Skip to main content

Table 2 Summary of the physical parameters for viscoelastic flow

From: Frictional and structural controls of seismic super-cycles at the Japan trench

Oceanic asthenosphere

Background strain rate

\({\dot{\varepsilon }}^0_{22}\)

\(-10^{-14}\) \(\hbox {s}^{-1}\)

Basal mantle temperature

\(T_0\)

1380 \(^\circ\)C

Pre-factor

A

90 \(\hbox {MPa}^{-n} \hbox {s}^{-1}\) (ppm H/Si)\(^{-r}\)

Power law stress exponent

n

3.5

Activation energy

E

510 kJ/mol

Activation volume

\(\Omega\)

13 \(\hbox {cm}^3\)/mol

Water content

\(C_\text {OH}\)

1000 ppm H/Si

Water content exponent

r

1.2

Thermal age

a

120 Myr

Mantle wedge

Background strain rate

\({\dot{\varepsilon }}^0_{22}\)

\(-10^{-14}\) \(\hbox {s}^{-1}\)

Basal mantle temperature

T

1380 \(^\circ\)C

Pre-factor below arc

A

90 \(\hbox {MPa}^{-n}\hbox {s}^{-1}\) (ppm H/Si)\(^{-r}\)

Pre-factor offshore

A

27 \(\hbox {MPa}^{-n}\hbox {s}^{-1}\) (ppm H/Si)\(^{-r}\)

Power law stress exponent

n

3.5

Activation energy below arc

E

490 kJ/mol

Activation energy offshore

E

510 kJ/mol

Activation volume

\(\Omega\)

11 \(\hbox {cm}^3\)/mol

Water content below arc

\(C_\text {OH}\)

4000 ppm H/Si

Water content offshore

\(C_\text {OH}\)

1000 ppm H/Si

Water content exponent

r

1.2

Thermal age

a

53 Myr

  1. The thermal model is based on a cooling half-space with a thermal age a and a basal temperature \(T_0\), where the top of the slab is the reference depth, to account for advection. The mantle wedge is cooled as a function of proximity to the down-going slab, following the perturbation \(\Delta T\,e^{-z/z_0}\), where \(\Delta T=-900^\circ\)C, z is the distance to the slab, and \(z_0=25\,\)km