Skip to main content

Table 3 Estimated Dstmin based on formulae obtained from Wu and Lepping (2016) for a MC event that occurred on 17 March 2015

From: The first super geomagnetic storm of solar cycle 24: “The St. Patrick’s day event (17 March 2015)”

  Event Dstmin formulaa Pred. Dst bmin Source of \( B_{{z_{ \hbox{min} } }} \) c Errors (%)
(a) 168 MCs Dstmin = −3.30 + 6.82 × \( B_{{z_{ \hbox{min} } }} \) −160.2 MC 29.8
(b) 168 MCs Dstmin = 8.04 + 6.34 × \( B_{{z_{ \hbox{min} } }} \) −137.8 Sheath or MC 39.6
(c) 94 MC SHOCK Dstmin = −22.89 + 6.12 × \( B_{{z_{ \hbox{min} } }} \) 163.7 MC 28.2
(d) 94 MCSHOCK Dstmin = 11.01 + 6.47 × \( B_{{z_{ \hbox{min} } }} \) −137.8 Sheath or MC 39.6
(e) 94 MCSHOCK Dstmin = 21.18 + 5.26 × \( B_{{z_{ \hbox{min} } }} \) −142.2 Sheath 37.6
(f) 74 MCNOSHOCK Dstmin = 4.18 + 5.83 × \( B_{{z_{ \hbox{min} } }} \) −129.9 MC 43.0
(g) 83 MC1995–2003 Dstmin = 0.83 + 7.85 × \( B_{{z_{ \hbox{min} } }} \) −179.7 MC 21.2
  1. aLinear-fitted function for Dstmin obtained from Wu and Lepping (2016)
  2. bPredicted Dstmin by using Dstmin formula listed in the left
  3. c \( B_{{z_{ \hbox{min} } }} \) = −23 nT within the MC event recorded from wind spacecraft
  4. Italics: the “best prediction” (with the lowest error) for Dstmin