Skip to main content

Advertisement

Table 3 Uncertainties for H component

From: Uncertainty in hourly mean data from classical magnetometers

VariableValue of the variableUncertainty \( (\delta ) \) of the variableTermUncertainty of the term
C (nT)9023.20.1\( \left( {\left( {1 + k_{1} t_{\text{abs}} } \right)*\left( {1 + k_{2} {\mathcal{H}}\cos \varphi } \right)*\sin \varphi } \right)\delta C)^{2} \)0.07432742
\( k_{1} \) (°C−1)0.0004761.00E−06\( \left( {C*\left( {t_{\text{abs}} } \right)*\left( {1 + k_{2} {\mathcal{H}}\cos \varphi } \right)*\sin \varphi } \right)\delta k_{1} )^{2} \)0.00892709
\( t_{abs} \) (°C)17.460.1\( \left( {C*\left( {k_{1} } \right)*\left( {1 + k_{2} {\mathcal{H}}\cos \varphi } \right)*\sin \varphi } \right)\delta t_{\text{abs}} )^{2} \)0.06630145
\( k_{2} \) (nT−1)1.18E−081.00E−10\( \left( {C*\left( {1 + k_{1} t_{\text{abs}} } \right)*\left( {{\mathcal{H}}\cos \varphi } \right)*\sin \varphi } \right)\delta k_{2} )^{2} \)0.00011531
\( {\mathcal{H}} \) (nT)24,60025\( \left( {C*\left( {1 + k_{1} t_{\text{abs}} } \right)*\left( {k_{2} \cos \varphi } \right)*\sin \varphi } \right)\delta {\mathcal{H}})^{2} \)1.6582E−06
\( \varphi \) (°)36.82461.93925E−06\( \left( {C*\left( {1 + k_{1} t_{\text{abs}} } \right)*(\cos \varphi \left( {1 + k_{2} \cos \varphi } \right) - k_{2} {\mathcal{H}}\sin^{2} \varphi } \right)\delta \varphi )^{2} \)0.00019951
SH (nT/mm)4.50.1\( \left( {\left( {n_{Hm} - n_{{H{\text{abs}}}} } \right)\delta S_{H} } \right)^{2} \)0.603729
nHabs (mm)12.70.1\( \left( {S_{H} \delta n_{Hm} } \right)^{2} \)0.2025
nHm (mm)20.470.12\( \left( {S_{H} \delta n_{{H{\text{abs}}}} } \right)^{2} \)0.2916
   Total uncertainty Hm (nT)1.1
  1. The dominant term is emphasized in italics