Skip to main content

Table 1 Reactions/processes and their constants/coefficients

From: The revised method for retrieving daytime distributions of atomic oxygen and odd-hydrogens in the mesopause region from satellite observations

 

Reaction/process

Rate constant: Mlynczak et al. (2018)/this work

Reference: Mlynczak et al. (2018)/this work

R1

O + O2 + M → O3 + M

\(k_{1} = 6.1 \cdot 10^{ - 34} \left( {298/T} \right)^{2.4}\)

Burkholder et al. (2020)

R2

O3 + hv → O2 + O, O(1D)

\(k_{2}\) see text

See text in section Calculations and methodology

R3

H + O3 → O2 + OH

\(k_{3} = 1.4 \cdot 10^{ - 10} {\text{exp}}\left( { - 470/T} \right)\)

Burkholder et al. (2020)

R4

O + OH → O2 + H

\(k_{4} = 1.8 \cdot 10^{ - 11} {\text{exp}}\left( {180/T} \right)\)

Burkholder et al. (2020)

R5

O + HO2 → O2 + OH

\(k_{5} = 3 \cdot 10^{ - 11} {\text{exp}}\left( {200/T} \right)\)

Burkholder et al. (2020)

R6

H + O2 + M → HO2 + M

\({\text{k}}_{6} = 5.3 \cdot 10^{ - 32} \left( {298/T} \right)^{1.8}\)

Burkholder et al. (2020)

R7

O3 + OH → O2 + HO2

\(k_{7} = 1.7 \cdot 10^{ - 12} {\text{exp}}\left( { - 940/T} \right)\)

Burkholder et al. (2020)

R8

H + HO2 → 2OH

\(k_{8} = 7.2 \cdot 10^{ - 11}\)

Burkholder et al. (2020)

R9

H + HO2 → O2 + H2

\(k_{9} = 6.9 \cdot 10^{ - 12}\)

Burkholder et al. (2020)

R10

H + HO2 → O + H2O

\(k_{10} = 1.6 \cdot 10^{ - 12}\)

Burkholder et al. (2020)

R11

H + O3 \(\to ^{{k_{3} f_{9} }}\) O2 + OH(ν = 9)

\(f_{9}\) = 0.47

Adler-Golden (1997)

R12

H + O3 \(\to ^{{k_{3} f_{9} }}\) O2 + OH(ν = 8)

\(f_{8}\) = 0.34

Adler-Golden (1997)

R13

Total OH(ν = 9) → OH(ν = 0–8) + hv

\(E_{9}\) = 215.05/\(E_{9}\) = 199.2495

Mlynczak et al. (2018)/Xu et al. (2012)

R14

Total OH(ν = 8) → OH(ν = 0–7) + hv

\(E_{8}\) = 178.06/\(E_{8}\) = 171.5238

Mlynczak et al. (2018)/Xu et al. (2012)

R15

OH(ν = 9) → OH(ν = 8) + hv

\(E_{98}\) = 20.05/\(E_{98}\) = 18.3507

Mlynczak et al. (2018)/Xu et al. (2012)

R16

OH(ν = 9) → OH(ν = 7) + hv

\(E_{97}\) = 118.35/\(E_{97}\) = 112.4054

Mlynczak et al. (2018)/Xu et al. (2012)

R17

OH(ν = 8) → OH(ν’ = 6) + hv

\(E_{86}\) = 117.21/\(E_{86}\) = 116.6081

Mlynczak et al. (2018)/Xu et al. (2012)

R18

Total OH(ν = 9) + O2 → OH(ν = 0–8) + O2

\(B_{9}\) = 2.5·10–11/\(B_{9}\) = 3.1·10–11

Mlynczak et al. (2018) / Adler-Golden (1997)

R19

Total OH(ν = 9) + O → OH(ν = 0–8) + O

\(C_{9}\) = 3·10–10/\(C_{9}\) = (8.54; 7.66; 6.81; 6.29; 6.16)·10–11 at T = 110, 160, 210, 255, 300 K

Mlynczak et al. (2018)/Caridade et al. (2013)

R20

Total OH(ν = 9) + N2 → OH(ν = 0–8) + N2

\(D_{9}\) = 3.36·10–13 ∙exp(220/T) / \(D_{9}\) = 4.8·10–13

Mlynczak et al. (2018)/Makhlouf et al. (1995)

R21

Total OH(ν = 8) + O2 → OH(ν = 0–7) + O2

\(B_{8}\) = 4.8·10–13 / \(B_{8}\) = 1.19·10–11

Mlynczak et al. (2018)/Adler-Golden (1997)

R22

Total OH(ν = 8) + O → OH(ν = 0–7) + O

\(C_{8}\) = 1.5·10–10/\(C_{8}\) = (8.07; 7.28; 6.66; 6.37; 6.16)·10–11 at T = 110, 160, 210, 255, 300 K

Mlynczak et al. (2018)/Caridade et al. (2013)

R23

Total OH(ν = 8) + N2 → OH(ν = 0–7) + N2

\(D_{8}\) = 7·10–13/\(D_{8}\) = 2.7·10–13

Mlynczak et al. (2018)/Makhlouf et al. (1995)

R24

OH(ν = 9) + O2 → OH(ν = 8) + O2

\(B_{98}\) = 4.2·10–12

Adler-Golden (1997)

R25

OH(ν = 9) + O → OH(ν = 8) + O

\(C_{98}\) = 0/\(C_{98}\) = (3.4; 4; 2.6; 3.1; 3.3)·10–12 at T = 110, 160, 210, 255, 300 K

Mlynczak et al. (2018)/Caridade et al. (2013)

R26

OH(ν = 9) + N2 → OH(ν = 8) + N2

\(D_{98}\) = 4·10–13/\(D_{98}\) = 4.8·10–13

Mlynczak et al. (2018)/Makhlouf et al. (1995)

  1. List of reactions with corresponding reaction rates (for three-body reactions [cm6 molecule−2 s−1], for two-body reactions [cm3 molecule−1 s−1]) used in our paper; and other processes (quenching [cm3 molecule−1 s−1], spontaneous emission [s−1]) with corresponding coefficients used in our procedure (this work) and in the old procedure (Mlynczak et al. 2018), where they are different