Skip to main content

Table 5 Alternative Rm numbers

From: Magnetic field stretching at the top of the shell of numerical dynamos

Model \(\cos \gamma \) \(Rm_{\text {a}}\) \(Rm_{\text {s}}\) \(\xi _{Rm}\) \(Rm_{\text {e}}\) Rm
1 0.65 88.37 49.22 0.65 89.98 137
2 0.65 166.77 80.55 0.68 167.44 255
3 0.66 146.20 89.88 0.66 155.15 219
4 0.59 48.71 45.10 0.59 55.44 82
5 0.64 79.88 60.78 0.61 86.51 125
6 0.66 155.15 104.72 0.65 169.17 234
7 0.64 80.01 75.93 0.60 93.72 126
8 0.65 140.70 100.18 0.63 151.66 218
9 0.66 294.81 192.80 0.66 321.33 446
  1. \(\cos \gamma \) is the field–flow alignment factor. \(Rm_{\text {a}}\) and \(Rm_{\text {s}}\) are the advective and stretching effective magnetic Reynolds numbers, respectively. The effective magnetic Reynolds number \(Rm_{\text {e}}\) was calculated using the advection/stretching interference factor \(\xi _{Rm}\). For comparison the conventional Rm number is reproduced from Table 1