Skip to main content

Procrustean solution of the 9-parameter transformation problem

Abstract

The Procrustean “matching bed” is employed here to provide direct solution to the 9-parameter transformation problem inherent in geodesy, navigation, computer vision and medicine. By computing the centre of mass coordinates of two given systems; scale, translation and rotation parameters are optimised using the Frobenius norm. To demonstrate the Procrustean approach, three simulated and one real geodetic network are tested. In the first case, a minimum three point network is simulated. The second and third cases consider the over-determined eight- and 1 million-point networks, respectively. The 1 million point simulated network mimics the case of an air-borne laser scanner, which does not require an isotropic scale since scale varies in the X, Y, Z directions. A real network is then finally considered by computing both the 7 and 9 transformation parameters, which transform the Australian Geodetic Datum (AGD 84) to Geocentric Datum Australia (GDA 94). The results indicate the effectiveness of the Procrustean method in solving the 9-parameter transformation problem; with case 1 giving the square root of the trace of the error matrix and the mean square root of the trace of the error matrix as 0.039 m and 0.013 m, respectively. Case 2 gives 1.13×10−12 m and 2.31×10−13 m, while case 3 gives 2.00×10−4 m and 1.20 × 10−5 m, which is acceptable from a laser scanning point of view since the acceptable error limit is below 1 m. For the real network, the values 6.789 m and 0.432 m were obtained for the 9-parameter transformation problem and 6.867 m and 0.438 m for the 7-parameter transformation problem, a marginal improvement by 1.14%.

References

  • Antonopoulos, A., Scale effects associated to the transformation of a rotational to a triaxial ellipsoid and their connection to relativity, J. Planet. Geod., 38(4), 119–131, 2003.

    Google Scholar 

  • Ashburner, J. and K. Friston, Multimodal Image Coregistration and Partitioning-A Unified Framework, NeuroImage, 6(3), 209–217, 1997.

    Article  Google Scholar 

  • Awange, J. L. and E. W. Grafarend, Solving algebraic computational problems in Geodesy and Geoinformatics, Springer-Verlag, Heidelberg, 2005.

    Google Scholar 

  • Beinat, A. and F. Crosilla, Generalized Procrustes analysis for size and shape 3D object reconstructions, Optical 3-D Measurement Techniques V, Vienna, October 1–4, 345–353, 2001.

    Google Scholar 

  • Beinat, A. and F. Crosilla, A Generalized Factored Stochastic Model for Optimal Registration of LIDAR Range Images, Int. Arch. Photogramm. Remote Sensing Spat. Inf. Sci., 34(PART 3/B), 36–39, 2002.

    Google Scholar 

  • Borg, I. and P. Groenen, Modern Multidimensional Scaling, Springer-Verlag, New York, 1997.

    Book  Google Scholar 

  • Bursa, M., The theory for the determination of the non-parallelism of the minor axis of the reference ellipsoid and the inertial polar axis of the Earth, and the planes of the initial astronomic and geodetic meridians from the observation of artificial Earth satellites, Stud. Geophys. Geod., 6, 209–214, 1962.

    Article  Google Scholar 

  • Conmmandeur, J. F., Matching configurations, DSWO Press Leiden University, 1991.

    Google Scholar 

  • Cox, T. F. and M. A. A. Cox, Multidimensional Scaling, Chapman and Hall, 1994.

    Google Scholar 

  • Eckart, C. and G. Young, The approximation of one matrix by another of lower rank, Psychometrika, 1(3), 211–218, 1936.

    Article  Google Scholar 

  • Featherstone, W. and P. Vaníček, The role of coordinate systems, coordinates and heights in horizontal datum transformations, Aust. Surv., 44, 143–150, 1999.

    Article  Google Scholar 

  • Fitzpatrick, J. M. and J. B. West, The distribution of target registration error in rigid-body point-based registration, IEEE Trans. Med. Imaging, 20(9), 917–927, 2001.

    Article  Google Scholar 

  • Forsberg, R., Experience with the ULISS-30 inertial survey system for local geodetic and cadastral network control, J. Geod., 65(3), 179–188, 1991.

    Google Scholar 

  • Fröhlich, H. and G. Broker, Trafox version 2.1—3d-Kartesische Helmert-Transformation, http://www.koordinatestransformation.de/data/trafox.pdf, 2003.

    Google Scholar 

  • Grafarend, E. W. and J. L. Awange, Determination of the vertical deflection by GPS/LPS measurements, Zeitschrift für Vermessungswesen, 125, 279–288, 2000.

    Google Scholar 

  • Grafarend, E. W. and J. L. Awange, Nonlinear analysis of the three-dimensional transformation [conformal group C7(3)], J. Geod., 77, 66–76, 2003.

    Article  Google Scholar 

  • Grafarend, E. W. and B. Schaffrin, Ausgleichungsrechnung in linearen Modellen, Wissenschaftsverlag, Mannheim, 1993.

    Google Scholar 

  • Gruen, A. and D. Akca, Least squares 3D surface and curve matching, ISPRS J. Photogramm. Remote Sensing, 59(3), 151–174, 2005.

    Article  Google Scholar 

  • Kinneen, R. W and W. E. Featherstone, Empirical evaluation of published transformation parameters from the Australian Geodetic Datums (AGD66 and AGD84) to the Geocentric Datum of Australia (GDA94), J. Spat. Sci., 49(2), 1–31, 2004.

    Article  Google Scholar 

  • Lingoes, J. C. and I. Borg, A direct approach to individual differences scaling using increasingly complex transformations, Psychometrika, 43(4), 491–519, 1978.

    Article  Google Scholar 

  • Mathes, A., EasyTrans Pro-Edition, Professionelle Koordinatentransformation für Navigation, Vermessung und GIS, ISBN 978-3-87907-367-2, CD-ROM with manual, 2002.

    Google Scholar 

  • Niederoest, J., A bird’s eye view on Switzerland in the 18th century: 3D recording and analysis of a historical relief model. The International Archives of Photogrammetry, Remote Sensing Spat. Inf. Sci., 34-5(C15), 589–594, 2003.

    Google Scholar 

  • Papp, E. and L. Szucs, Transformation Methods of the Traditional and Satellite Based Networks, Geomatikai Kozlemenyek, VIII, 85–92, 2005 (in Hungarian with English abstract).

    Google Scholar 

  • Pfefferbaum, A., M. J. Rosenbloom, T. Rohlfing, E. Adalsteinsson, C. A. Kemper, S. Deresinski, and E. V Sullivan, Contribution of alcoholism to brain dysmorphology in HIV infection: Effects on the ventricles and corpus callosum, Neuroimage, 33, 239–251, 2006.

    Article  Google Scholar 

  • Piperakis, E. and I. Kumazawa, Affine transformation of 3D objects represented with Neural Network, Proceedings of 3-D Digital Imaging and Modeling (3DIM 01’), 213–223, 2001.

    Google Scholar 

  • Soler, T., A compendium of transformation formulas useful in GPS work, J. Geod., 72, 482–490, 1998.

    Article  Google Scholar 

  • Späth, H., A numerical method for determining the spatial Helmert transformation in case of different scale factors, Zeitschrift für Geodäsie, Geoinformation und Landmanagement, 129, 255–257, 2004.

    Google Scholar 

  • Sun, F. T., R. A. Schriber, J. M. Greenia, J. He, A. Gitcho, and J. W. Jagust, Automated template-based PET region of interest analyses in the aging brain, Neuroimage, 34(2), 608–617, 2007.

    Article  Google Scholar 

  • Umeyama, S., Least squares estimation of transformation parameters between two patterns, IEEE Trans. Pattern Anal. Mach Intell., 13(4), 376–380, 1991.

    Article  Google Scholar 

  • Watson, G. A., Computing Helmert transformations, J. Comp. Appl. Math., 197, 387–394, 2006.

    Article  Google Scholar 

  • Wolf, H., Geometric connection and re-orientation of three-dimensional triangulation nets, Bull. Géodésique, 68, 165–169, 1963.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. L. Awange.

Rights and permissions

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Cite this article

Awange, J.L., Bae, K.H. & Claessens, S.J. Procrustean solution of the 9-parameter transformation problem. Earth Planet Sp 60, 529–537 (2008). https://doi.org/10.1186/BF03353115

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1186/BF03353115

Key words