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Abstract 

Previous studies showed that there is a discrepancy between total subsidence (measured on the ground surface) 
and shallow compression (measured within several hundred meters beneath the ground surface) in Taiwan. This dif‑
ference is referred to as deep displacement in this study. The variations of deep displacement are opposite to those 
of ground surface displacement and groundwater level within the depth of several hundred meters. The mechanism 
is unknown and requires further investigation. This study adopts two kinds of geodetic observation data and sepa‑
rates land subsidence into shallow compression and deep displacement to investigate the mechanism of deep 
displacement. A tectonically active coastal area in Taiwan is selected as the study area. The assessment results show 
that the associated variations are likely due to cyclic hydraulic loading and unloading. The variations of deep dis‑
placement are opposite to those of ground surface displacement. This study proposes that these variations are due 
to hydraulic expansion and contraction. The mechanism is demonstrated using a hydromechanical model. The results 
of a cross‑correlation analysis show that hydraulic expansion and contraction occur at certain depths. The study 
results provide important information on the mechanism of deep displacement that can be used in tectonophysical 
and land subsidence investigations.
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Graphical Abstract

Introduction
Mechanisms induced by natural factors, such as natu-
ral compression, seasonal hydrological loading, tectonic 
activity, fault activity, and earthquakes, contribute to land 
subsidence. Fu et  al. (2012), Chanard et  al. (2014), and 
Hsu et  al. (2020) reported that the seasonal hydrologi-
cal loading of continental water storage and its loading 
effects are significant in southern Alaska, the Himalayas, 
and Taiwan, respectively. Hsu et  al. (2021) found that 
the hydrological cycle in western Taiwan causes elas-
tic loading and unloading effects, which may be the pri-
mary driving mechanism of the observed synchronized 
modulation of earthquakes. In the polar region or high-
elevation areas in winter, frozen water and snow create 
mass loading on the ground surface, which can lead to 
land subsidence. The recovery of frozen soils in summer 
mainly depends on their physical properties (Martens 
2016; Knappe et  al. 2019). These mechanisms mainly 
induce land subsidence at shallow depths (on the scale 
of hundreds of meters). Carminati and Di Donato (1999) 
and Teatini et  al. (2007) reported that there is a small 
natural subsidence in Italy (−  1.6 and −  1.2  mm/yr in 
Ravenna and Venice, respectively). Land subsidence can 
also be induced by tectonic activity, fault activity, creep, 
or continuous plate and fault movement (Wu 1978; Yu 
et al. 1997; Lacombe et al. 2001; Bos et al. 2003; Chiang 
et  al. 2004; Shyu et  al. 2005; Hu et  al. 2006, 2007). Par-
sons (2006) reported that earthquakes result from elastic 

stress built up in part by tectonic motion. Earthquake 
events can induce a sudden change in displacement and 
tectonic activity and fault activity can induce a long-term 
movement of a plate or geological structure, inducing 
strata displacement in both the vertical and horizon-
tal directions. These mechanisms mainly induce land 
subsidence at deep depths (on the scale of kilometers). 
However, the assessments in these studies did not always 
consider the influence of anthropogenic activity, espe-
cially in areas with dense populations, which resulted in 
large uncertainty in the assessment results.

In some delta regions, such as the Mekong Delta in 
Vietnam (Zoccarato et  al. 2018), the Po Delta in Italy 
(Teatini et al. 2011), and the Mississippi Delta in the USA 
(Törnqvist et al. 2008; Jankowski et al. 2017), young sedi-
ments (e.g., Holocene sediments) commonly have a high 
compression rate because of a relatively loose sedimen-
tary environment and high groundwater over-extraction. 
Liu et  al. (2020) assumed that land subsidence has two 
components: (1) a contribution from bedrock systems or 
non-compressing strata caused by tectonic subsidence 
and (2) a contribution from the compression of com-
pressible, non-bedrock aquifer systems caused by pri-
mary consolidation due to subsurface fluid withdrawal. 
Therefore, coastal areas with anthropogenic activity 
might have serious land subsidence due to shallow com-
pression induced by construction loading and/or ground-
water over-extraction (Poland 1984; Galloway et al. 1998; 
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Alley et al. 2002; Hou et al. 2005; Gambolati et al. 2006; 
Hu et al. 2006; Meckel et al. 2006; Hsu et al. 2007; Teatini 
et al. 2007; Hung et al. 2010; Galloway and Burbey 2011; 
Hsieh et al. 2011; Tung and Hu 2012; Erban et al. 2013; 
Wang et al. 2015a, 2015b; Hwang et al. 2016; Jones et al. 
2016; Minderhoud et  al. 2017; Tran et  al. 2022). The 
depth at which anthropogenic activity-induced com-
pression has influence is relatively shallow, but the con-
tribution to land subsidence is relatively large compared 
to that of tectonic activity and plate displacement. Tec-
tonophysical studies commonly use ground surface 
observation systems to assess tectonic activity and plate 
displacement (Yu et al. 1997; Bos et al. 2003; Hou et al. 
2005; Shyu et al. 2005; Hu et al. 2006, 2007; Parsons 2006; 
Ching et al. 2007, 2011; Wang and Shen 2020). Therefore, 
the influence of anthropogenic activity can have a large 
effect on the investigation of mechanisms in tectono-
physical studies.

Techniques such as leveling, the Global Positioning 
System (GPS), deep benchmarks, multi-layer compac-
tion monitoring wells (MLCWs), and interferometric 
synthetic aperture radar (InSAR) are commonly used to 
monitor land subsidence. Leveling, GPS, and InSAR are 
used to monitor total subsidence on the ground surface 
and deep benchmarks and MLCWs are used to moni-
tor compression within a certain depth range. Previ-
ous studies (Hung et  al. 2010, 2018) showed that there 
is a discrepancy between total subsidence (measured by 
leveling and GPS) and shallow compression (measured 
by MLCWs) in Taiwan. This difference is caused by dis-
placement beyond the major compression zone, which 
is referred to as deep displacement in this study. The 
mechanism of deep displacement is unknown due to a 
lack of direct observation data. Deep compression due 
to groundwater over-extraction has been proposed as 
a possible mechanism (e.g., Galloway et  al. 1998; Erban 
et al. 2013; Hung et al. 2018). However, the variations of 
deep displacement are opposite to those of groundwa-
ter level variations at shallow depths (Tran and Wang 
2020), which is inconsistent with deep compression due 
to groundwater over-extraction (Lu et al. 2020; Hsu et al. 
2021). Further investigations are thus needed.

The coastal area of Pingtung Plain in Taiwan had the 
most substantial cumulative subsidence (3.56 m), which 
was mainly due to groundwater over-extraction, in the 
period 1972–2018 (Taiwan Water Resources Agency 
(WRA) 2018). Therefore, the WRA installed several 
subsidence and groundwater monitoring systems in 
this area. Previous studies reported that approximately 
three-quarters of land subsidence in Pingtung Plain is 
caused by groundwater over-extraction and that part 
of the remaining land subsidence is caused by tec-
tonic activity (Kuo et al. 2001; Hou et al. 2005; Hu et al. 

2006, 2007). However, these studies did not provide 
observation data to quantify land subsidence due to 
anthropogenic activity and natural factors and did not 
discuss the subsidence mechanisms at shallow and deep 
depths. Therefore, Pingtung Plain is a suitable location 
for validating the mechanism of vertical displacement 
due to natural (deep depth) and anthropogenic (shal-
low depth) factors. The present study uses multiple 
geodetic techniques to quantify and investigate land 
subsidence due to deep displacement in a tectoni-
cally active region. A coupled hydromechanical model 
is used to demonstrate the phenomenon of hydraulic 
expansion and contraction, defined in this study, for 
deep displacement.

Background 
Study area
The study area is located in the coastal area of Ping-
tung Plain, Taiwan, for which there are sufficient data 
to investigate the mechanism of land subsidence 
(Fig.  1). A borehole log and a hydrogeological cross 
section between three wells, namely Dexing, Fangliao, 
and Jiadong wells, in the study area were constructed, 
as shown in Fig.  2A and B. According to the geologi-
cal characteristics of the alluvial fan, the study area 
stretches from the proximal fan (Fangliao area) to the 
distal fan (Jiadong area). The energy available for the 
sediment process is low due to the apparent terrain 
elevation from the northeast to the southwest of Lin-
bian River (Fig.  1B). The geological age has a marked 
change from 11,030 ± 60 to 29,200 ± 330 years ago; thus, 
the Holocene unconsolidated sediment is distributed 
within a depth of about 120 m (Fig. 2B). S-wave veloc-
ity and electrical resistivity data provide information on 
the lithology at Jiadong well, as shown in Fig. 2C. These 
data can be used as a reference for determining the 
depth of cemented sediment.

The tectonic processes in Pingtung Plain have two 
states (Fig.  1A), namely a dynamically extruded state in 
the east and southeast and a static state in the plain area, 
separating Pingtung Plain by the Chaochou active fault 
(Lacombe et  al. 2001). There is a tectonic escape con-
nected with a tectonic extrusion and a lateral extrusion 
that operates at the southern tip of the Taiwan collision 
belt, towards the submerged area in the Manila trench, 
and acts as a free boundary (Lacombe et  al. 2001; Hou 
et al. 2005; Hu et al. 2006, 2007; Ching et al. 2007). Qua-
ternary unconsolidated sediments form a basin and lie on 
the wedge-top depozone and associated piggyback basins 
(Chiang et al. 2004). They are caused by the weathering 
of the Taiwan orogeny and form the principal aquifer of 
Pingtung Plain.
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Fig. 1 General geological and monitoring settings. A Simplified tectonic framework in Taiwan, where tectonic information is from Yu et al. 
(1997) and Ching et al. (2007). B Distribution of land subsidence monitoring stations and groundwater level monitoring wells, where fault system 
is from Chiang (1971) and Ching et al. (2007). 
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Fig. 2 Geological information. A Borehole log, B cross section of hydrogeology, and C S‑wave velocity (Kuo et al. 2016; Chen et al. 2022) 
and electrical resistivity geophysical survey at Jiadong area with lithology from Geological Survey and Mining Management Agency (GSMMA). The 
trace of the hydrogeological profile and S‑wave station are shown in Fig. 1
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Monitoring systems and observation data
In Taiwan, four techniques are commonly used to 
observe land subsidence, namely leveling, GPS, 
MLCWs, and InSAR (Hung et al. 2010, 2021). MLCWs, 
developed in Taiwan, are used to measure the com-
pression of the aquifer system in different layers (Hung 
et al. 2010). In this study, Jiadong and Fangliao MLCWs 
are adopted due to their long monitoring period and 
proximity to GPS stations, which measure deforma-
tion within 200  m from Earth’s surface. GPS data are 
adopted due to their high sampling rate, which allows a 
displacement comparison at a given time point between 
two observation systems. Two GPS stations, named 
CLON and FALI, are selected in this study because they 
are the closest stations to the MLCWs. Furthermore, 
five monitoring wells, named Dazhuang (DZ), Wenfeng 
(WF), Daxiang (DX), Fangliao (FL), and Dexing (DeX), 
respectively, are used for groundwater level observation 
in the study area. The distribution of the observation 
systems is shown in Fig. 1B. Note that the observation 
stations are not completely collocated. It is assumed 
that for a given station, the closest station records simi-
lar behavior. In this study, the behaviors recorded at 
nearby stations are compared. The comparison of non-
collocated data is a source of uncertainty in this study.

The observation data of hydrology and land subsidence in 
the study area from 2007 to 2016 are shown in Fig. 3. The 
variations of land subsidence, groundwater level, and rain-
fall quantity show similar patterns, which are induced by 
seasonal hydrological variations. The dry season is from 
November to April, during which there is a steady decline 
in the groundwater level due to small recharge and large 
discharge. Both anthropogenic (e.g., pumping for drinking 
water, irrigation, and aquaculture) and natural (e.g., evapo-
transpiration, submarine groundwater discharge, and base-
flow) factors decrease the groundwater level, inducing the 
compression of porous media. The wet season is from May 
to October, during which precipitation is mainly from mon-
soon rains, plum rains, and typhoons, which largely increase 
groundwater recharge. Hence, groundwater level increases, 
leading to the dilation of porous media. Figure 4 shows the 
seasonal fluctuations of groundwater level in three aqui-
fers (defined in Fig.  2B). The fluctuations are 0.82 − 32.78, 
11.79 − 33.47, and 7.44 − 22.63 m for the first, second, and 
third aquifers, respectively. A good permeable aquifer lets 
water easily recharge into and discharge from the aquifer 
and induces a large variation of groundwater level.

Methodology
Deep displacement calculation
Based on the monitoring limit of MLCWs, vertical dis-
placement was separated into a shallow component 

(within 200 m) and a deep component (beyond 200 m). 
In this study, the former is denoted as shallow com-
pression and the latter is denoted as deep displace-
ment. Note that this study does not attempt to define 
the threshold of deep displacement; it only collects 
observation data to investigate the mechanism of verti-
cal displacement beneath the major compression zone. 
Different areas may have different thresholds for the 
vertical displacement, with different responses above 
and below the threshold.

To obtain the accurate results of deep displacement, 
both the GPS and MLCW data need to be assessed care-
fully. Satellite signals (e.g., GPS) are adversely influenced by 
the atmosphere and air pressure variations. It is difficult to 
avoid numerical errors when using real-time resampling. 
The measurement period of MLCWs is about 1  month, 
whereas that of continuous GPS is 1  day. Therefore, the 
weekly average from the mid-point solution of GPS data 
is calculated to reduce numerical errors. The measure-
ment date of MLCW data is the reference point. GPS data 
collected within three days before and after the reference 
date of MLCW data are averaged (for a total of 7 GPS data 
points). The MLCW data obtained at the same time point 
are subtracted from the averaged results of GPS data to cal-
culate their difference (i.e., the deep displacement). Deep 
displacement is calculated at each time point of MLCW 
data to obtain the time series of deep displacement.

Hydromechanical model
A coupled hydromechanical model is used to demonstrate 
the phenomenon of hydraulic expansion and contraction 
proposed in this study. The commercial software COM-
SOL Multiphysics and poroelastic theory are adopted for 
the simulation. The governing equation for fluid mass con-
servation can be written as:

where ρf  is the fluid density, S is the storage model (writ-
ten as S = (1− α)(α − n)cb + cf n , where cb is the com-
pressibility of the bulk material, α is Biot’s effective stress 
coefficient, cf  is the compressibility of the fluid, and n is 
the porosity), p is the change in pore water pressure, kp is 
the permeability, µ is the fluid dynamic viscosity, εv is the 
volumetric strain, and Qf  is the sink/source term.

The governing equation for force equilibrium of solid 
mechanics and the stress–strain constitutive relationship 
with linear material properties can be written as:

(1)ρf S
dp

dt
+∇ ·

(

ρf

(

−
kp

µ
∇p

))

+ ρf α
dεv

dt
= Qf ,

(2)
{

σij − αpI = 0
σij = Cijklεkl

,
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Fig. 3 Observation data for vertical displacement and groundwater levels in A Jiadong and B Fangliao areas. The MLCW data in the period 
2013–2014 are missing. A negative (positive) value indicates the compression (expansion) of unconsolidated sediment
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Fig. 3 continued
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Fig. 4 Seasonal fluctuations of groundwater level in A first aquifer, B second aquifer, and C third aquifer. The abbreviations of monitoring wells are 
defined in Figs. 2 and 3



Page 10 of 22Tran et al. Earth, Planets and Space           (2024) 76:74 

where σij is the Cauchy stress tensor, I is the identity 
matrix, Cijkl is the elastic matrix ( Cijkl =

Eυ
(1+υ)(1−2υ)

δijδkl +
E

2(1+υ)
(δikδjl + δilδjk) , where E is Young’s modu-

lus, υ is Poisson’s ratio, and δij =
{

1, i = j
0, i �= j

 is Kronecker’s 

delta), and εkl is the Cauchy strain tensor. The strain εij 
can be expressed as:

where ∇u is the displacement gradient tensor and T 
denotes the transpose of the matrix.

To demonstrate the mechanism of hydraulic expan-
sion and contraction, a simplified hydrogeological profile 
based on the Fangliao MLCW was developed, as shown 
in Fig. 5. According to the geological setting in the Fan-
gliao area, three aquifers and three aquitards were set 
within a depth of 200  m. The bottom layer (aquitard 3) 
is considered to demonstrate deep displacement caused 
by hydraulic loading and unloading. The central column, 
with a width of 100 m, was the main area used to simu-
late hydraulic expansion and contraction. The boundary 
of the two sides of the hydrogeological profile was set to 
have no horizontal deformation and zero change in pore 

(3)εij =
1

2

(

∇u+ (∇u)T
)

,

water pressure. To mitigate the boundary effect on the 
main area, the modeling domain was extended to 2.5 km 
away from the central column. The bottom boundary 
was set as a no-flow boundary with zero (fixed) displace-
ment. The top boundary was set to have zero change in 
pore water pressure and the free-traction condition. A 
negative (positive) displacement indicates a downward 
(upward) movement or a compression (dilation) of strata. 
Six observation points in the central column (marked in 
Fig. 5) were chosen to demonstrate the simulation results.

The setting parameters and inverted results are listed in 
Table 1. Note that not all the values of these parameters 
are from experiments; some were obtained from the liter-
ature and model inversion because most of the required 
parameters are unavailable, especially the properties of 
the aquitard.

The initial condition is assumed to be the steady-state 
condition with zero change in pore water pressure and 
no displacement in the whole domain. Thus, a posi-
tive (negative) change in hydraulic head represents the 
hydraulic head being higher (lower) than the initial value. 
The sink and source due to seasonal variations are the 
driving force in the numerical model. Twelve months 
with seasonal variation, namely January to April (dry sea-
son), May to October (wet season), and November and 

Fig. 5 Model diagram and boundary settings in hydromechanical model. F1, F2, and F3 indicate aquifer 1, aquifer 2, and aquifer 3, respectively, 

and T1, T2, and T3 indicate aquitard 1, aquitard 2, and aquitard 3, respectively. u ·
⇀

n  = 0 is the no‑deformation condition and p ·
⇀

n  = 0 is the no‑flow 
condition with normal vector 

⇀

n
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December (dry season), based on the hydrological condi-
tions of the DeX groundwater observation were used to 
simulate the hydraulic expansion and contraction. In the 
dry (wet) season, the hydraulic head decreases (increases) 
due to groundwater discharge (recharge). Aquifer 1 is an 
unconfined aquifer and thus the change in hydraulic head 
is smaller than those for aquifers 2 and 3, which are con-
fined aquifers.

Results
Data analysis
The rainfall quantities are not uniformly distributed 
in southern Taiwan. Annual rainfall is approximately 
2380 mm, 95% of which is in the wet season. Groundwa-
ter level in the study area varies largely between the wet 
and dry seasons and induces an obvious variation of sur-
face displacement (Figs. 3 and 4). In the wet season, the 
annual expansion of unconsolidated sediment at a shal-
low depth is 19.1 and 11.3 mm in the Jiadong and Fan-
gliao areas, respectively, and the annual compression in 
the dry season is −  24.5 and −  16.5 mm in these areas, 
respectively. The compression over time in the Fangliao 
area showed a gradual decrease in subsidence rate after 
2013, but the subsidence rate remained stable in the Jia-
dong area. The difference between the two areas may 
be attributed to differences in hydrogeological material 
deposition in different regions of the alluvial fan and dif-
ferences in the compression stage of soil, including the 
time-delay phenomenon of clay compression. Land sub-
sidence occurs in the dry season but rebounds in the wet 
season, which is consistent with the rainfall quantities. 
The rebound of shallow strata in the wet season is less 
than the compression in the dry season, leading to a long-
term subsidence trend, which has been reported to be 

mainly due to groundwater over-extraction (Hung et  al. 
2010, 2018). The long-term shallow compression rates 
calculated from the MLCW data are − 9.7 and − 6.7 mm/
yr in the Jiadong and Fangliao areas, respectively.

Correlation analyses
The calculated correlation coefficients between observa-
tion data are listed in Table 2. Time lag was not obvious 
in the correlation calculations and is thus not shown here. 
The correlation coefficients between the MLCW data and 
groundwater levels at different wells are high. Because 
this area is subjected to serious groundwater extraction, 
the high correlation implies that the shallow compression 
is mainly due to groundwater over-extraction induced 
by anthropogenic activity. The correlation coefficients 
between groundwater levels at different depths at a given 
location are high, which indicates that the variation pat-
terns at different depths are consistent due to groundwa-
ter discharge in the dry season and rainfall recharge in 
the wet season. Fourier analysis shows that all these data 
have predominant periods of about 1 year. Therefore, the 
rainfall, shallow groundwater level, deep groundwater 
level, and MLCW observations indicate that the driving 
forces of the variations in these time series are the same. 
However, after the removal of shallow compression, the 
correlation coefficients between deep displacement and 
other observations become very small and even negative, 
which implies that the mechanism of deep displacement 
is different from that of shallow compression.

Deep displacement
Figure 6A and B shows the calculation results of deep dis-
placement in the Jiadong and Fangliao areas, respectively, 
along with shallow compression and rainfall quantities. 

Table 1 Material properties for hydromechanical model

Property type Factors Aquifer 1 Aquifer 2 Aquifer 3 Aquitard 1 Aquitard 2 Aquitard 3

Geometry Width (m) 100 100 100 100 100 100

Thickness (m) 39.3 13.5 9 27.2 40 62.3

Geological 
material prop‑
erties

Porosity 0.3 0.35 0.3 0.4 0.3 0.4

Permeability 
 (m2)

1.42 ×  10–11 1.36 ×  10–12 1.56 ×  10–13 7.09 ×  10–16 3.40 ×  10–16 7.50 ×  10–17

Young’s modu‑
lus (Pa)

1.96 ×  108 5.64 ×  108 1.96 ×  109 2.31 ×  107 2.64 ×  107 4.56 ×  107

Poisson ratio 0.25 0.25 0.3 0.4 0.45 0.4

Density (kg/
m3)

1600 1600 1600 1440 1440 1440

Biot’s coef‑
ficient

1 1 1 1 1 1

Fluid proper‑
ties

Compressibility of fluid (1/Pa) 4.44 ×  10–10

Density (kg/m3) 1000

Viscosity (Pa·s) 8.93 ×  10–4
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The contribution of deep displacement to total land sub-
sidence is 37.06% and 13.63% in the Jiadong and Fangliao 
areas, respectively (Fig.  7). The average rates of deep 
displacement are −  4.6 and 0.9  mm/yr in the Jiadong 
and Fangliao areas, respectively. Deep displacement in 
both areas shows fluctuation over time. The predomi-
nant periods are about 1 year, which might be related to 
the hydrological cycle. However, most of the correlation 
coefficients between groundwater level and deep dis-
placement are low or even negative (Table 2). The calcu-
lated correlation coefficients between deep displacement 
and rainfall (calculated as cumulative rainfall departure; 
Weber and Stewart 2004) in the Fangliao and Jiadong 
areas are both negative (− 0.47 and − 0.10, respectively) 
and exhibit no time lag. Although the correlation of shal-
low compression between the Jiadong and Fangliao areas 
is high (0.95), the trends of deep displacement in these 
two areas are totally different; their correlation coeffi-
cient is only 0.42 (Table 2).

After the removal of shallow compression, the cor-
relation coefficients between deep displacement and 
other observations become very small and even negative 
(Table 2), which implies that the mechanism of deep dis-
placement is different from that of shallow compression. 
To understand the mechanism of deep displacement, the 
threshold between shallow and deep components was set 
to various depths. For each station, three depths were set 
as the threshold to calculate shallow compression and 
deep displacement. The MLCW data for depths of 47, 
118, and 194 m in the Jiadong area and those for depths 
of 67, 121, and 191 m in the Fangliao area were selected 

based on the MLCW measurement depth and the hydro-
geological model of the aquifer system in Pingtung Plain. 
For each depth, shallow compression was measured 
based on MLCW data from the land surface to the given 
depth and deep displacement was calculated based on 
the difference between GPS values and MLCW values. 
The results of cross-correlation are listed in Table 3. The 
time lag information calculated from cross-correlation is 
also shown in the table to demonstrate that the time lag 
is not obvious. It is interesting to see that the deep dis-
placement at shallow depths has high correlations with 
hydrological observations but the quantities decrease 
with increasing depth. The results clearly show that at a 
certain depth, the correlation between deep displacement 
and hydrological observations transitions from positive 
to negative.

Discussion
The deep displacement (beyond a depth of 200 m) results 
in both areas fluctuate temporally, which might be 
related to the hydrological cycle. The mechanism of the 
variations of deep displacement could be cyclic hydrau-
lic loading (e.g., Fu et al. 2012; Chanard et al. 2014; Mar-
tens 2016; Knappe et al. 2019; Hsu et al. 2020, 2021; Tran 
2020), which induces the hydraulic expansion and con-
traction proposed in the present study (Fig.  8). Cyclic 
hydraulic loading is an additional form of seasonal load-
ing and unloading and contributes to the total mass vari-
ations at a certain depth. An increase (decrease) in pore 
water pressure in the aquifer induces an expansion (con-
traction) condition that both uplifts (sinks) the top strata 

Table 2 Correlation coefficients for various components

JD-DD: deep displacement in Jiadong area; FL-DD: deep displacement in Fangliao area; CRD: cumulative rainfall departure. The abbreviations of monitoring wells 
are defined in Figs. 2 and 3. Note that this table is separated into two parts. The first three columns and rows assess the correlation between deformation in different 
areas with hydrological data; thus, the quantities are not symmetrical between columns and rows. The fourth to fourteenth columns and rows show the correlation 
between the hydrological data; thus, the quantities are symmetrical between columns and rows

CLON GPS Jiadong MLCW JD-DD DZ1 DZ2 WF DX1 DX2 FL1 FL2 DeX1 DeX2 DeX3 CRD

FALI GPS 0.71 – – 0.69 0.71 0.58 0.64 0.64 0.73 0.73 ‑0.06 0.72 0.82 0.10

Fangliao MLCW – 0.95 – 0.84 0.91 0.58 0.84 0.84 0.92 0.92 0.17 0.90 0.95 0.35

FL‑DD – – 0.42 − 0.25 − 0.37 − 0.02 − 0.35 − 0.33 − 0.37 − 0.35 − 0.32 − 0.32 − 0.24 − 0.47

DZ1 0.74 0.84 − 0.18 1.00 0.87 0.66 0.68 0.67 0.78 0.78 0.17 0.73 0.74 0.47

DZ2 0.90 0.91 − 0.03 0.87 1.00 0.63 0.93 0.92 0.98 0.97 0.27 0.87 0.87 0.60

WF 0.48 0.63 − 0.26 0.66 0.63 1.00 0.54 0.53 0.54 0.54 0.00 0.46 0.50 0.25

DX1 0.80 0.76 0.11 0.68 0.93 0.54 1.00 1.00 0.96 0.96 0.38 0.86 0.88 0.47

DX2 0.79 0.76 0.11 0.67 0.92 0.53 1.00 1.00 0.95 0.96 0.39 0.86 0.88 0.44

FL1 0.91 0.89 0.04 0.78 0.98 0.54 0.96 0.95 1.00 1.00 0.25 0.87 0.90 0.55

FL2 0.90 0.89 0.05 0.78 0.97 0.54 0.96 0.96 1.00 1.00 0.23 0.88 0.90 0.54

DeX1 0.09 0.01 0.16 0.17 0.27 0.00 0.38 0.39 0.25 0.23 1.00 0.34 0.30 0.09

DeX2 0.71 0.72 − 0.01 0.73 0.87 0.46 0.86 0.86 0.87 0.88 0.34 1.00 0.92 0.32

DeX3 0.72 0.70 0.06 0.74 0.87 0.50 0.88 0.88 0.90 0.90 0.30 0.92 1.00 0.25

CRD 0.65 0.72 − 0.10 0.47 0.60 0.25 0.47 0.44 0.55 0.54 0.09 0.32 0.25 1.00
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Fig. 6 Comparison between observed subsidence and calculated deep displacement with rainfall in A Jiadong area and B Fangliao area
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Fig. 6 continued
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Fig. 7 Mean ratio of shallow compression and deep displacement to total subsidence in A Jiadong area and B Fangliao area
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and loads (unloads) the bottom strata. The effect of an 
increase in pore water pressure on the top strata is an 
uplift of the ground surface and that on the bottom strata 
is hydraulic loading.

The groundwater level in the wet season at a deep 
aquifer (e.g., DZ2, DeX3, or FL2) can increase pore 
water pressure at a depth of 200 m (Fig. 4C), which is 
large enough to create observable hydraulic loading on 
strata deeper than 200 m. A negative (positive) value of 
annual displacement indicates the downward (upward) 
movement of deep strata due to increasing (decreasing) 

pore water pressure. Figure  9 shows the phenomenon 
of cyclic hydraulic loading and unloading. In Fig.  9A, 
detrended deep displacement and detrended hydrau-
lic factors show an obviously negative relationship in 
the Fangliao area. In Fig.  9B, during the wet season, 
the average downward displacements are −  1.6 and 
− 14.6 mm/yr in the Jiadong and Fangliao areas, respec-
tively, and during the dry season, the average uplift 
displacements are 5.9 and 12.6  mm/yr in these areas, 
respectively. Cyclic hydraulic loading and unloading are 
obvious in the Fangliao area but not in the Jiadong area, 

Table 3 Correlation coefficients for various deep displacement depths

JD Jiadong area, FL Fangliao area, CRD cumulative rainfall departure. The values in brackets indicates the time lag in months. Positive (negative) values indicate that 
row factor is faster (slower) than column factor. The abbreviations of monitoring wells are defined in Figs. 2 and 3

Area Condition DZ1 DZ2 WF DX1 DX2 FL1 FL2 DeX1 DeX2 DeX3 CRD

JD Deep displacement
below 47 m

0.59(0) 0.70(0) 0.34(0) 0.65(0) 0.62(0) 0.73(0) 0.74(0) 0.14(0) 0.55(0) 0.60(0) 0.56(0)

Deep displacement
below 118 m

0.16(− 1) 0.20(0) 0.04(− 1) 0.27(0) 0.28(0) 0.24(0) 0.26(0) 0.28(1) 0.18(− 1) 0.23(− 1) 0.16(− 1)

Deep displacement
below 194 m

− 0.18(0) − 0.03(0) − 0.26(0) 0.11(0) 0.11(0) 0.04(0) 0.05(0) 0.16(0) − 0.01(0) 0.06(0) − 0.10(0)

FL Deep displacement
below 67 m

0.60(0) 0.53(1) 0.52(0) 0.57(1) 0.56(1) 0.56(0) 0.57(0) − 0.26(− 1) 0.57(0) 0.69(1) 0.02(0)

Deep displacement
below 121 m

0.37(1) 0.28(1) 0.43(1) 0.30(1) 0.28(1) 0.29(1) 0.30(1) − 0.20(− 1) 0.33(1) 0.45(1) − 0.28(− 1)

Deep displacement
below 191 m

− 0.25(0) − 0.37(0) − 0.02(0) − 0.35(0) − 0.33(0) − 0.37(0) − 0.35(0) − 0.32(0) − 0.32(0) − 0.24(0) − 0.47(0)

Fig. 8 Conceptual model of deep displacement induced by hydraulic loading and unloading. Downward (upward) movement of deep strata 
is related to hydraulic loading (unloading) during wet (dry) season
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which might be due to the observation stations not 
being collocated in the Jiadong area (Fig. 1B) or due to 
differences in their hydrogeological properties.

Note that the observation of vertical displacement on 
the ground surface in the wet and dry seasons shows 
uplift and decline, respectively, due to rainfall recharge 
and groundwater discharge. After the removal of shal-
low compression, the deep vertical displacement in the 
wet and dry seasons shows decline and uplift, respec-
tively. Deep displacement variations are opposite to 

surface displacement variations. The hydraulic expan-
sion and contraction can well explain the observations. 
The opposite responses indicate that the effects of natu-
ral factors (such as tectonic activity, plate displacement, 
and hydraulic loading) obtained without the removal of 
the influence of anthropogenic activity will lead to large 
uncertainty in the assessment results. The negative cor-
relation between hydrological data and deep displace-
ment shown in this study is similar to the concept of 
cyclic hydrological loading, proposed by Hsu et  al. 

Fig. 10 Simulated A change in pore water pressure in three aquifers and B strain in three aquifers and aquitard 3 (i.e., bottom layer)
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(2021), who used surface deformation (Global Navi-
gation Satellite System data) along with rainfall and 
groundwater data in Taiwan to study the hydraulic vari-
ations that trigger earthquakes. Their results indicated 
that seasonal groundwater level variations could be an 
important trigger of earthquakes. The phenomenon of 
hydraulic expansion and contraction in deep strata pro-
posed here supports their speculation.

A coupled hydromechanical model is used to dem-
onstrate the phenomenon of hydraulic expansion and 
contraction. The simulation results are shown in Fig. 10. 
The phenomenon of hydraulic expansion and contrac-
tion can be demonstrated by the simulated strain in the 
developed hydromechanical model. The simulated strain 
in aquifers 1 to 3 shows a decreasing trend (compression) 
in the dry season and an increasing trend (dilation) in the 
wet season, which is consistent with observations. How-
ever, the simulated strain in aquitard 3 shows the oppo-
site responses, that is, an increasing trend (dilation) in 
the dry season and a decreasing trend (compression) in 
the wet season. This reversed phenomenon is the cyclic 

hydraulic expansion and contraction in the aquifer sys-
tem proposed in this study. Note that this phenomenon 
only occurs when the formation has a small permeability 
(Table 1). Such conditions include, for example, the pres-
ence of an aquitard capable of forming an interface to 
absorb stress caused by variations in pore water pressure 
within an adjacent aquifer. Consequently, the occurrence 
of hydraulic expansion and contraction is contingent 
upon the strata meeting specific criteria, such as pos-
sessing a very small permeability at certain depths. The 
findings from the hydromechanical simulations corrobo-
rate observed behaviors and support the mechanism pro-
posed in this study.

The linear trend of deep displacement in Fig. 6 might be 
due to tectonic activity, as discussed in the literature (e.g., 
Kuo et  al. 2001; Hou et  al. 2005; Hu et  al. 2006, 2007). 
Figure  11 shows that the direction of tectonic escape is 
toward the southwest, with an azimuth that ranges from 
243.9° to 245.7° (Tran and Wang 2020). In this study, an 
average horizontal displacement rate of 26.6 mm/yr was 
calculated using GPS data; this value is consistent with 

Fig. 11 Three‑dimensional diagram of tectonic activity (after Chiang 1971; Lacombe et al. 2001; Hou et al. 2005; Hu et al. 2006, 2007; Ching et al. 
2007). The observation stations correspond to those in Fig. 1
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the findings of Hu et  al. (2006). Furthermore, Hu et  al. 
(2007) found that a tectonic escape connected with a 
tectonic extrusion and a lateral extrusion operates at the 
southern tip of the Taiwan collision belt. It is thus impor-
tant to recognize that the horizontal displacement of a 
stratum corresponds to its vertical displacement since the 
extension and contraction of the stratum can also change 
its thickness or elevation (Hu et al. 2007). However, since 
there is no further evidence to support the mechanism of 
the linear trend of deep displacement, it is not discussed 
in this study.

Conclusions
GPS, MLCW, rainfall, and groundwater level data were 
collected to investigate the mechanism of deep vertical 
displacement in Pingtung Plain, Taiwan, which is located 
in a tectonically active coastal area. The collected data all 
showed obvious seasonal variations with a predominant 
period of about 1  year. The variations of deep displace-
ment also have a 1-year period but are opposite to those 
of hydrological data, indicating that these variations are 
likely due to cyclic hydraulic loading and unloading. The 
large variations of groundwater level at a depth of 200 m 
create cyclic hydraulic loading and unloading for strata 
at depths deeper than 200  m, which explains the varia-
tions of deep displacement. The correlation coefficients 
between hydrological data and deep displacement at vari-
ous depths show a decrease with depth (without obvious 
time lag), from a high positive correlation to a negative 
correlation. The results imply that the phenomenon of 
hydraulic expansion and contraction can be observed at 
certain depths. A simulation using a coupled hydrome-
chanical model was conducted. The simulation results 
demonstrate that the phenomenon of hydraulic expan-
sion and contraction may occur when a deep formation 
has a small permeability. The numerical model results are 
consistent with the observations and the proposed mech-
anism. In the Jiadong and Fangliao areas, deep displace-
ment contributes 37.06% and 13.63% to total subsidence, 
respectively. These contributions are similar to that for 
tectonic activity estimated in the literature for the study 
area, indicating that the linear trend of deep displace-
ment might be due to tectonic activity. However, there is 
no evidence to support this mechanism; further investi-
gations are thus needed.

The variations of deep vertical displacement are oppo-
site to those of ground surface vertical displacement. The 
opposite responses indicate that the effects of natural fac-
tors on the ground surface obtained without the removal 
of the influence of anthropogenic activity will lead to 
large uncertainty in the assessment results. The study 
results provide important information on the mecha-
nism of deep vertical displacement, which support the 

suggestion, proposed in the literature, that groundwater 
level variations might trigger earthquakes. This study 
provides partial evidence for the mechanism of deep ver-
tical displacement. Further observations and investiga-
tions are required to provide more evidence.
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