# Table 1 Coordinates of source-type diagrams

Horizontal axis Vertical axis Normalization Reference
(a) Cubic $$u$$ $$v$$ $$\left( { - u, v} \right)$$ Hudson et al. (1989)
(b) Hexagonal bi-pyramid $$\tau$$ $$k$$ $$\left( { - \tau , k} \right)$$ Hudson et al. (1989)
Vavryčuk (2015)
(c) Modified hexagonal bi-pyramid $$T = \frac{\tau }{1 - \left| k \right|}$$ $$k$$ $$\left( { - T, k} \right)$$ Hudson et al. (1989)
Vavryčuk (2015)
(d) Conjugate bi-pyramid $$\eta$$ $$\xi$$ $$\left( { - \eta , \xi } \right)$$ Vavryčuk (2015)
(e) Spherical equirectangular $$\gamma$$ $$\delta$$ $$\left( { - \frac{6\gamma }{\pi }, \frac{2\delta }{\pi }} \right)$$ Chapman and Leaney (2012)
Tape and Tape (2012)
(f) Spherical orthogonal $$R = \sin \gamma \cos \delta$$ $$\zeta = \sin \delta$$ $$\left( { - 2R,\zeta } \right)$$
(g) Modified spherical orthogonal $$r = R\left| R \right|$$ $$s = \zeta \left| \zeta \right|$$ $$\left( { - 4r, s} \right)$$ Zhu and Ben-Zion (2013)
Vavryčuk (2015)
(h) Spherical azimuthal $$p = \frac{\sqrt 2 \sin \gamma \cos \delta }{{\sqrt {1 + \cos \gamma \cos \delta } }}$$ $$q = \frac{\sqrt 2 \sin \delta }{{\sqrt {1 + \cos \gamma \cos \delta } }}$$ $$\left( {\frac{ - 2p}{\sqrt 6 - \sqrt 2 },\frac{q}{\sqrt 2 }} \right)$$ Chapman and Leaney (2012)
Tape and Tape (2013)
Vavryčuk (2015)
(i) Spherical cylindrical $$\gamma$$ $$\zeta$$ $$\left( { - \frac{6\gamma }{\pi }, \zeta } \right)$$ Tape and Tape (2012)
(j) Modified spherical cylindrical $$a = \frac{6}{\pi }\gamma \sqrt {1 - \left| \zeta \right|}$$ $$b = \frac{\zeta }{{1 + \sqrt {1 - \left| \zeta \right|} }}$$ $$\left( { - a, b} \right)$$
(k) Spherical cylindrical orthogonal $$\chi = \sin \gamma$$ $$\zeta$$ $$\left( { - 2\chi ,\zeta } \right)$$ Zhu and Ben-Zion (2013)
(l) Percentile $$\epsilon$$ $$v$$ $$\left( { - 2\epsilon , v} \right)$$ Vavryčuk (2001)
(m) Modified percentile $$c = 2\epsilon \left( {1 - \left| v \right|} \right)$$ $$v$$ $$\left( { - c, v} \right)$$ Vavryčuk (2001)