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Abstract 

The westernmost Nankai Trough, southwest Japan, exhibits a rapid along-strike reduction in plate coupling 
in the proximity to the subducting Kyushu-Palau ridge. Yet how and to what extent the ridge subduction impacts 
physical properties at the megathrust have not been investigated. Here we present high-resolution seismic P-wave 
velocity models along the forearc wedge in the western Nankai Trough derived from full-waveform inversion analyses 
of seismic refraction data. The velocity models show that where the plate coupling is weak and the plate bound-
ary presumably hosts slow earthquakes, the upper plate exhibits lower seismic velocities indicating higher degree 
of fracturing over a ~ 100 km length along trough. Intriguingly, the extent of the upper-plate low-velocity features 
is significantly larger than the surficial width of the Kyushu-Palau ridge, and this low-velocity zone is underthrust 
by the slab with increased crustal thickness by 2–4 km. Seismic reflection images consistently reveal that the thicker 
slab crust has appreciable basement roughness extending ~ 60 km from the eastern margin of the Kyushu-Palau ridge 
beneath the western Shikoku basin. We suggest that such a thicker and rugged slab crust, together with the main 
body of the Kyushu-Palau ridge, can cause significant fracture zones in the overriding plate, decrease the interplate 
coupling and produce preferable conditions for shallow slow earthquakes to occur when subducted. The results may 
also provide structural constraints on the western limit of future megathrust earthquakes in the Nankai Trough.
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Introduction
Delimiting seismogenic zones at megathrust faults is a 
crucial step for assessing seismic and tsunami hazards 
that occur in subduction zones. Observational studies 
for megathrust earthquakes over the last several decades 
have documented that the rupture propagation and ter-
mination are significantly affected by along-strike varia-
tions in frictional and mechanical properties at the fault 
plane that are linked to upper-plate and lower-plate 
structural heterogeneities (Sparkes et  al. 2010; Bassett 
et  al. 2016; Arnulf et  al. 2022). Among various control-
ling factors, fault roughness or topographic reliefs on 
subducting plates, in particular, have been the focus of 
intensive discussion on complex seismic slip behaviors 
(Bassett and Watts 2015; Bangs et al. 2023). While early 
studies postulated that seamounts are apt to serve as 
strongly coupled regions when subducted by increasing 
the normal stress acting on their upper surface (Scholz 
and Small 1997), it has been increasingly suggested 
that seamounts tend to retard large earthquake slip by 
deflecting or inhibiting coseismic rupture along the plate 
interface (Kodaira et  al. 2000; Mochizuki et  al. 2008; 
Wang and Bilek 2014; Geersen et  al. 2015). In addition, 
seamounts are most likely to leave distinctive but com-
plicated patterns of deformation in the overriding plate 
during subduction that result in tectonic erosion (Bangs 
et al. 2006), forearc uplift (Sak et al. 2009), trough embay-
ment (von Huene 2008), conjugate fault development 
(Davidson et al. 2020) and formation of permeable frac-
ture networks (Arai et al. 2023).

The Nankai Trough, SW Japan, is one of the best 
locations to study structural controls on seismogenic 
processes associated with seamount subduction. The 
Nankai subduction zone has historically hosted recurring 

megathrust earthquakes with a magnitude of greater than 
8 (Ando 1975), and consequently holds high probability 
to cause equivalent earthquakes in future (Fukushima 
et  al. 2023). The westernmost part of the seismogenic 
zones lies in a particularly complex tectonic setting 
(Fig.  1). The structure of the incoming Philippine Sea 
plate varies from oceanic lithosphere constituting the 
Shikoku basin in the east to the remnant arc named the 
Kyushu-Palau ridge in the west (Nishizawa et  al. 2016). 
Coinciding with this structural difference is a major 
along-trough variation in the strength of interplate lock-
ing. While the area off Cape Ashizuri has high slip deficit 
rates (Yokota et al. 2016) and is thought to have been a 
primary seismic and tsunami source area during the meg-
athrust earthquake in 1946 (Baba and Cummins 2005), 
the plate coupling rapidly becomes weak to the west as it 
approaches the Hyuga-nada area where the Kyushu-Palau 
ridge is subducting (Wallace et  al. 2009; Yokota et  al. 
2016; Fig. 1). The spatial change in plate coupling is also 
exemplified by the distribution of low-frequency tremors 
(Yamashita et al. 2021), very low-frequency earthquakes 
(Baba et al. 2020) and potential shallow slow slip events 
(Yokota and Ishikawa 2020; Okada et al. 2022) (Fig. 1).

A seismic investigation in the Hyuga-nada area by 
Arai et  al. (2023) discovered upper-plate low-velocity 
columns that extend almost vertically from near sea-
floor to the plate boundary at 10–13 km depths. The 
results demonstrated that the kilometer-wide frac-
ture zones in the upper plate, interpreted as potential 
fluid conduits, are linked to the source areas of low-
frequency tremor distributed above and around the 
subducting Kyushu-Palau ridge (Arai et al. 2023). How-
ever, the eastern limit of the upper-plate low-velocity 
zones was not defined in the study, and its relation 
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to the along-trough change in plate coupling is yet to 
be examined. In addition, causes of the extensive dis-
tribution of the upper-plate low-velocity zones that 
are significantly larger than the apparent width of the 
Kyushu-Palau ridge remain unexplained. In the present 
study, we extend the seismic profile of Arai et al. (2023) 
further east to cover the aforementioned transitional 
area of the plate coupling condition in the westernmost 
Nankai trough (Fig. 1). We analyze seismic refraction/

wide-angle reflection data by using a full-waveform 
inversion (FWI) technique to provide high-resolution 
seismic velocity constraints on both the forearc wedge 
and the subducting slab. We also examine the existing 
seismic reflection data focused on the along-trough 
variation of the incoming plate. The results suggest 
structural controls on the spatial change in interplate 
slip mode and thus provide important implications on 
the western limit of future megathrust earthquakes in 
the Nankai Trough.

Fig. 1 Bathymetric map showing tectonic setting and survey layouts. Colored circles and a thin black line indicate the OBS locations 
of the HYU01-03 profile and air-gun shots used in this study. Waveform records of OBSs marked by orange circles are shown in Supporting 
Information. Solid black lines are the locations of MCS reflection profiles (Fig. 3). White dots denote epicenters of low-frequency tremors (Yamashita 
et al. 2015, 2021). Red dashed contours with a shade indicate the slip deficit rate at the plate interface (in centimeter per year) (Yokota et al. 
2016). Thick black curves outline the source areas of historical interplate earthquakes (Yagi et al. 1998, 2001). The white arrow is the plate motion 
of the Philippine Sea plate relative to the overriding plate (Miyazaki and Heki 2001)
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Seismic data
We performed a series of active-source seismic experi-
ments in the forearc region of the westernmost Nankai 
Trough. We collected seismic refraction/wide-angle 
reflection data on the along-strike line across the Hyuga-
nada area (HYU01 profile) in 2020, and carried out 
another seismic survey on the eastern extension of the 
HYU01 profile with the same specification (HYU03 pro-
file) in 2021. On the HYU01-03 line, a total of 101 ocean 
bottom seismographs (OBSs) were deployed with 2  km 
spacing (1  km spacing on the ~ 10-km overlapped sec-
tion) and recorded the seismic signals generated from 
tuned air-gun arrays with a volume of 10,600 cubic 
inches (Figs. 1 and S1–S8). The shot spacing was 200 m. 
While the data from the western profile (HYU01 profile) 
were processed in our previous study (Arai et  al. 2023), 
we incorporate the eastern HYU03 data into the present 
analyses to create seismic velocity models of a ~ 200-km-
long transect. The dense coverage from this long seismic 
profile is well suited to examine the regional architecture 
associated with ridge subduction.

The analyses for the OBS data followed the procedure 
of Arai et  al. (2023). After locating OBSs using direct 
water arrivals, we first applied traveltime tomographic 
inversion to manually picked first arrivals to constrain 
P-wave velocity (Vp) with large-scale heterogeneities 
(Figure S9). For this analysis, we used 57,535 first arrivals. 
The root-mean-squared traveltime misfit was reduced 
from 1.07 to 0.06 s after 13 iterations. The final inversion 
result was resampled to 40 m grid spacings and then used 
as the initial Vp model of the subsequent FWI analysis. In 
the FWI analysis, the bottom of the Vp model was set at 
25 km depth, 2 km deeper than that in the previous study 
of Arai et al. (2023), to sufficiently capture the structural 
characteristics of the slab. We performed two-dimen-
sional, frequency-domain, acoustic FWI using TOY-
2DAC, a FWI code developed by SEISCOPE (Métivier 
and Brossier 2016; Górszczyk et  al. 2017). The initial 
model of density structure was prepared by converting 
the Vp values based on the first-arrival tomography using 
the Gardner’s relationship (Gardner et al. 1974). We also 
employed Vp-dependent Q values to take the effect of 
seismic attenuation into account. To improve stability 
and convergence of the inversion, we started the calcula-
tion from a low-frequency range of 2.5–3.5 Hz and pro-
gressively included higher frequency components up to 
7.5  Hz. Additional information regarding the OBS data 
processing is presented in Arai et al. (2023) and Support-
ing Information file (Figures S1–S10 and Table S1).

Seismic reflection data were also acquired on the 
HYU01-03 profile during the seismic experiments in 
2020 and 2021 (Fig. 1). We used the same air-gun system 
as the OBS refraction surveys and fired every 50  m. A 

5.6-km-long streamer cable with 444 channels was towed 
at 25 m depth below the sea level. The processing of these 
reflection data was conducted by DownUnder GeoSolu-
tions (DUG). Same as the preceding study (Arai et  al. 
2023), a sequence of processing including tidal static 
correction, swell-noise attenuation, deghosting, source 
signature deconvolution, surface-related multiples sup-
pression and radon transform filtering was applied to the 
data to reduce noise and multiple reflections. Then veloc-
ity analyses and pre-stack Kirchhoff depth migration 
were performed to produce the final depth image. The 
Vp information derived from the OBS refraction data was 
referred to guide the velocity analysis.

We also examined legacy seismic reflection data on 
four additional lines that are close to and near paral-
lel to the HYU01–03 profile (Fig. 1). The reflection data 
were acquired on each line using different parameters, 
which are summarized in the Supporting Information file 
(Table S2). The KR9810-4 profile, north of the HYU01-03 
line, was analyzed through the same flow as the HYU01-
03 reflection data to produce the final depth migrated 
image. The KR0114-08 profile runs in the proximity of 
the deformation front along the Nankai Trough (Park 
et al. 2009), and the remaining two lines, NT0501H and 
SB01, are located seaward of the trough. We use post-
stack time migrated sections of these reflection data to 
characterize the basement roughness of the incoming 
Philippine Sea plate.

Results
Vp structure
Our FWI analysis for the OBS refraction data con-
strains extensive velocity structure in the western Nankai 
Trough. One of the most important observations is the 
variability in upper-plate crustal velocity (Fig. 2). The final 
Vp image reveals that above the plate interface that can 
be inferred from the reflection image (Fig. 2e), the upper 
plate exhibits significantly low Vp (below 4.0 km/s) from 
the seafloor to the depth of the plate interface regionally 
in the southwestern portion of the profile (10–115  km 
distance in Fig. 2b) and locally over a narrow 15 km wide 
zone in the northeast (145–160 km distance). The upper-
plate heterogeneities are illuminated more clearly in the 
plot of the Vp perturbation from the one-dimensional 
depth average (depth below seafloor), which shows that 
several low-velocity zones develop almost vertically from 
shallow to over 10  km depth (Fig.  2c). Adjacent to the 
primary low-velocity portions is a high-velocity body 
whose velocities are over 1.0 km/s higher than the low-
velocity parts at the same depth (115–145 km distance in 
Fig.  2b). The easternmost part of the model also exhib-
its higher velocities and likely includes laterally extend-
ing low-velocity layers (160–191 km distance in Fig. 2b). 
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The background lithology of the low- and high-velocity 
bodies remains unknown, but the variation in seismic 
velocity may reflect the differences in rock composition, 
degree of fracturing and fluid amount.

The structure of the subducting Philippine Sea plate 
shows significant along-trough variations in a similar 
manner to the upper plate. The crustal thickness esti-
mated by the velocity structure (approximated by the 
thickness of Vp with 5.2–7.5  km/s) is 7–10  km in the 
southwestern part of the profile (30–110 km distance in 
Fig. 2b and d), which is 2–4 km greater than the oceanic 
crust with a typical thickness of 5–6  km further north-
east (110–170 km distance in Fig. 2d). In addition, Vp at 
the uppermost slab mantle also varies laterally. While the 
maximum Vp values below the thicker crust of the slab 
in the southwest is around 8.0  km/s, the mantle veloc-
ity beneath the thinner crust to the northeast is signifi-
cantly higher and exceeds 8.5 km/s. It is noted that these 
laterally contrasting structures in the subducting slab 
are consistent with the structural transition from low to 
high velocities in the upper plate (at 110 km distance in 
Fig. 2b and c). In other words, the region of thicker crust 
underlies the upper-plate low-velocity features over a at 
least 80  km length (30–110  km distance in Fig.  2b and 
d). Ray coverage of first-arrival refraction waves and the 
results of checkerboard resolution tests demonstrate that 
all these features are well constrained by the data (Figure 
S10).

MCS reflection images
Seismic reflection data provide detailed information 
on the geometry of structural interfaces. The reflection 
image along the HYU01–03 profile reveals reflective 
zones at 8–15 km depth that we interpret as underthrust 
sediments and/or the upper surface of the slab basement 
(Fig.  2e). The reflective zone is mostly continuous over 
the whole profile, but it shows some spatial variations. 
The most outstanding feature is a ridge-shaped structure 
with a ~ 2  km relative height in the southwestern part 
(40–60 km distance in Fig. 2e), which is interpreted as the 
subducted Kyushu-Palau ridge. Southwest of the ridge, 
reflection phases for the plate boundary are very weak 
(0–40 km distance in Fig. 2e). Northeast of the ridge the 
reflectivity becomes variable and is significantly reduced 

at some locations (75–80  km and 110–115  km distance 
in Fig.  2e). In the northeasternmost part of the profile, 
on the other hand, the reflectors become smoother and 
more continuous (135–190  km distance in Fig.  2e). We 
find a similar and more obvious rough-to-smooth tran-
sition in plate boundary geometry along the KR9810-4 
profile (Fig. 3a). Despite the proximity to the HYU01-03 
profile, the reflection image along the KR9810-04 profile 
shows the rougher plate geometry in the southwest prob-
ably because this line is located closer to the deeper sea-
mount indicated by a positive magnetic anomaly (Fig. 4b) 
while the HYU01-03 profile runs between the shallow 
and deep seamounts.

Along-trough variability in basement roughness of 
the incoming plate can be also observed in reflection 
images on the seaward side of the trough. The reflection 
data consistently show that there are abundant basement 
highs with a width of a few kilometers on the eastern 
flank of the Kyushu Palau ridge (Fig. 3b–d). Their relative 
heights are variable and reach ~ 1 s in two-way traveltime 
(roughly equivalent to 2  km) at maximum. Importantly, 
these basement highs are distributed within ~ 60 km dis-
tance from the eastern margin of the Kyushu-Palau ridge, 
and the deeper extension of this location corresponds 
well with the rough-to-smooth transition observed in the 
KR9810-04 (red dashed lines in Fig.  3). It is also noted 
that on the seaward side of the trench, the topographic 
highs are mostly buried within the sedimentary layers 
beneath the Shikoku basin. In contrast, the surface of the 
basement becomes much smoother further east where 
thick sediments of over 1 s pile up on the oceanic base-
ment (Fig. 3b–d).

Discussion
Our previous study revealed that there exist low-velocity 
features above the subducting Kyushu-Palau ridge (Arai 
et al. 2023). The new results presented in this study dem-
onstrate that the forearc low-velocity features develop 
over a ~ 100 km length along trough, and underthrusting 
this zone is crust with up to 10 km thickness and a rough 
surface together with the main body of the Kyushu-Palau 
ridge (Figs.  2 and 4c). This observation indicates that 
the along-trough extent of the upper-plate low-velocity 
areas is tens of kilometers larger than the width of the 

(See figure on next page.)
Fig. 2 Interplate coupling, tremor distribution and seismic structure along the HYU01-03 profile. a Tremor frequency by Yamashita et al. (2015) 
(solid blue line) and Yamashita et al. (2021) (dashed light-blue line) and slip deficit rate by Yokota et al. (2016) (red curves). The numbers of tremors 
that occurred within 5-km distance from the seismic line are projected. b P-wave (Vp) velocity model by full-waveform inversion. The black dashed 
line is the plate boundary inferred from the MCS reflection image in panel (e). Areas without ray coverage of first-arrival refraction waves or poor 
checkerboard recovery are shaded (Figure S10). c Vp perturbation from the depth average of the Vp model (depth below seafloor). d Variation 
in crustal thickness of the subducting Philippine Sea plate approximated by the vertical thickness of areas with Vp of 5.2–7.5 km/s. e Pre-stack depth 
migrated reflection image that highlights the along-profile variation of plate boundary reflections
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Fig. 2 (See legend on previous page.)
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subducted Kyushu-Palau ridge inferred from seafloor 
magnetic data (Okino 2015; Fig. 4b) and previous seismic 
studies (Park et al. 2009; Yamamoto et al. 2013). The spa-
tial correlation between the upper-plate and lower-plate 

structural heterogeneities suggests that the topographic 
highs on the incoming basement are responsible for 
the formation of the upper-plate low-velocity features. 
Numerical studies reproducing the processes of forearc 

Fig. 3 Seismic reflection images that focus on the along-trough variation in roughness of the incoming plate basement (black dashed lines). a 
KR9810-04. b KR01-14-8. c 0501H-100. d SB01. The red dashed lines mark the transition from the rough basement adjacent to the Kyushu-Palau 
Ridge to the smooth and continuous basement to the east. Uninterpreted sections are presented in Figure S11
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deformation associated with seamount subduction dem-
onstrate that even small-scale bumps on the incoming 
plate are capable for uplifting the forearc wedge and caus-
ing intensive fractures above the basement highs (Mor-
gan and Bangs 2017; Miyakawa et al. 2022). As observed 

in the bathymetric map of the Hyuga-nada area, the 
forearc slope exhibits complicated patterns of deforma-
tion, and the trough axis is highly indented and includes 
embayment structure at some locations to the east of 
the Kyushu-Palau ridge (Fig.  4a). The smaller low-Vp 
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zone (145–160 km distance in Fig. 2c) corresponds well 
with the downdip extension of the embayment labeled in 
Fig. 4a. Based on sandbox experiments, Dominguez et al. 
(1998) demonstrate that seamounts can induce intensive 
fracture zones consisting of subvertical faults within the 
overriding plate in the process of subduction. We thus 
suggest that not only the main body of the Kyushu-Palau 
ridge, but also the anomalously thick and rough crustal 
portion developed in its eastern flank contribute to form-
ing regional low-velocity zones in the overriding plate.

Along-trough structural variations mentioned above 
closely correlate with spatial changes in interplate slip 
mode along the Nankai subduction zone. The compari-
son with tremor distribution (Yamashita et al. 2015, 2021; 
Fig.  2a) shows that the slow earthquakes are limited in 
the areas where the plate boundary is reflective and the 
upper-plate Vp values are below 4.5  km/s (40–115  km 
distance in Fig. 2). The slip deficit rate determined by sea-
floor geodetic observation (Yokota et al. 2016) also tran-
sitions from low in the middle of the profile to high in the 
easternmost part in concert with a change in upper-plate 
velocity structure (Fig. 2a). These results indicate that the 
subducting Kyushu-Palau ridge and the adjacent portion 
with thicker crust and rough basement can weaken the 
plate coupling. It is widely recognized that subducting 
seamounts facilitate local underthrusting of fluid-rich 
sediments along their trails (Bangs et  al. 2023). These 
sediments prepare preferable conditions for shallow slow 
earthquakes to occur by expelling fluids and creating 
zones with high pore fluid pressure at/around the plate 
interface (e.g., Akuhara et al. 2020). In addition, the low-
velocity upper plate damaged by subducting seamount 
has reduced rigidity, which may hamper the sustained 
strain accumulation that is necessary for large megath-
rust earthquakes (Sallarès and Ranero 2019; Bassett et al. 
2022). From another viewpoint, the incoming Philip-
pine Sea plate has a significant along-trough variation in 
thickness of trench sediments around the Kyushu-Palau 
ridge (Fig.  3). This may be also relevant because thick 
incoming sediments likely result in larger rupture areas 
of megathrust earthquakes by smoothing out the poten-
tial fault plane and decreasing the dip angle of the slab 
(Bletery et al. 2016; Brizzi et al. 2020). In the study area, 
the trench sediments tend to be thicker to the east (south 
off the Cape Ashizuri) where the slip deficit rate is higher 
(Fig. 3). Park and Jalami Hondori (2023) investigated seis-
mic reflection data along the entire Nankai trough to sug-
gest that the distribution of the underplating turbidite 
layers within the Shikoku Basin sediments have a positive 
correlation with the offshore areas with high slip deficit 
rates, which agrees with our observations in the Hyuga-
nada area that the Shikoku Basin sediments become thin-
ner or missing as it approaches the Kyushu-Palau ridge 

(Fig.  3b–d). These correlations between the plate cou-
pling, upper-plate seismic velocity and incoming plate 
structure are also consistent with those observed in other 
subduction zones. For example, the Hikurangi mar-
gin, situated off the east coast of New Zealand’s North 
Island, exhibits a similar lateral change in interplate 
coupling that is closely linked to the variation in upper-
plate forearc velocity (Bassett et al. 2022). It has been also 
suggested that the variations in sediment thickness and 
topography of the incoming Hikurangi Plateau contrib-
ute to developing the variable slip mode along the plate 
interface (Gase et al. 2022; Bassett et al. 2023). We thus 
suggest that the combination of these structural factors 
primarily controls the complex spatial pattern of seismo-
genic behaviors in the western Nankai Trough.

Although the along-trough structural variation of the 
incoming Philippine Sea plate is revealed in this study, 
the tectonic processes on how the thick crust with 
rugged basement surface has developed in the east-
ern flank of the Kyushu-Palau ridge are still unclear. 
The Kyushu–Palau ridge located west of the Shikoku 
and Parece Vela basins is a remnant arc that had sepa-
rated from the Izu-Bonin-Mariana arc on the eastern 
side of the basins through back-arc rifting and spread-
ing (Okino et  al. 1999). Seismic refraction surveys of 
Nishizawa et al. (2016) show that the northern Kyushu-
Palau ridge has an 18-km-thick crust and accompa-
nies a transitional zone on its eastern side. Although 
the transitional zone has a rough basement surface 
similar to those observed in this study, they observed 
highly thinned crust with ~ 5 km thickness in the tran-
sitional zone resulted from arc and back-arc rifting, 
which differs from the thick slab crust found in this 
study. Another seismic study focused on the southern 
part of the Kyushu-Palau ridge indicate that the crust in 
the transitional zone has a thickness of ~ 10 km, which 
is equivalent to the values from this study, and argue 
that extensive arc and back-arc volcanisms may have 
contributed to crustal thickening (Zhang et  al. 2023). 
The alternative model is anomalously thick “oceanic” 
crust that was created at back-arc spreading centers: 
if the back-arc spreading centers are located close to 
the volcanic arc at an initial stage of back-arc spread-
ing, slab-derived fluids may be supplied abundantly to 
the spreading axes, resulting in anomalous crust with 
8–10  km thickness (Arai and Dunn 2014). Seafloor 
magnetic data show weak linear patterns aligned per-
pendicular to the spreading direction just east of the 
Kyushu-Palau Ridge, which implicitly indicates that the 
transitional zone is composed of oceanic crust formed 
through back-arc spreading (Fig.  4b). In either case, 
thicker crust can be more buoyant than typical oceanic 
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crust and thus may have more impacts on the upper-
plate deformation when subducted (Arai et al. 2017).

Conclusions
We investigated the along-trough structural variations 
in the upper-plate forearc and the subducting slab in the 
western Nankai Trough using seismic refraction data 
recorded by densely deployed OBSs and MCS reflec-
tion data. We constrained P-wave velocity structure of 
the ~ 200-km-long transect with the high resolution by 
using the full-waveform inversion technique and revealed 
that the upper plate shows low seismic velocities over an 
approximately 100 km length that coincide with the loca-
tion of predominant occurrence of slow earthquakes. 
Furthermore, we observed that the upper-plate low-
velocity zone is underthrust by the slab with 2–4  km 
thicker crust that has substantial basement irregularities 
spanning ~ 60  km from the eastern end of the Kyushu-
Palau ridge beneath the Shikoku basin. We propose that 
combined influences of this thicker and rugged slab 
crust and the adjacent mature arc of the Kyushu-Palau 
ridge can induce significant fracture zones in the over-
riding plate, reduce the interplate coupling and provide 
favorable conditions for the occurrence of shallow slow 
earthquakes.
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