e.g., Ogawa et al. 1999), by letting the highest fre-
quency be much higher than that given by Eq.  (29), not 
by lowering the lowest frequency. This is a reasonable 
choice, because one can obtain more structural informa-
tion on depths from wide band data without extending 
the recording time. However, one should note that such 
wide-band MT impedances may be affected by inductive 
distortion at higher frequencies. A careful examination 
about the type of distortion is indispensable. If the result 
obtained by 3D MT inversion suggests that the array 
design is not suitably optimized, one can improve it by 
performing additional measurements. Such a procedure 
is possible in MT study, because a set of impedances does 
not have to be obtained by simultaneous measurements.

Next, we show how the MT sampling theorem is 
applied to the synthetic modeling given in "Synthetic 
MT measurements in the spatial wavenumber domain 
assuming a checkerboard anomaly" section  (L = 16 
km,N = 64, σ0 = 0.01S/m , |δσk | ∼ 0.01 ). The array was 
designed to be applied to a local MT study. The vertical 
scale of the model space was chosen similar to the hori-
zontal scale. The number of calculation grid is set to be 
sufficiently larger than practically possible number of 
sites, while it is set not too large to avoid too heavy com-
putational burden for each model calculation. This model 
setup allows us to examine features of MT signals from 
a checkerboard anomaly of K = 1 ∼ 16 . Synthetic calcu-
lation is made for discrete frequencies between fH and 
fL . The lowest frequency fL = 0.01 Hz was chosen so 
that the field penetration depths (induction scale length) 
to be comparable to the depth range ( 0− 8 km) of the 
target structure (checkerboard anomaly). The site spac-
ing ranges from 250 m ( N = 64 ) to 4 km ( N = 4 ), from 
which we can estimate fmax (as a limit not to be affected 
by inductive distortion) roughly to be between 10 Hz and 
4 × 10−2 Hz, respectively, with εmax

2 ∼ 0.1 . Therefore, 
the highest frequency fH of the synthetic study is higher 
than this upper limit. Under this condition, we assumed 
in "Synthetic experiment of sampling effects of MT data 
with galvanic distortion" section  that the synthetic MT 
data contain purely galvanic distortion. This means that 
we implicitly assumed the spatial scale of each distorter 
to be significantly shorter than its induction scale length 

(Eq. A3) even for the smallest value of fmax so as all dis-
tortions to be purely galvanic. In the present case, the 
typical scale of assumed distorters is supposed to be of 
order of 10 m or smaller. In this way, all distortions are 
set unresolvable with given values of the site spacing �L . 
We finally optimized the model configuration so as to 
enable us to carry out all necessary inspections. It was 
possible in this synthetic study because we assumed dis-
torters to be quite small, which we cannot control in an 
actual measurement.

In the case of seafloor MT array study to explore the 
oceanic mantle structure, a typical site spacing often 
exceeds 100  km, dealing with the highest frequency 
between  10–2 and  10–3 Hz. Considering the presence of 
significant bathymetric variations with scales smaller 
than the typical site spacing and the high conductivity of 
seawater, the condition of Eq. (30) is not satisfied in gen-
eral and, therefore, observed impedances are supposed 
to be affected by inductive distortion. In fact, Baba et al. 
(2013) showed that the effect of bathymetric variations 
is expressed by a complex-valued distortion tensor espe-
cially at higher frequencies. Then, one might suspect that 
the use of the method proposed by Baba et al. (2010) is 
inappropriate, in which a model of the regional mean 1D 
profile is estimated by inverting the array-averaged (spa-
tial DC) impedance. However in their method, imped-
ances were averaged with iteratively updating correction 
of the bathymetric effects (distortion) at each site based 
on a forward calculation with known bathymetry. If this 
iteration converges, the impedance at each site is sup-
posed to well approximate the regional (undistorted) 
impedance because distortion is accurately corrected. 
Thus, the estimation of 1D profile, as well as later estima-
tion of 3D structures (Tada et al 2014), is justified in this 
case.

Conclusion
We considered how the Nyquist–Shannon sampling 
theorem is applied to MT studies, in particular, in a gen-
eral case of the presence of distortion (geologic noise) 
over 3D heterogeneous Earth. Application of the sam-
pling theorem clarified that signal and noise in MT data 
are defined as spatial features which are resolvable and 
unresolvable, respectively, by a given observation array. 
We applied the spatial Fourier transform of the MT 
impedance in order to examine behaviors of MT signals 
and noises in the spatial wavenumber domain, by using 
a set of synthetic MT impedances calculated from a 
checkerboard anomaly model. Major conclusions are as 
follows: (1) MT signals are features of impedances resolv-
able by the observation array, and those with smaller 



Page 18 of 20Utada et al. Earth, Planets and Space           (2024) 76:70 

fundamental DLWNs (due to larger-scale anomalies) 
are better resolved. (2) MT geologic noise (distortion) is 
caused by a spatial aliasing of unresolvable (smaller than 
the site spacing of MT measurements) features of spatial 
variations of the MT impedance. (3) One can optimize 
the design of an MT array measurement in terms of array 
size, site spacing, and frequency range, by properly con-
sidering the sampling theorem and the basic physics of 
EM induction.

Appendix A. A brief review of galvanic distortion 
as a special case of MT geologic noise
An MT array measurement can be regarded as a sam-
pling of impedance estimates at discrete points (observa-
tion sites). The given observation array can resolve spatial 
variations of the impedance due to laterally heterogeneous 
EM fields in a range of wavenumber between 1/L and the 
Nyquist (Eq. 12). Because the geologic noise (distortion) is 
defined as the EM effects whose spatial scale is smaller than 
the Nyquist wavelength, it causes spatial aliasing (Torres-
Verdin and Bostick 1992; Singer 1992) if noise amplitude 
is significant. Although the distortion is caused by some 
structures, it is neither possible nor interesting to estimate 
the responsible structures by inversion of the given dataset 
(a set of the observed impedances, Z ). Conversely, signifi-
cant aliasing effects of distortion have to be properly elimi-
nated like the case of Groom and Bailey (1989) to reveal the 
structures responsible for ZR by inversion within the allow-
ance of estimation error.

In our definition, scattered EM fields whose lateral scale 
is smaller than the Nyquist wavelength ( 1/kN ) are regarded 
as MT geologic noise (distortion). Scattered electric fields 
may consist of both galvanic and inductive components, 
but scattered magnetic fields consist only of inductive (fre-
quency dependent) component (Chave and Smith 1994). 
Therefore, the electric and magnetic noises in Eqs. (15) and 
(16) can be formally written as,

where the superscripts G and I denote galvanic and 
inductive components, respectively. MT geologic noise 
due only to eGN is called galvanic distortion which is fre-
quency independent. If both eIN and hIN persist, distortion 
is inductive and is frequency dependent.

We call near-surface small heterogeneities that cause 
distortion as distorters. It is not necessarily a lateral het-
erogeneity of conductivity, but topographic variations 
(Kaufl et  al. 2018) can be a possible distorter. Utada and 
Munekane (2000) argued the significance of these noise 
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components due to distorters of different spatial scales by 
simple order analyses as follows. Letting a typical scale of 
each distorter be denoted by dk , the induction number Mk 
of each distorter can be defined as,

where �k is the induction scale length of k′ th distorter 
with conductivity contrast δσ k that can be written as,

If Mk ≪ 1 for a distorter, the contribution of inductive 
noise relative to the total electric field is roughly estimated 
as O(Mk

2) , while it is O(Mk) relative to the total magnetic 
field. In other words, EM fields around such a distorter 
approach the static (galvanic) limit where time variation 
can be ignored. This means that the right-hand side of the 
Faraday’s law diminishes

with decreasing Mk . In contrast, the galvanic term in Eq. 
(A1) little depends on Mk but rather depends on the dis-
tance from each distorter (more intense effect at shorter 
distance). If the induction number for all distorters con-
tributing to the MT array measurement is significantly 
smaller than unity, inductive noise diminishes and distor-
tion (noise) is purely galvanic. Thus, galvanic distortion 
can be regarded as a special case of MT geologic noise 
which is treated as purely galvanic at the frequency of 
interest.

Galvanic distortion can be formally expressed by a 
real-valued 2nd order tensor, denoted as C, operated to 
the regional impedance (Groom & Bailey 1989): i.e., the 
observed (distorted) impedance in Eq.  (14) estimated at 
each site is related to the regional (undistorted) imped-
ance as,

D in the right-hand side of Eq. (A5) is normalized so 
that

where � • �F denotes the Frobenius norm (Bibby et  al. 
2005). The scalar normalization parameter g is called the 
site gain and the tensor D is called geometric distortion 
(Gomez-Trevino et al. 2013; Rung-arunwan et al. 2017), 
which is also called ‘angular deviations of the induced tel-
luric field’ by Bahr (1991). In the MT method, g2 is often 
called the static shift. Other parametrizations of galvanic 
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distortion have been proposed, but they are proved 
essentially equivalent (Smith, 1994).

Note that the distortion is galvanic and, therefore, C 
is real-valued and frequency independent, if and only if 
the induction number Mk for every distorter is substan-
tially smaller than unity for the entire frequency range 
of interest. Rung-Arunwan et  al. (2016) proposed local 
or regional distortion indicator which will help judging 
whether such a condition is fulfilled for each site locally 
or in a given MT array dataset regionally. This condi-
tion is also necessary for the use of the MT phase ten-
sor (Caldwell et  al. 2004) as a distortion-free response 
function.
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