Skip to main content

Table 1 Results from the IMEX cometary dust trails simulations for MMX

From: Modelling cometary meteoroid stream traverses of the Martian Moons eXploration (MMX) spacecraft en route to Phobos

Comet Time interval with flux Duration Day with Maximum Fluence Impact speed at maximum flux Impact direction
  \(\ge 10^{-3}\mathrm {\,m}^{-2}\mathrm {\,day}^{-1}\)   maximum flux flux   \(|v_{\mathrm {imp}}|\) \(v_x\) \(v_y\) \(v_z\) \(\lambda _{\mathrm {ecl}}\) \(\beta _{\mathrm {ecl}}\)
   [days]   [\(\mathrm {m}^{-2}\mathrm {\,day}^{-1}\)] [\(\mathrm {m}^{-2}\)] [\(\mathrm {km\,s}^{-1}\)] [\(\mathrm {km\,s}^{-1}\)] [\(\mathrm {km\,s}^{-1}\)] [\(\mathrm {km\,s}^{-1}\)] [\(^{\circ }\)] [\(^{\circ }\)]
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)
Interplanetary Transfer Phase
21P/Giacobini-Zinner 04.10.2024–11.10.2024 8 05.10.2024 0.0082 0.013 20.2 1.4 0.9 −20.1 212 85
24P/Schaumasse 14.12.2024–16.12.2024 2 16.12.2024 0.0011 0.002 20.4 −5.6 −17.1 9.6 72 −28
45P/H-M-P 05.05.2025–17.05.2025 13 17.05.2025 0.0013 0.015 17.6 −17.4 2.7 0.0 351 0
103P/Hartley 25.10.2024–26.10.2024 2 26.10.2024 0.0009 0.001 10.0 −7.0 1.1 −7.1 351 45
Mars Orbital Phase
3D/Biela 30.05.2026–15.06.2026 17 10.06.2026 0.0064 0.006 20.5 −18.5 −8.0 −3.8 23 11
3D/Biela 13.06.2027–25.06.2027 13 20.06.2027 0.0045 0.050 20.4 −18.5 −7.8 3.6 23 −10
19P/Borrelly 08.09.2026–18.09.2026 11 15.09.2026 0.0310 0.332 15.7 −2.4 −0.3 15.5 8 −81
24P/Schaumasse 02.09.2026–13.09.2026 12 09.09.2026 0.0039 0.041 16.4 −7.6 −13.9 4.1 61 −14
45P/H-M-P 21.12.2027–26.12.2027 6 24.12.2027 0.0355 0.120 22.3 −16.6 15.0 − 0.2 318 1
114P/Wiseman-Skiff 04.10.2026–07.10.2026 3 06.10.2026 0.1535 0.300 11.0 -4.9 −1.1 −9.9 13 63
185P/Petriew 24.06.2026–05.07.2026 12 04.07.2026 0.0046 0.037 10.7 −2.3 3.1 −10.0 306 69
275P/Hermann 22.03.2027–25.03.2027 4 24.03.2027 0.0110 0.034 12.3 −2.6 −5.7 −10.6 66 59
  1. The time interval of the trail traverse together with the predicted maximum flux (of \(100\,\mu \mathrm { m}\) and bigger particles) are given in columns (2) to (5). Column (6) gives the fluence on to a \(1\,\mathrm {m}^{2}\) detector detectable during the time interval given in column (2). Columns (7) to (10) give the speed vector, while columns (11) and (12) give the impact direction of the particles in ecliptic coordinates (opposite to speed vector), both in the spacecraft-centered reference frame. The impact direction corresponds to the radiant of a meteor stream in a planetary atmosphere